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Abstract. This research examines the performance of various compressed sensing matrix 

techniques, with a focus on Principal Component Analysis (PCA) compared to conventional 

methods. By applying these techniques to a range of high-dimensional datasets, we assess their 

effectiveness in reducing data dimensionality while preserving essential information. Our results 

demonstrate that PCA consistently outperforms traditional methods in terms of both accuracy 

and computational efficiency. These findings have significant implications for fields such as 

signal processing, image compression, and data analytics, where efficient data representation is 

critical. The study provides a framework for selecting the optimal dimensionality reduction 

technique, enabling improvements in processing speed and accuracy in practical applications. 

Keywords: Compressed Sensing, Principal Component Analysis (PCA), Data Dimensionality 

Reduction, Signal Processing, Measurement Matrix, Image Compression, Signal Reconstruction 

Techniques, Data Analytics. 

 

(Received 2024-10-01, Accepted 2025-03-06, Available Online by 2024-04-30) 

1.   Introduction  

In the rapidly growing field of data science and signal processing, compressed sensing (CS) has emerged 

as a powerful technique to efficiently acquire and reconstruct signals from fewer samples than 

traditionally required by the Nyquist sampling theorem. However, one of the central challenges in 

compressed sensing is the design and optimization of measurement matrices, which play a crucial role 

in signal reconstruction accuracy. Traditional methods for constructing these matrices often rely on 

random projections, which, while effective, can be computationally expensive and lack structure. 

Principal Component Analysis (PCA), a well-known dimensionality reduction technique, offers a 

potential alternative to traditional random projections by identifying patterns in the data that can be 

leveraged for more efficient signal representation. By projecting high-dimensional data onto a lower-

dimensional subspace, PCA captures the most significant variations within the dataset, reducing 

https://doi.org/10.26877/asset.v7i2.1037
mailto:skalaivani@crescent.education


  

02502018-02 

 

redundancy and enhancing compression efficiency. However, its effectiveness in compressed sensing 

applications remains under-explored. This study aims to address this gap by comparing the performance 

of PCA-based measurement matrices with traditional methods in compressed sensing. By evaluating the 

accuracy, computational efficiency, and signal reconstruction performance of these approaches, the 

research seeks to contribute to the ongoing efforts to optimize compressed sensing frameworks. The 

implications of this work extend beyond signal processing, with potential applications in medical 

imaging, telecommunications, and any field where data compression and reconstruction are critical. 

2.   Methods 

Compressive Sensing (CS), alternatively referred to as Compressed Sensing, has developed as a 

significant signal processing methodology in numerous communication technologies in recent years. 

Compressed Sensing functions as a data reduction mechanism by facilitating effective signal acquisition 

and reconstruction. In CS-based reconstruction, underdetermined linear systems are addressed by linear 

programming, facilitating flawless signal recovery despite underdetermined circumstances. This 

contrasts with standard methods, as elucidated in [19], which demonstrate that CS can reconstruct 

signals from much less data than those mandated by conventional techniques. 

The primary difference between compressed sensing (CS) and the traditional sampling theorem 

resides in their underlying assumptions. The classical sampling theorem stipulates a sampling rate of no 

less than twice the highest frequency component of a signal to facilitate precise reconstruction. 

Conversely, CS theory circumvents this necessity by depending on two fundamental principles: sparsity 

and incoherence. Sparsity pertains to the signal's density, whereas incoherence pertains to the acquisition 

methodology. The subsequent sections expound on both principles. 

Sparsity: Sparsity is the quality of having few non-zero elements and a large percentage of zero 

elements in an array or matrix. In contrast, a dense matrix has the majority of its elements being nonzero. 

One method to quantify sparsity is to calculate the ratio of the total number of elements in a matrix or 

array to the number of elements with zero values. By deducting the matrix's density from unity, 

the sparsity can also be determined. Typically, a lot of signals are inherently sparse or scalable. CS 

theory makes use of this signal's behaviour. In other words, signals expressed in the correct basis, 

"Ψ," have sparser representations. This is understood mathematically: given a vector "X," of 

length "N" (i.e. E. x ∈ RN), then an orthonormal basis¨ = [Ψ1Ψ2….] can be used to expand the vector 

'X'. [ΨN] by employing formula (1). A sparse representation of the input signal "X" is indicated by 

"S" in the formula: 

 

𝑆 = ∑ 𝑋𝑖Ψ𝑖

𝑁

𝑖=1

 (1) 

If the spreading basis is sparse, then there are a lot fewer non-zero components in vector "s" than 

there are in vector "x". We can see from equation (1) that small coefficients can be discarded with little 

loss in perception when a signal has a sparse representation. 

Incoherence: The principle of incoherence [11, 12, 14, 15] is expanded by the duality of frequency 

and time. It suggests that items with sparse representations in one basis, Ψ, should be spread across the 

domain in which they are acquired. An impulse or spike signal, like a Dirac signal, serves as a good 

illustration of incoherence. The Dirac signal concentrates at a single point in the time domain and 

spreads out in the frequency domain. Compressed sensing (CS), which represents signals sparsely, 

revolves around this concept. 

Let’s consider two orthogonal bases, Φ and Ψ, each with dimensions RN. We sample the signal "x" 

using the Φ basis and represent it in the sparse domain using Ψ. The degree of correlation between these 

two bases plays a key role in CS recovery, as it directly affects reconstruction quality. If the columns Φ 

and Ψ are highly similar, the pair is said to have high mutual coherence, meaning the signal is less spread 

out between the bases. Conversely, if the correlation between the elements of Φ and Ψ is low, the mutual 

coherence is also low, indicating a more favourable condition for signal reconstruction. 

The mutual coherence between 'Φ' and 'Ψ' is expressed by equation (2). 
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 µ(Φ, Ψ) = √n. max  (Φ𝑘 , Ψ𝑗)Where, 1 ≤ k, j ≤  n; (2) 

A smaller mutual coherence value is preferable in compressed sensing (CS) reconstruction because 

it results in more accurate signal recovery. 

2.1 Compressed Sensing Matrix Generation Techniques 

In compressed sensing, measurement matrices play a crucial role in accurate signal reconstruction. This 

paper explores five common approaches discussed in following section. This section explores various 

methodologies for constructing compressed sensing (CS) measurement matrices (Φ). We compare the 

effectiveness of five approaches: Gaussian random matrices, Bernoulli random matrices, Discrete 

Fourier Transform (DFT) matrices, Discrete Cosine Transform (DCT) matrices, and Principal 

Component Analysis (PCA)-based matrices. 

2.1.1.   Gaussian Random Matrices 

These matrices (Φ) are created by filling entries with independently distributed, identically distributed 

(iid) samples drawn from a normal distribution standard (Φ~N(0,1)). Despitebeing simple to 

produce, they might not adequately convey the signal's underlying structure. By sampling each entry 

independently of a standard normal distribution (Φ ~ N(0,1)), the matrix Φ is produced. Although this 

approach is computationally efficient, the signal's underlying structure might not be captured.  

2.1.2.   Bernoulli Random Matrices 

Here, each entry (Φ𝑖𝑗) in the matrix is set to either 1 or -1 with a predefined probability (usually p = 

1/2): (Φ𝑖𝑗) ~ Bernoulli (p). These offer some properties that increase sparsity, but may not be optimal 

for all data types. Each entry (Φ𝑖𝑗) in the matrix is set to either 1 or -1 with a pre-defined probability p 

(typically p = 1/2): (Φ𝑖𝑗) ~ Bernoulli(p).This method offers some sparsity-promoting properties but 

might not be optimal for all data types. 

2.1.3.   Discrete Fourier Transform (DFT) Matrix 

 The DFT matrix (Φ𝐷𝐹𝑇) is created with complex exponentials 𝑒
2𝜋𝑗

𝑁 , where N is the length of the signal. 

This transforms the signal from the time domain (x) to the frequency domain (𝑋𝐷𝐹𝑇 =  Φ𝐷𝐹𝑇 ∗ 𝑥) and 

is therefore suitable for sparse signals with concentrated frequency components. The DFT matrix (Φ𝐷𝐹𝑇) 

is constructed using complex exponentials 𝑒
2𝜋𝑗

𝑁  where N is the signal length. This transforms the signal 

from the time domain (x) to the frequency domain (𝑋𝐷𝐹𝑇 =  Φ𝐷𝐹𝑇 ∗ 𝑥), making it suitable for sparse 

signals with concentrated frequency components. 

2.1.4.   Discrete Cosine Transform (DCT) Matrix 

Similar to the DFT, the DCT matrix (Φ𝐷𝐶𝑇) also uses cosine functions, but concentrates on real-valued 

signals. It captures the energy distribution in the frequency domain (𝑋𝐷𝐶𝑇 =  Φ𝐷𝐶𝑇 ∗ 𝑥), which makes 

it advantageous for signals with uniform fluctuations. Similar to the DFT, the DCT matrix (Φ_DCT) 

utilizes cosine functions but focuses on real-valued signals. It captures the energy distribution in the 

frequency domain (𝑋𝐷𝐶𝑇 =  Φ𝐷𝐶𝑇 ∗ 𝑥), making it beneficial for signals with smooth variations. 

2.2 PCA for Compressed Sensing Matrix Generation 

PCA, a well-established statistical technique, serves as a dimensionality reduction tool. It transforms 

data into a new coordinate system where the leading principal components capture the most significant 

variances. In the context of compressed sensing, PCA [6,13,18] offers valuable benefits for constructing 

measurement matrices and enhancing signal recovery. Principal Component Analysis (PCA) is a 

dimensionality reduction technique that identifies the most significant directions of variance in the data. 

We used PCA to construct a measurement matrix (Φ𝑃𝐶𝐴) that captures the underlying structure of the 

signal, potentially leading to improved reconstruction performance. The specific steps for PCA-based 

matrix generation will be detailed in Algorithm 1 and algorithm 2. Algorithm 1 explains about the PCA 
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and given in below table. 
 

Algorithm 1. Principal Component Analysis for Dimensionality Reduction 
 

Input:   

- Data matrix X with shape (m, n), where m is the number of samples and n is the number of features   

- 𝑁𝑢𝑚𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, the desired number of principal components 

 

Output:   

- Reduced data matrix 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑with shape (m, 𝑁𝑢𝑚𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) 

 

Steps:   
1. Normalize the features of the data matrix X to have a mean of zero and unit variance.   

2. Compute the covariance matrix of the normalized data.   

3. Perform eigenvalue decomposition on the covariance matrix to obtain eigenvalues and  

eigenvectors.   

4. Select the top 𝑁𝑢𝑚𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠eigenvectors corresponding to the largest eigenvalues.   

5. Project the data matrix X onto the selected eigenvectors to generate the reduced data matrix  

𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑.    

6. End. 
 

 

Algorithm 2 explains about the PCA based generation matrix construction and given below. 

 

Algorithm 2. PCA-Based Measurement Matrix Construction 
 

Input: Data matrix X of shape (m, n), where m is the number of samples and n is the number of 

features k, the desired number of principal components  

 

Output: Measurement matrix Φ of shape (k, n) 

 

Steps:   
1. Normalize each feature of the data matrix X to have zero mean for each feature j in X  do Compute 

the mean μ_j of feature j Subtract μ_j from each element in feature j end  for Let {X1} be the mean-

centered data matrix  

2. Compute the covariance matrix C of the mean-centered data X1. 

𝐶 =
1

(𝑚 − 1) ∗ (𝑋1
𝑇 ∗ 𝑋1)

 

 
3. Perform eigenvalue decomposition on the covariance matrix C to obtain eigenvalues and eigenvectors 

Compute eigenvalues Λ and eigenvectors V of C as  

𝐶 = 𝑉 ∗ Λ ∗ 𝑉𝑇 

4. Select the top k eigenvectors corresponding to the largest eigenvalues Sort the eigenvalues in 

descending order Select the top k eigenvalues and their corresponding Eigenvectors Let be the matrix 

of the top k eigenvectors. 

5. Form the measurement matrix Φ using the selected eigenvectorsΦ =  𝑉𝐾
𝑇 

6. End. 

 

The performance of each compressed sensing [20,21,22] (CS) matrix generation method is evaluated 

using metrics like reconstruction accuracy and sparsity preservation. We compare the reconstructed 

signal (x^) obtained using each method with the original signal (x) and analyzed the number of 

measurements (k) required for accurate reconstruction. For all different CS-based compressed signals, 
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the reconstruction was performed using the ℓ1 equality primal-dual interior-point method. The algorithm 

effectively solves the optimization problem: 
 min  ││x││1    subject to Ax=b    (3) 

where x is the signal to be reconstructed, A is the measurement matrix derived from the CS method 

(Gaussian, Bernoulli, DFT, DCT, PCA), and b is the compressed measurement vector. By using this 

algorithm, we can accurately reconstruct the original signal from its compressed version, ensuring 

minimal error and optimal recovery in terms of the ℓ1norm. This method is particularly effective when 

the signal is sparse or can be represented sparsely in some basis, making it a popular choice in 

compressed sensing applications. 

2.3 Principal Component Analysis (PCA) 

The primary objective of this work is to evaluate the performance of Principal Component Analysis 

(PCA) as a measurement matrix in compressed sensing, in comparison to traditional random matrix 

techniques. This section outlines the process followed, including data preparation, matrix design, signal 

reconstruction, and a critical analysis of PCA's limitations and biases. 

2.3.1.   Data Preparation 

The dataset used in this study consists of synthetic high-dimensional signals, designed to simulate real-

world applications of compressed sensing. These signals exhibit sparsity, a key assumption in 

compressed sensing frameworks. The dataset was divided into training and testing subsets, with the 

training data used to construct PCA-based measurement matrices and the testing data employed for 

performance evaluation. 

2.3.2.   Design of Measurement Matrices 

The study compares two types of measurement matrices: 

• Traditional Random Matrices: Random Gaussian and Bernoulli matrices, commonly used in 

compressed sensing, were generated as baseline methods. These matrices provide a random 

sampling approach for dimensionality reduction. 

• PCA-Based Measurement Matrices: PCA was applied to the training data to extract the principal 

components. The measurement matrix was constructed by selecting the top-k principal components, 

which captured the largest variance in the dataset, resulting in dimensionality reduction while 

retaining critical information. 

2.3.3.   Signal Reconstruction 

Signal reconstruction was performed using the Basis Pursuit algorithm, a standard technique in 

compressed sensing, to recover the original signals from the reduced representations. Both types of 

measurement matrices (random and PCA-based) were used in this reconstruction process. The 

performance of each matrix was evaluated based on the following criteria: 

• Reconstruction Error: The mean squared error (MSE) was used to quantify the difference between 

the original and reconstructed signals. 

• Compression Ratio: This metric reflects the ratio of the number of measurements (post-

compression) to the original signal dimensions, indicating the effectiveness of the matrix in reducing 

data. 

• Computational Efficiency: Time taken to reconstruct the signals was recorded to assess the 

practicality of each method for real-time or large-scale applications. 

3.   Results and Discussions 

An overview of the various approaches to creating a compressed sensing matrix in MATLAB is 

provided in this section. The simulations were run using a particular measurement ratio and sparse 

signal. In addition to performing reconstruction with only 25% of the original data, we have taken into 

consideration a 1-dimensional signal (both highly correlated and low correlated data). Provided 
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below is the outcome. In order to assess reconstruction accuracy, two metrics were used: Mean squared 

error (MSE) and Peak Signal-to-Noise Ratio (PSNR). For the input under consideration, Table 2 and 

Table3 provides a tabular representation of the supplied PSNR and MSE values for 

the various compressed sensing techniques for two different nature datasets of consisting highly 

correlated and low correlated data. The mean correlation coefficient is computed for different datasets 

and based on the mean correlation coefficient value and given in Table1. 

 

Table 1. Comparison of  mean correlation coefficient of different dataset 

Type of 1-D input 

data 

Mean Correlation 

Coefficient 

Nature of data based on mean correlation 

coeffient 

Temperature 0.93 Highly correlated 

Pressure 0.31 Low correlated 

 

The Table 2 summarizes the results for Gaussian, Bernoulli, Discrete Fourier Transform (DFT), 

Discrete Cosine Transform (DCT), and Principal Component Analysis (PCA) methods for highly 

correlated input data. Figure 1. Shows the comparison of all the five different matrices used for CS for 

the same data. 

 

Table 2. PSNR and MSE values in various matrices of highly correlated data 

Method PSNR (dB) MSE 

Gaussian -18.784898 14167.614190 

Bernoulli -20.215482 19694.960810 

DFT -29.322959 -151731.772253 

DCT 49.956500 0.002300 

PCA 51.028400 0.001800 

 

 

Table 3. PSNR and MSE values in various matrices of low correlated data 

Method PSNR (dB) MSE 

Gaussian -1.131926 7.344825 

Bernoulli 10.648696 65.714094 

DFT -30.956663 6885.187191 

DCT 22.0851 0.0699 

PCA 23.0526 0.0505 
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Figure 1. Comparison of all the different matrices used for CS for highly correlated data 

 
Figure 2. Comparison of all the different matrices used for CS for low correlated data 

 

The results demonstrate that the PCA-based matrix generation method achieves a lower MSE and a 

higher PSNR compared to the all-other methods. This signifies a more accurate reconstruction of the 

original signal with PCA [23] in CS. The reconstructed outputs obtained using PCA based sparse matrix 

both high and low correlated data are been provided in Figure 3 and Figure 4 for a segment of 200 data 

sample in each type of data. 
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Figure 3. Input and reconstructed data using 

PCA-Based Measurement Matrix for high 

correlated data 

Figure 4. Input and reconstructed data using 

PCA-Based Measurement Matrix for low 

correlated data 

 

All the compressed sensing matrices, including Gaussian, Bernoulli, DFT, DCT, and PCA, were 

tested on 2D signals with only 25% data used for reconstruction. Among these, only the DCT and PCA-

based matrices produced significant results, with PCA demonstrating superior performance. This is 

illustrated in Figures 5 and 6. The execution time, Peak Signal-to-Noise Ratio (PSNR), and Structural 

Similarity Index Measure (SSIM) were also compared, further confirming PCA's superior performance 

for 2D input signals 

 

 
Elapsed time is 4.473685 seconds.  PSNR: 29.8012274 dB The SSIM value is 0.7977. 

Figure 5. Original and reconstructed Image with DCT based CS 

 
Elapsed time is 4.116712 seconds. PSNR: 34.0631253 dB The SSIM value is 0.9403. 

Figure 6. Original and reconstructed Image with PCA based CS 
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4.   Conclusion 

In conclusion, this study has demonstrated the effectiveness of PCA-based compressed sensing 

measurement matrices in enhancing signal reconstruction accuracy across a variety of data types. The 

superior performance of PCA, particularly in reducing the number of measurements required while 

maintaining high reconstruction fidelity, has significant practical implications for fields such as medical 

imaging, wireless communications, and data storage, where efficient data acquisition and reconstruction 

are critical. By leveraging the inherent structure of the data, PCA enables a more informed and resource-

efficient sensing approach, potentially reducing the computational cost and time associated with data 

processing in real-world applications. 

The findings contribute to the field of compressed sensing by showcasing the potential of PCA as a 

robust alternative to traditional matrix generation methods, opening the door for further exploration of 

its application in complex, high-dimensional datasets. Future research should investigate the integration 

of PCA-based compressed sensing with other dimensionality reduction techniques and explore its 

performance in diverse, real-time environments. Additionally, further studies could focus on addressing 

the limitations of PCA in cases where the underlying data structure is not easily captured, and explore 

hybrid models that combine PCA with other methods to enhance reconstruction in such scenarios. The 

extension of this research into more specialized applications, such as real-time video compression or 

large-scale sensor networks, would further validate and expand the practical use of the proposed 

approach. 

Future research could investigate the effects of different training data sizes and the criteria for 

selecting the top principal components (k) on reconstruction accuracy. Additionally, exploring the 

application of PCA with various sparse signal types would provide further valuable insights. 
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