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Abstract. Cervical cancer ranks among the top causes of cancer-related deaths in women 

globally. Early detection is vital for improving patient survival rates. The multiclass 

classification of cervical cell images presents challenges primarily due to the notable variations 

in cell sizes across different classes. Conventional AI methods for diagnosing cervical cancer 

often rely on image-resizing techniques that overlook crucial features like relative cell 

dimensions, which impairs the models' ability to distinguish between classes effectively. This 

paper presents a novel AI-driven approach that employs constant padding to maintain the natural 

size differences among cells. Our method utilizes deep learning for both feature extraction and 

multiclass classification. We assessed the method using the publicly accessible SIPaKMeD 

dataset. Experimental findings indicate that our approach surpasses traditional image-resizing 

methods, especially in classes that are more challenging to predict. This strategy highlights AI's 

potential to improve cervical cancer diagnosis, offering a more precise and dependable tool for 

early detection. A reliable and precise AI model for diagnosing cervical cancer is crucial for 

promoting widespread screening and ensuring timely and effective treatment, which can 

ultimately lower mortality rates. By aiding early and accurate diagnosis, this approach aligns 

with global health efforts to alleviate the burden of cancer and other diseases, especially in areas 

with limited access to advanced healthcare services facilities. 
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1. Introduction 

According to Global Cancer Statistics, approximately 604,000 new cases and 342,000 deaths from 

cervical cancer were reported in 2020 [1]. The highly effective primary (HPV vaccine) and secondary 

(screening) prevention measures made cervical cancer nearly wholly preventable. However, only 40% 

of women in low-income and middle-income countries (LMICs) have ever been screened for cervical 

cancer [2]. The standard liquid-based or Pap smear cytology is the most widely used diagnostic test for 

the early detection and prevention of cervical cancer. However, manually testing samples' tedious nature 

and complexity make them inaccessible in LMICs, including Indonesia [3]. Numerous studies have 

highlighted the substantial potential of machine learning (ML) and deep learning (DL) algorithms for 

disease prediction and treatment outcomes across diverse clinical contexts [4]. To fully integrate ML 

and DL into healthcare, advancements in data handling and model development are essential to 

effectively address the complexity of medical data and enhance predictive accuracy [5]. 

The primary objective of this research is to develop an AI-driven method for accurately diagnosing 

cervical cancer using image-based analysis. By focusing on the multiclass classification of cervical cell 

images, the study addresses the complexities of distinguishing between cancerous and pre-cancerous 

cell types. Our method seeks to maintain critical image features, such as cell size, often lost in 

conventional preprocessing steps, ultimately improving diagnostic accuracy across all classes.   

One of the significant challenges in developing AI models for cervical cancer diagnosis is the 

difficulty of multiclass classification. Different classes of cervical cells, such as normal, pre-cancerous, 

and cancerous, exhibit varying sizes and morphologies. Some classes are inherently more challenging 

to predict than others due to overlapping features and subtle differences in cell structures. Traditional 

image preprocessing methods, such as resizing all images to a fixed dimension (e.g., 224 x 224 pixels), 

can result in the loss of critical information—particularly cell size, which is a distinguishing feature 

among classes. This limitation affects the model’s ability to differentiate between certain classes. 

Several studies have explored AI-based cervical cancer screening using Whole Slide Images (WSI). 

The Artificial Intelligence Cervical Cancer Screening System (AICCS) processed WSI by dividing them 

into small patches for patch-level detection based on TBS 2014 criteria, utilizing RetinaNet for detecting 

abnormalities [6][7]. YOLOv3 was integrated with Darknet-53 for detection and InceptionV3 for 

classification [8]. A patch-to-sample (P2S) method combined patch-level detection and transformer 

networks for more accurate diagnosis [9]. Faster R-CNN was employed to detect cervical cancer in 

16,000 ThinPrep cytology test images across multiple hospitals, demonstrating practical model training 

using 1,407 image patches [10]. Despite significant advancements in cervical cancer screening using 

WSIs, challenges remain in improving accuracy and addressing label noise in large datasets.   

Various approaches have been explored to enhance cervical cancer diagnosis using deep learning 

models. DeepCervix employed VGG16, VGG19, XceptionNet, and ResNet50 for feature extraction 

[11].  An enhanced Faster R-CNN model with a generative adversarial network (GAN) to improve 

shallow feature extraction, outperforming other models but still facing issues with noise and overlapping 

cells [12]. A GSConv and Grad-CAM model increased mAP by 1.9% and reduced computational costs 

on a TCT dataset but may struggle with overfitting in dense backgrounds [13]. Additional research 

includes applying YOLOv5 and Faster R-CNN, with YOLOv5 achieving 83% average precision for 

binary classification on the CRIC dataset [14], and a segmentation method with feature selection 

showing up to 98.88% accuracy on cancer detection [15]. Despite these advancements, gaps remain in 

handling noisy data and multi-class classification.  

Numerous preprocessing techniques have been applied to enhance cervical cell classification. One 

approach used data augmentation methods like cropping, flipping, rotation, and scaling to improve 

model generalization [16]. Padding schemes, such as those employed with radiographs [17] and CNNs 

like InceptionV3 and AlexNet, have been shown to improve classification accuracy by retaining critical 

spatial information [18] [19]. Techniques such as zero-padding and normalization, combined with 

random transformations like shifts and rotations, were used to maintain the cell structure while 
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increasing data variability [20]. Despite these advancements, the challenge remains in improving 

classification accuracy for specific cell types and enhancing model robustness in diverse datasets. 

While current methods for cervical cancer diagnosis using AI have shown promising results, they 

largely overlook the importance of preserving cell size information during image preprocessing. This 

gap is particularly evident in multiclass classification, where the inability to maintain the natural size 

ratios of cells diminishes the model’s capacity to distinguish between certain cell types. Preprocessing 

techniques that retain these size features while ensuring that the model can effectively handle images of 

varying dimensions are needed. 

To address this issue, we propose a novel approach that involves padding images. Specifically, all 

images are transformed to a uniform size of 600 x 600 pixels using constant padding, which preserves 

the relative size of cervical cells between classes. This approach ensures the model can leverage the 

natural size differences between classes as a critical feature during classification. By maintaining the 

original aspect ratios of the cells, we improve the model’s ability to distinguish between different cell 

types. We validate the effectiveness of this method using the publicly available SIPaKMeD dataset [21], 

showing that constant padding outperforms conventional resizing in classification accuracy. 

Our proposed method was evaluated on the SIPaKMeD dataset, which consists of cervical cell 

images across multiple classes. We compared the performance of our constant padding approach with 

traditional resizing techniques, using metrics such as accuracy, precision, recall, and F1-score. The 

experimental results demonstrate that our method preserves cell size information, improving 

classification performance, particularly in the more challenging classes.  

This paper makes several key contributions to AI-based cervical cancer diagnosis. First, we 

introduce a new preprocessing method, constant padding, that preserves cell size information, which is 

crucial for effective multiclass classification. Second, we demonstrate the superiority of this approach 

over traditional resizing methods, particularly in distinguishing between classes that exhibit significant 

differences in cell size. Lastly, we validate our method using the SIPaKMeD dataset, providing a 

comprehensive evaluation that shows improved diagnostic accuracy and robustness. Our method 

promotes sustainable development in healthcare through innovative technologies that can be scaled and 

adapted to various medical applications aligned with the United Nations Sustainable Development Goal 

3 (Good Health and Well-being) by improving access to accurate and early cervical cancer screenings, 

especially in low-resource settings. 

The remainder of this paper is organized as follows: Section 2 reviews the existing literature on AI-

based cervical cancer diagnosis and medical image analysis. Section 3 describes the proposed method, 

including constant padding and the model architecture. Section 4 presents the evaluation results, 

comparing the proposed method with traditional resizing approaches. Finally, Section 5 concludes the 

paper with a summary of findings and directions for future research. 

2. Methods 

2.1 Overall Framework 

Figure 1. Proposed Methods 
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Figure 1 illustrates the proposed evaluation flow. Whole Slide images (WSI) from the SIPaKMeD 

dataset were manually cropped. The process generated 4,049 isolated cell images and 996 cluster cell 

images. The input we used includes isolated cell images with dimensions ranging from (71×59) to the 

largest size, which is 531×278 pixels (width) and 388×553 pixels (height). 

To ensure that all images are of a consistent size, we apply a padding technique. The padding 

process starts by determining the desired final image size of 600 × 600 pixels. For each image, the 

amount of padding required on each side (top, bottom, left, and right) is calculated to position the image 

in the center of the added padding area. Padding is done by adding a black border around the image 

using the constant method, which allows the smaller image to fit the desired size without changing its 

proportions.  

The approach was chosen to address the inherent differences in the sizes and morphologies of 

various classes of cervical cells. Accurately capturing these distinctions is critical for the model to 

differentiate between normal, pre-cancerous, and cancerous cells effectively. Traditional resizing 

methods often distort or lose these subtle yet significant details, negatively impacting classification 

accuracy. Conversely, constant padding preserves the original size information and ensures consistency 

across all classes, making it a robust preprocessing technique for this application. 

In this experiment, we use pre-trained Convolutional Neural Networks (CNN) such as VGG-16, 

VGG-19, InceptionV3, DenseNet201, and XceptionNet to train our model with the padded data. The 

enhanced images were fed into the model for training, evaluation, and testing stages, allowing us to 

evaluate the model's performance in this classification task. 

2.2 Data Preprocessing 

Cells in the SIPaKMeD dataset vary in size due to differences in shape characteristics such as area, 

major and minor axis length, eccentricity, orientation, equivalent diameter, solidity, and area, as in 

Figure 2. These differences in each cell's nucleus and cytoplasm regions are essential for accurate 

analysis. Improper image preprocessing methods can adversely affect the model's performance, so 

choosing the proper preprocessing technique is critical. 

Adjusting each cell to a precise size, like 224×224 pixels, may lead to distortion and the risk of 

losing significant information, such as details about cell shape and structure. These distortions can 

impair the retention of crucial features necessary for accurate classification or detection. Thus, it is vital 

to employ preprocessing techniques that preserve the integrity of the original data. 

Our study addressed this issue using the padding preprocessing technique. Padding involves adding 

borders around the image to achieve the desired input dimensions while maintaining the original aspect 

ratio. This method prevents distortion and preserves the data distribution of the cells. By applying 

(a) (b) (c) 

Figure 2. Image size distribution for each class (a) height distribution (b) width distribution (c) 

scatter plot of all images based on height and width 
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padding, we protect the cells' essential features, improving the model's ability to analyze and classify 

images accurately. The specific padding scheme used in our study is illustrated in Figure 3. 

 

 

Figure 3. Constant Padding: Filled the padding area with (0, 0, 0) 

2.3 Image Classifier 

The study used several pre-trained CNN models to enhance the learning process: VGG16, 

VGG19, InceptionV3, DenseNet201, and Xception. For the VGG16 model, we employed the architec-

ture pre-trained on the ImageNet dataset and modified the output of the "block4_conv3" layer. Addi-

tional layers, including GlobalMaxPooling2D, BatchNormalization, Dropout, and a Dense layer, were 

appended to enable classification into five categories. Similarly, for the VGG19 model, we used the 

ImageNet-pretrained architecture and froze all layers except for the last ten. The model was further 

enhanced with GlobalAveragePooling2D, BatchNormalization, Dropout, and a Dense layer for classifi-

cation into five classes.  

For the InceptionV3 model, we utilized the ImageNet-pretrained weights and froze all layers. The 

"mixed7" layer output was modified by adding GlobalMaxPooling2D, BatchNormalization, Dropout, 

and a Dense layer, facilitating five-class classification. In the case of the DenseNet201 model, the 

ImageNet-pretrained architecture was adopted, and all layers except the last ten were frozen to allow 

fine-tuning. The output from the "conv5_block16_concat" layer was modified with additional Global-

MaxPooling2D, BatchNormalization, and Dropout layers (using a rate of 0.4), along with a Dense layer 

sized at 2048 units for classification into five classes.  

Lastly, the Xception model was employed with weights pre-trained on ImageNet, where all layers 

were frozen. We modified the "block14_sepconv1_act" output by incorporating GlobalAveragePool-

ing2D, BatchNormalization, and Dropout layers (with a rate of 0.4). Additionally, two Dense layers 

with 1024 and 512 units, respectively, were added to facilitate five-class classification. This systematic 

approach to leveraging pre-trained architectures ensured optimized performance across the classification 

tasks. 

3. Results and Discussion 

This section comprehensively evaluates our proposed approach through experiments conducted on 

publicly available datasets. Specifically, we employ the SIPaKMeD dataset to assess the efficacy of our 

method in classifying cervical cell images into distinct categories. The details of the experimental setup, 

data distribution, and performance measures are provided below. 

3.1 Experimental Data 

We conducted experiments on the SIPaKMeD database [21]. The SIPaKMed database comprises 

4,049 annotated images manually cropped from 966 cluster cell images into five categories by expert 

cytopathologists. Five main categories: (1) Dyskeratotic, (2) Koilocytotic, (3) Metaplastic, (4) 

Parabasal, and (5) Superficial-Intermediate are shown in Figure 4. Classes (1) Dyskeratotic and (2) 

Koilocytotic represent abnormal cervical cells, (4) Parabasal and (5) Superficial-Intermediate classes 

indicate normal cervical cells, and (3) Metaplastic represents benign cells. Categorized these classes are 

displayed in Table 1. The images were taken using a CCD camera (Infinity 1 Lumenera) attached to an 
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OLYMPUS BX53F optical microscope [26]. This database is suitable for classifying images and 

evaluating image segmentation techniques, whether they involve isolated cells (cropped images) or 

overlapping cells (cell cluster images). It includes each image's actual regions of interest as it contains 

ground truth. The properties of the SIPaKMeD database are shown in Table 2. 

 

 

Figure 4. Original images from the SIPaKMeD: (a) Dyskeratotic, (b) Koilocytotic, (c) Metaplastic, 

(d) Parabasal, (e) Superficial-Intermediate 

 

 

Table 1. The data distribution from the SIPaKMeD 

Dataset Category Class Number of Images Number of cells 

SIPaKMeD Abnormal Dyskeratotic 223 813 

  Koilocytotic 238 825 

 Benign Metaplastic 271 793 

 Normal Parabasal 108 787 

  Superficial-Intermediate 126 831 

Total   966 4,049 

 

 

Table 2. Detail properties SIPaKMeD databases 

Property SIPaKMeD 

Data type Image 

Cells per image Variable 

Image Size 2,048 x 1,536 (pixel) 

Format .bmp 

Number of images 966 

Data Acquisition Pap-smear 

Classification Manual 

Class 5 

Classified cells 4,049 

Validation Expert Cytopathologists 

Download Page https://www.cs.uoi.gr/~marina/sipakmed.html 

 

3.2 Experimental Design 

We employed the SIPaKMeD dataset, divided into 70% for training, 15% for validation, and 15% 

for testing in each class using a random_state setting with a value of 42 to ensure consistent data-sharing 

results each time the code is run. The resulting datasets are shown in Table 3. After dividing the data, 

we performed different preprocessing, namely resizing and padding. We applied several data 

augmentation techniques for the resizing method, including rescaling, shearing, zooming, and flipping 

the images. On the other hand, we directly preprocessed the data using constant padding for the padding 

method, ensuring that all images maintained uniform dimensions without altering the original aspect 

ratio. The example resizing data is in Figure 5, and padding is in Figure 6. 
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Table 3. The experimental data from the SIPaKMeD 

Class Training Validation Testing 

Dyskeratotic 569 122 122 

Koilocytotic 577 124 124 

Metaplastic 555 119 119 

Parabasal 550 118 119 

Superficial-Intermediate 581 125 125 

Total 2,832 608 609 

 

We compared resizing and padding using five methods to evaluate accuracy and other metrics. One 

critical stage in developing and implementing a machine learning model is evaluation, which measures 

how well the model can predict or classify new data. Evaluation metrics vary depending on the problem 

type. For classification problems, accuracy, precision, recall, and F1-score are standard measures to 

evaluate classification performance [27]. Our experiment's quality was measured using these metrics, 

calculated based on true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

values. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The model is trained for 50 epochs using a GPU NVIDIA GeForce RTX 4090 with 24 GB dedicated 

memory and 64 GB RAM. During training, we employed Adam as the optimizer. The initial learning 

rate is set to 0.0001, and the loss function is calculated using categorical cross-entropy. We apply the 

early stopping method in the validation stage. The training process will only be stopped if the model's 

accuracy improves within 10 consecutive iterations. The code for this implementation is publicly 

available at https://github.com/YARSIAICenter/cervical_cancer_padding/. 

 

 

 

Figure 5. Resize (224x224) from five categories of the SIPaKMeD dataset: (a)Dyskeratotic, 

(b)Koilocytotic, (c)Metaplastic, (d)Parabasal, (e)Superficial-Intermediate 

 
Figure 6. Constant Padding (600x600) from five categories of the SIPaKMeD dataset: 

(a)Dyskeratotic, (b)Koilocytotic, (c)Metaplastic, (d)Parabasal, (e)Superficial-Intermediate 

https://github.com/YARSIAICenter/cervical_cancer_padding/
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3.3 Result and Analysis 

We compared our proposed method (padding) with standard image preprocessing (resize) using 

five popular pre-trained models: VGG16, VGG19, InceptionV3, DenseNet201, and Xception. Our 

experiments revealed notable differences in performance between the two methods, which we assessed 

using accuracy, precision, recall, and F1-score. We calculated macro averages for precision, recall, and 

F1-score to ensure a balanced evaluation across all classes. This approach treats each class equally, 

regardless of its size or frequency, making it particularly valuable for multiclass classification tasks 

where fairness across all classes is essential. The evaluation results are presented in Table 4. Our 

proposed method outperformed the baseline method in all metrics. DenseNet201 is the classifier with 

the highest performance with an accuracy of 0.9524, precision of 0.9522, recall of 0.9526, and F1-score 

of 0.9521.  

Table 4. Comparison of Resize vs. Padding performance 

Preprocessing Method Classes Accuracy Precision Recall F1-Score 

Resize VGG16 5 0.8539 0.8530 0.8538 0.8518 

 VGG19 5 0.8489 0.8633 0.8494 0.8478 

 InceptionV3 5 0.8916 0.8903 0.8918 0.8908 

 DenseNet201 5 0.9458 0.9456 0.9462 0.9457 

 Xception 5 0.9212 0.9202 0.9212 0.9204 

Padding VGG16 5 0.8719 0.8731 0.8721 0.8701 

(Proposed Method) VGG19 5 0.8834 0.8908 0.8823 0.8822 

 InceptionV3 5 0.9031 0.9025 0.9031 0.9026 

 DenseNet201 5 0.9524 0.9522 0.9526 0.9521 

 Xception 5 0.9392 0.9389 0.9392 0.9390 

 

We analyze the performance of the best model in our proposed method, DenseNet201, through a 

comparative analysis of two preprocessing techniques: resizing and padding. The Confusion Matrix, 

presented in Figure 7, highlights the model's performance in classifying dyskeratotic, koilocytotic, 

metaplastic, parabasal, and superficial cells. Both preprocessing methods yield consistent results in 

classifying dyskeratotic cells, with each approach correctly identifying 117 samples. This consistency 

suggests that the model effectively captures the distinctive features of dyskeratotic cells, regardless of 

the preprocessing technique used. However, the classification of koilocytotic cells showed moderate 

 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 7. Confusion Matrix: (a) DenseNet201 (Resize), (b) DenseNet201 (Padding) 
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misclassifications in both methods. Specifically, the resizing approach misclassified 6 samples as 

metaplastic, 6 as dyskeratotic, and 5 as superficial, while the padding method misclassified 7 samples 

as dyskeratotic, 7 as metaplastic, and 3 as superficial. These misclassifications indicate that koilocytotic 

cells share overlapping features with other cell types, complicating their accurate classification. In the 

case of metaplastic cells, the resizing method slightly outperformed the padding method, correctly 

classifying 113 samples compared to 112.  

The padding method performed better for parabasal cells, correctly classifying 119 samples. This 

is likely due to padding’s ability to preserve the original aspect ratio and contextual information. The 

most notable improvement was observed in classifying superficial cells, where the padding method 

correctly identified 125 samples compared to 121 under the resizing approach. This result underscores 

the advantage of padding in retaining critical morphological details, particularly for this class. 

Following the technical analysis of the performance across different classes, we considered 

analyzing the biological insights behind the varying results observed in our models. Implementing 

constant padding as a preprocessing technique has demonstrated significant advantages over traditional 

resizing methods, particularly in preserving critical image features biologically relevant for accurate 

cervical cancer diagnosis. Traditional resizing often distorts important spatial information, especially 

the relative size differences between cells, essential for distinguishing between normal, pre-cancerous, 

and cancerous cells [28].  

Different cervical cell types exhibit distinct sizes and morphologies, vital indicators of their health 

status. Constant padding preserves these size differences by maintaining the original aspect ratios and 

sizes of the cells, allowing the model to differentiate between cell types more effectively. This ability to 

retain natural size variations enhances diagnostic accuracy by aligning with the biological characteristics 

observed in cervical cancer.  

Constant padding addresses a significant gap in AI-based methods by preserving spatial 

relationships within the images. As seen in our experimental results, this improves performance in 

classifying cells based on their morphological features. In conclusion, padding generally enhances 

model performance in specific classes by maintaining object structure, while resizing is more effective 

for classes with intricate details. Therefore, the choice of preprocessing method should be tailored to the 

specific characteristics of the image data and the target classes for optimal results.  

4. Conclusion 

In this paper, we present an AI-driven method for cervical cancer diagnosis that addresses the 

challenges of multiclass classification, specifically the loss of cell size information in conventional 

preprocessing techniques. By using constant padding to preserve the natural size ratios of cervical cells, 

our approach demonstrated improved classification accuracy, especially in the more difficult-to-predict 

classes. Evaluation of the SIPaKMeD dataset confirmed that preserving this feature leads to superior 

performance compared to traditional resizing methods.  

Our results suggest that incorporating size-preserving techniques in image preprocessing is crucial 

for improving the accuracy and robustness of AI models in cervical cancer diagnosis. By supporting 

early and accurate diagnosis, this method aligns with global health initiatives aimed at reducing the 

burden of cancer and other diseases, particularly in regions with limited access to advanced healthcare 

facilities. Policymakers can leverage these findings to advocate for increased investment in AI 

technology and training for healthcare professionals, ensuring that the benefits of such advancements 

are accessible to a broader population.  

One limitation is the reliance on the SIPAKMED dataset, which may not fully represent the 

diversity of cervical cell images encountered in different populations. Future studies should evaluate the 

method on a more diverse data set to ensure its generalizability across various demographic and 

geographic contexts. Additionally, further research is needed to integrate this method with other 

diagnostic tools and technologies (multimodal approaches), such as molecular testing and electronic 
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health records, to create a more comprehensive diagnostic system. It will also be crucial to investigate 

the scalability of this approach in real-world clinical settings and its impact on workflow efficiency and 

patient outcomes. Overall, this study lays the groundwork for more accurate and reliable AI-based 

diagnostic methods, which have the potential to significantly advance the field of medical imaging and 

improve healthcare delivery. 
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