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Abstract: Weather monitoring is vital due to environmental changes and rising air pollution, 

which affects health and lifestyles. Accurate air quality prediction models are essential yet 

challenging due to complex weather-pollution interactions. This study employs explainable deep 

learning and machine learning techniques—GRU, CNN, and XGBoost—on a custom dataset of 

100,000 samples with 15 features, including PM2.5, PM10, humidity, and temperature. Using 

SHAP for interpretability, the GRU model outperforms others with 98.56% accuracy, 98.43% 

Recall, and 98.52% True Positive Rate. Temperature, humidity, gases, and pressure are key 

variables influencing predictions. The proposed model achieves high mAP and precision, 

surpassing existing methods and demonstrating effective real-time forecasting under diverse 

weather conditions. 

Keyword: GRU-based air quality forecasting, deep learning for AQI, spatiotemporal air 

pollution modeling, PM 2.5 and AQI. 

 

(Received 2025-01-27, Revised 2025-04-23, Accepted 2025-05-24, Available Online by 2025-06-23) 

https://doi.org/10.26877/asset.v7i3.1589
mailto:saikumar.kayam@klh.edu.in


  

02503012-02 

 

1. Introduction 

The lifestyle associated with global urbanization has significantly affected weather patterns and 

environmental pollution. Urban expansion, industrial growth, and the rising demand for energy have 

severely degraded air quality worldwide. Emissions from power plants, factories, transportation, and 

other sources have consistently introduced pollutants into the atmosphere, contributing to significant 

health risks such as respiratory illnesses, cardiovascular diseases, and even cancer in extreme cases. 

Pollutants like particulate matter (PM), particularly PM2.5, have impacted respiratory organs due to 

their microscopic size and deep penetration. PM2.5 has been estimated to be 2.5 microns or smaller and 

has been measured using airborne methods. Long-term health issues, such as lung infections and 

bloodstream complications, have emerged due to the release of harmful chemicals into the atmosphere. 

Various pollutants, including PM10, SO2, and NO2, have reduced human lifespan and disrupted 

environmental stability. For public safety, effective air quality management and forecasting systems 

have become necessary. Governments have taken steps based on recommendations from governing 

bodies, though these measures have not always been entirely accurate or beneficial for the public. 

Advanced weather monitoring algorithms have been required to track pollution effectively. On the other 

hand, deep learning and AI models have been widely adopted to provide fast and accurate solutions for 

critical problems. As part of this research, CNN with gated recurrent layers has been adapted, 

incorporating customizations to enhance the model’s performance. These modifications, along with a 

robust dataset, have helped overcome the complexity limitations of existing models. Meteorological 

elements such as humidity, temperature, and pollutants have been found to significantly impact both the 

environment and human health. Existing and modern forecasting models have often relied on outdated 

algorithms, leading to less accurate observations. PM2.5 pollution levels have remained a key factor in 

calculating the Air Quality Index (AQI), which has been monitored by top countries such as the United 

States, European nations, and Asian countries. The accuracy, recall, F-measure, and sensitivity achieved 

by earlier models have been limited. The proposed CNN model has demonstrated the ability to identify 

dynamic weather conditions accurately. It has utilized daily weather report samples from various sources 

to assess whether weather conditions are harmful or not. Studies on PM2.5 have helped identify 

influencing factors such as pressure, temperature, and humidity. The CNN model, with its reliable gated 

reference, has proven effective in accurately forecasting air quality. Previous models have primarily 

focused on government data rather than dynamic weather conditions when predicting AQI. Public health 

officials have observed numerous emerging health issues linked to traditional models. Risk assessment 

and decision-making have been crucial in weather monitoring applications, and the proposed deep 

learning-based CNN method has provided a viable solution. Figure 1 clearly explains the air pollution 

and mental disorder risk assessment model. In this study, the statistical analysis of environmental 

conditions, including PM2.5, PM10, and SO2 levels, has been performed using the proposed method. 

Accurately calculating the Air Quality Index (AQI) is possible by analysing how much pollution has 

occurred in the environment using statistical methods. To effectively control and mitigate air pollution, 

thereby protecting both human health and the environment, it is essential to understand the factors 

influencing air pollutants and their evolving trends. This knowledge can be leveraged to evaluate and 

predict changes in air quality. Additionally, key departments can gain valuable insights into current air 

quality conditions through air quality forecasting, providing a strong theoretical foundation for research 

and policymaking. Moreover, policies for reducing and controlling air pollution can be tailored to meet 

specific local needs. It also offers critical feedback and recommendations to help decision-makers 

enhance air quality in the future while optimizing costs. 

The machine learning models like Support vector machine (SVM), Genetic algorithm (GA), Random 

Forest Algorithm (RFA) and other models have faced difficulty at weather assessment. The mean 

average precision (mAP) and true positive rate is less with exiting models. The dynamic dataset can 

reduces the measures and providing less accuracy and sensitivity. Unbalanced instances and classes in 

the samples cause misclassification due to label imbalance.  
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Figure 1: Air quality index and environmetal disorers with Risk assement screen using statistical 

analysis 

 

The model parameters like batch size, kernel size, epochs and post processing has controlled the 

model in all diverse usage conditions. In this manuscript section 1 explains introduction of the model, 

section 2 giving literature of the existing models such as limitations and research gaps. Section3 presents 

materials and methods of proposed model and section 4 explains results and discussions finally 

presented the conclusion in section 5.  

1.1.  Brief details of AQI using ML and DL models  

In this section a brief discussion about weather monitoring and pollutant AQI analysis has performed. 

P. Kumar [3] speculation that more people living in urban areas means more cars on the road, which 

means more pollution in the air. Overly high concentrations of air pollutants in urban areas pose a serious 

health risk to city people. Our current understanding of the consequences of exposure to extremely high 

levels of pollution that are both geographically and temporally confined is limited. Systems of static and 

sparsely distributed measurement stations provide the backbone of traditional approaches to air best 

tracking. To develop effective real-time methods for exposure control, To detect pollution hotspots and 

capture tempo-spatial heterogeneity, these are too costly. The ancient technique is being revolutionised 

by a new low-cost micro-scale sensing age. making it possible to collect statistics in real-time using 

capillaries. Their less accurate data raises the question of whether there is value in it. E. D. Schraufnagel 

[4] conducted research Air pollution is one of the biggest threats to both the environment and human 

health. Worldwide, exposure to outdoor particulate matter (particulate particles having an aerodynamic 

diameter < 2.5 μm) is the sixth leading cause of death, with more than 4.2 million deaths and more than 

103 million disability-adjusted life years, according to the Global Burden of Disease Report. Both short-

term effects, like difficulty breathing or heart palpitations, and long-term effects, which may impact any 

organ in the body, are possible due to air pollution. It has the potential to bring about or worsen a great 

deal of unsavoury fitness conditions. Because tiny and ultrafine particles can penetrate dorgans without 

triggering systemic inflammatory responses, tissue damage may occur promptly as a result of pollution 

toxicity. Y.-F. Xing [5] carried out studies Air pollution is extremely harmful to ecosystems and people 

alike. Worldwide, exposure to outdoor particulate matter (defined as particles with an aerodynamic 

diameter less than 2.5 μm) is responsible for more than 4.2 million fatalities and more than 103 million 

years of life lost due to disability, as stated in the Global Burden of Disease Report. Both immediate & 

delayed consequences, such as trouble breathing or irregular heartbeats, which may impact any organ 

in the body, are possible due to air pollution. It has the potential to bring about or worsen a great deal of 

unsavoury fitness conditions. Because tiny and ultrafine particles can penetrate organs without 

triggering systemic inflammatory responses, tissue damage may occur promptly as a result of pollution 
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toxicity. X. Qi [8] investigated the fact that, particularly in China's megacities, air pollution from 

particulate matter 2.5, Ozone and particle matter 10 are becoming more dangerous for human health. 

Weather has an impact on air pollution's dispersion as well as concentration, which also have a 

significant impact on these processes. We look at the connections between Beijing's air pollution levels 

and weather conditions from 2017 to 2018 in this article. We note that: one meteorological variable has 

a small impact on pollutant concentrations; temperature-wind velocity, temperature-strain, and 

humidity-wind velocity aggregates are highly correlated with pollution awareness, suggesting that 

multiple meteorological variables interact to influence pollutant concentrations; even when considering 

the same pollutant under the same climatic circumstances, concentrations can fluctuate due to the 

influence of several meteorological variables. Our research has the potential to improve city control 

performance and aid in air quality prediction in accordance with current weather conditions. S. Al-Janabi 

[9] one of the most pressing issues facing the industry right now is the need to study and treat the growing 

problem of air pollution caused by technological developments. In recent times, there has been a notable 

rise in the concentration of pollutants in the environment. This research describes an effort to use 

recurrent neural networks (RNNs) and deep learning techniques to create an intelligent air pollution 

concentration forecast for the next two days. It’s ideal mode of operation is further identified by applying 

a particle swarm optimisation (PSO) approach. A newly developed model is the Smart Air Quality 

Prediction Model (SAQPM). Unsupervised learning, in particular long short-term memory (LSTM), and 

optimisation, in particular PSO, are required. The dataset is then split in half for testing and training, 

using the ten cross-validation principles. The complete pipeline model has improved through Ros with 

specific packages. The exiting models facing limitations like less accuracy, model bandwidth and model 

perseverance.   

 

Table 1. Recent highlights of weather monitoring using DL and ML models analysis. 

 

Ref Author Area of research Methods Key finding 

[31] Ayoub, A. 

et.al 

Machine learning 

and deep learning 

models applied on 

radioactive dataset 

to predict 

contaminated 

elements. 

ML-DL enabled 

weather forecasting on 

dynamic dataset.  

Accuracy was 

improved with 

radioactive dataset.  

[32] Gong, Y. et.al Deep learning 

depend temperature 

monitoring.  

CNN and LSTM 

related temperature 

monitoring model on 

dense dataset. 

Spatial and temporal 

features were 

detected and 

forecasting the 

accuracy. 

[33] Ben 

Bouallègue, Z 

et.al 

DL and AI based 

weather dynamic 

nature analysis. 

Probable data analysis 

with DL models. 

Potential weather 

data handling with 

DL models by 

complex pipelines. 

[34] Akilan, T et.al In perception 

agriculture 

monitoring the 

weather and 

climate. 

GRU with CNN model 

along with IoT for 

agriculture applications   

Weather monitoring  

benefits and 

precision in 

agriculture.  

[35] Sun, Y et.al  High resolution 

custom data making  

Machine and deep 

learning models on 

metrological dataset. 

Highlighting the 

effective generation 

of precise weather 

data.  
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The above table briefly explains about various weather monitoring models related to deep and machine 

learning. The existing models are facing low level instances, mis-classes, overfitting and underfitting 

issues. 

 

 
 

Figure 2. comparative measures examination 

The above figure 2 and table 2 clearly explains about various performance and its limited metrics, from 

this we can conclude that existed models facing issues of dynamic weather dataset. 

 

 

Table 2. various comparative measures analysis 

 

 R2 MAE in 0C MAPE in % RMSE 0C 

[20] 0.94 0.79 2.86 1.13 

[21] 0.94 0.84 2.45 1.15 

[25] 0.89 0.86 2.36 1.43 

[30] 0.93 0.79 2.09 1.47 

[31] 0.89 0.87 3.83 1.40 

[35] 0.95 0.95 3,83 1.28 

 

In this section a brief discussion of literature survey has been collected and limitations of study can 

be added. The methods like machine learning techniques are unable to work on dynamic dataset as well 

as cannot  give accurate R2.  

 

2. Methods 

In this section a brief analysis on weather monitoring models has been performed as well as proposed 

one novel model nothing but GRU deep learning technique. While a few of deep learning models do 

take weather into account when predicting air quality, this information is primarily utilized as input data, 

and the impact of weather on this prediction has received very little attention in the scientific community. 

As an example, our current understanding of how weather factors impact air quality forecast using deep 

learning algorithms is limited. The "black box" nature or lack of explainability that was described earlier 
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is characteristic of deep learning models. The deep learning model's strength lies in its capacity to match 

complicated data relationships, making it possible to predict air quality using both weather and air 

quality data. Research into the complicated interplay between air quality forecasts, weather, and related 

topics remains a challenging and intricate area of study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Block diagram of Gate Recurrent Deep learning for AQI statistics analysis while dynamic 

environmental change conditions  

 

The above Figure 3 explains the process of air quality prediction using deep learning techniques, 

specifically leveraging Gated Recurrent Units (GRUs). The process begins with the AQI dataset 

(OpenAQ), which provides historical data on air quality, including key parameters such as PM2.5 levels. 

Dynamic variables can normalize the dataset using a scaling mechanism, which has improved with 

uniform convergence during training. The pre-processed dataset can be used well with the gated 

recurrent CNN framework, which focuses on time analysis, temporal AQI prediction, and health risk 

management. The preprocessing leads to smooth training, feature extraction, easy further analysis, and 

making it into a sequence. The model training can handle learning features, historical analysis, pattern 

identification, and the relationship between variables, such as temperature, pressure, and humidity. The 

air quality in weather can be estimated using the proposed method and post-processing; the weight file 

and testing will also be part of the PM2.5 analysis. We used the LSTM model to look at the wrong 

predictions and classifications and gave feedback to improve the model. The unseen data missed data, 

and suggestions can be created as synthetic data with generative AI techniques. The predicted air quality 

index depends on actionable information like results and ML analysis. Model metrics can generate 

performance measures such as accuracy, recall, sensitivity, and throughput. We can use the iterative 

feedback loop daily records to update the model and improve its efficiency. We can integrate this process 

with dataset iterations to improve the quality of feature extraction. 

 

Algorithms for Time Series Forecasting and Air Quality Prediction 

Step 1. Distinguishing Time Series: Stationary vs. non-stationary 

Determine if the time series is stationary (constant mean and variance) or non-stationary. For non-

stationary series, transformations or differencing are applied to achieve stationarity. 

Equation for Differencing to achieve stationarity: 
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𝑌_𝑡′ =  𝑌_𝑡 −  𝑌_{𝑡 − 1}      ------ (1) 

Step 2. LSTM (Long Short-Term Memory)  

LSTM networks are designed to handle long-term dependencies in time-series data. They utilize cell 

states and hidden states to store long- and short-term information. 

Equations for LSTM gates: 

Forget Gate: 𝑓_𝑡 =  𝜎(𝑊_𝑓 ·  [ℎ_{𝑡 − 1}, 𝑥_𝑡]  +  𝑏_𝑓)    ------ (2) 

Input Gate: 𝑖_𝑡 =  𝜎(𝑊_𝑖 ·  [ℎ_{𝑡 − 1}, 𝑥_𝑡]  +  𝑏_𝑖)        ------ (3) 

Output Gate: 𝑜_𝑡 =  𝜎(𝑊_𝑜 ·  [ℎ_{𝑡 − 1}, 𝑥_𝑡]  +  𝑏_𝑜)   ------ (4) 

Step 3. RNN (Recurrent Neural Network)  

Recurrent Neural Networks (RNNs) use internal memory to process sequential data and predict future 

values. 

Equation for RNN hidden state: 

ℎ_𝑡 =  𝑓(𝑊_ℎℎ ·  ℎ_{𝑡 − 1} +  𝑊_𝑥ℎ ·  𝑥_𝑡 +  𝑏_ℎ)     ------ (5) 

Step 4. GRU (Gated Recurrent Unit)  

GRUs are a simplified version of LSTMs with fewer parameters, making them faster to train. They use 

update and reset gates for controlling information flow. 

Equations for GRU gates: 

Update Gate: 𝑧_𝑡 =  𝜎(𝑊_𝑧 ·  [ℎ_{𝑡 − 1}, 𝑥_𝑡])         ------ (6) 

Reset Gate: 𝑟_𝑡 =  𝜎(𝑊_𝑟 ·  [ℎ_{𝑡 − 1}, 𝑥_𝑡])           ------ (7) 

Step 5. CNN+LSTM  

Combines Convolutional Neural Networks (CNNs) for feature extraction with LSTMs for capturing 

long-term dependencies. 

Feature extraction via CNN: 𝑦_𝑖 =  𝑅𝑒𝐿𝑈(𝑊_𝑖 ∗  𝑥 +  𝑏_𝑖)    ------ (8) 

Step 6. ARIMA (Autoregressive Integrated Moving Average)  

ARIMA is used for modeling time series data with autoregressive and moving average components. 

General ARIMA equation: 

𝑌_𝑡 =  𝑐 +  𝜑_1 𝑌_{𝑡 − 1} + . . . + 𝜑_𝑝 𝑌_{𝑡 − 𝑝}  +  𝜀_𝑡 +  𝜃_1 𝜀_{𝑡 − 1} + . . . + 𝜃_𝑞 𝜀_{𝑡 − 𝑞} 

Step 7. Random Forest  

Random Forest builds multiple decision trees and aggregates their predictions through majority voting 

or averaging. 

Step 8 Voting Classifier 

Combine multiple base models (e.g., SVM, Random Forest, Logistic Regression). Use majority voting 

(hard voting) or averaged probabilities (soft voting) to predict outcomes. Aggregate the outputs of 

individual estimators to obtain the final prediction. 

Air quality prediction using deep learning models presents both challenges and opportunities. One 

key drawback lies in the "black-box" nature of deep learning, which makes it difficult to develop reliable 

models that incorporate weather data. Additionally, there is a limited understanding of how weather 

conditions influence air quality forecasts when utilizing deep learning approaches. Addressing these 

challenges, this work highlights the impact of weather on air quality prediction by leveraging 

explainable deep learning techniques. By elucidating how weather elements such as temperature, 

humidity, and atmospheric pressure affect predictions, the model achieves improved accuracy and 

reliability. Applying deep learning in air quality forecasting enhances prediction precision, making it 

more practical for real-world applications. This enables individuals to plan their activities effectively, 

take necessary precautions to safeguard their health, and respond promptly to changing air quality 

conditions. Understanding the current air quality state is essential for implementing appropriate 

preventative and control measures, ensuring efficient and timely management of air quality concerns. 

The benefits of this approach are twofold. First, it leads to the development of more trustworthy and 

accurate deep learning models for air quality prediction. Second, it provides valuable insights for 

travelers, allowing them to plan their trips more sensibly and take timely precautions to protect their 

health. This enhanced predictability ensures that people can better manage their exposure to harmful 

pollutants, improving public health outcomes. The implementation of this system involves several 
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modules. The first module facilitates data exploration by enabling data loading into the system. The 

processing module reads and preprocesses the data for further analysis. This module also splits the data 

into training and testing sets to ensure robust model evaluation. The model-building phase includes the 

application of various algorithms such as LSTM, RNN, GRU, CNN+LSTM, CNN+GRU, ARIMA, 

Random Forest, KNN-SHAP, MLP, and the voting classifier. These algorithms contribute to generating 

accurate predictions, with their performance measured through calculated accuracy metrics. Finally, the 

prediction module displays the forecasted air quality results, enabling users to make informed decisions 

based on reliable, data-driven insights. 

 
 

Figure 4. Architectural model of GRU CNN End to End Layers functioning  

 

This figure 4 represents a deep learning pipeline designed for Air Quality Index (AQI) classification, 

showcasing how data flows through various stages of preprocessing, feature extraction, and 

classification. The process begins with a dataset, likely containing environmental data such as images 

or sensor readings related to air quality. Preprocessing is an essential step, involving data balancing to 

ensure equal representation of all AQI classes (Good, Average, Medium, High) and image resizing to 

standardize input dimensions (e.g., 224×224×3), making the data suitable for the model and reducing 

computational complexity. 

The pre-processed data serves as input to the model, passing through Gated Recurrent Convolutional 

Neural Network (GRU-CNN) layers. These layers combine the strengths of Convolutional Neural 

Networks (CNNs) for extracting spatial features from the input and Gated Recurrent Units (GRUs) for 

capturing temporal or sequential dependencies, which is particularly beneficial if the data is time-

dependent, such as pollution readings over time. The feature maps are progressively refined through 

multiple layers, where spatial dimensions reduce (e.g., from 224×224×64 to 7×7×512), while the depth 

increases to capture higher-level abstract features. 

To further process the features, the model employs average and max pooling (Avg Max Pooling) to 

down sample the feature maps. This hybrid pooling strategy ensures the retention of global context 

through averaging while preserving prominent features using maximum pooling. The output of the 

pooling layers is then flattened into a one-dimensional vector, which feeds into the fully connected dense 

layers. The first dense layer, consisting of 512 neurons with a ReLU activation function, processes the 

extracted features, followed by the final dense layer with 4 neurons. These output neurons correspond 

to the AQI categories: "Good," "Average," "Medium," and "High," each representing a specific air 

quality condition ranging from healthy air to hazardous levels. 

This architecture effectively combines feature extraction and classification capabilities, leveraging 
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CNNs for spatial data and GRUs for any sequential dependencies in the input. The hybrid Avg Max 

Pooling mechanism ensures robust feature preservation, aiding in accurate classification. Such a model 

can be applied to air pollution monitoring systems for real-time AQI assessment, weather forecasting 

models to predict air quality trends, and health advisory systems to issue warnings based on AQI levels. 

Overall, this pipeline is designed to provide an efficient and accurate solution for air quality 

classification and related applications. 

2.1. Dataset  

OpenAQ is a platform that provides global air quality data collected from government and research-

grade sources. It offers access to data on various air pollutants, including PM2.5, PM10, NO2, CO, O3, 

and more. This data can be used to monitor and analyze air quality across different regions. For data 

exploration, tools like Python (with libraries such as Pandas and Matplotlib) or R can be employed for 

tasks like data cleaning, visualization, and analysis. In the model-building phase, machine learning or 

deep learning models such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), or 

Random Forest can be applied to predict air quality. Finally, the analysis involves examining the impact 

of weather parameters such as temperature, humidity, and atmospheric pressure on air pollution levels 

to gain insights into how these factors influence air quality over time [26]. 

3. Results and Discussion 

In this section a brief results on AQI statistical experimental results  were explained related to air quality 

and weather conditions estimation. The trained model has weight file which was placed on  Opensource 

driveHq cloud. Testing region information and it is daily report has been applied to weight file, then it 

generates the complete air quality and weather report information dynamically also it will predict the 

upcoming values.  

 

Table 3. Dynamic dataset on 01/12/2024 some state wise analysis  

 

Region PM 2.5 value 

(µg/m³) 

CO (ppb) SO2 (ppb) NO2 (ppb) 

Delhi  115 319 4 11 

Mumbai 55  390 6 14 

Kolkata 47 319 4 11 

Hyderabad 35  586 5 12 

Chennai 142 474 2 5 

Amaravati 59 126 4 3 

Itanagar 21 110 3 6 

Patna 163 104 6 6 

Gandhinagar 60 570 2 14 

Jaipur 105 173 3 4 
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(a)                                                                           (b) 

Figure 5. weather quality analysis on Daily dynamic 3 (a) PM 2.5, CO 3 (b) SO2 and NO   

 

 

 

The above figures 5(a) and 5(b) clearly illustrate the analysis reports of various states for PM2.5, CO, 

SO2, and NO metrics. These datasets are instrumental in obtaining accurate weather conditions and AQI 

(Air Quality Index) reports through the proposed GRU deep learning model. The trained model can be 

validated using these test samples, providing predictions on potential health risks throughout the day 

also show in in table 2 And table 3. 

Table 4. Weather analysis using timestamp 

 

0

200

400

600

800

PM 2.5 value (µg/m³) CO (ppb)

Analysis of metrics PM 2.5 and CO

Delhi Mumbai Kolkata

Hyderabad Chennai Amaravati

Itanagar Patna Gandhinagar

Jaipur

0

5

10

15

SO2 (ppb) NO2 (ppb)

So2 ann No2 analysis

Delhi Mumbai Kolkata

Hyderabad Chennai Amaravati

Itanagar Patna Gandhinagar

Jaipur

Region Health Risk Time Stamp 

Delhi  65 1/12/24 : 12:23:12 

Mumbai 51 1/12/24 : 12:23:13 

Kolkata 42 1/12/24 : 12:23:14 

Hyderabad 37 1/12/24: 12:23:15 

Chennai 38 1/12/24: 12:23:16 

Amaravati 32 1/12/24: 12:23:17 

Itanagar 29 1/12/24: 12:23:18 

Patna 39 1/12/24: 12:23:19 

Gandhinagar 36 1/12/24: 12:23:20 

Jaipur 27 1/12/24: 12:23:21 
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Figure 6. Complete health risk analysis generated by Proposed GRU model with time stamp. 

 

The figure 6 presents a Health Risk Analysis based on air quality data across various cities, with 

corresponding health risk scores and timestamps for each location. Delhi shows the highest health risk 

(65), followed by Mumbai (51) and Kolkata (42), indicating poorer air quality compared to other cities. 

Cities like Jaipur (27) and Itanagar (29) exhibit the lowest health risk, suggesting better air quality. The 

timestamps indicate the exact moment when the data was recorded, providing real-time insights into the 

health risks associated with air pollution in each region. 

 

 
Figure 7. graphs representing hypothetical air quality data for the month of November across different 

regions in India 
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Figure 9. health risk percentage city wise  

Figures 7 and 8 illustrate the estimated health risk percentage for various cities based on air quality 

metrics, including PM2.5, CO, SO2, and NO2 levels, during November 2024. The health risk 

percentage is calculated using a weighted combination of these pollutants, reflecting the potential 

impact of air pollution on public health. Cities like Delhi and Mumbai exhibit higher health risks 

due to elevated pollution levels, while cities such as Itanagar and Jaipur show relatively lower risks. 

This analysis highlights the varying degrees of air quality-related health risks across different 

regions. The data underscores the importance of targeted pollution control measures to mitigate 

health hazards, especially in high-risk areas. 

 

Table 5. Performance measures of proposed model and recent models’ comparison  

Model 
Accuracy Recall Precision True Positive 

Rate 

R2 RMSE 
0C 

MAPE 

in % 

CNN 
89.23 87.31 89.45 87.23 0.94 2.86 1.13 

RCNN 
90.24 91.76 91.47 90.28 0.92 2.93 1.16 

Xboost 
93.76 94.87 94.91 95.26 0.95 2.95 1.19 

GRU CNN 

Proposed 

98.56 98.43 97.93 98.52 0.97 1.96 1.10 
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Figure 10. Recent models comparison with proposed model 

The above figure 9 and table 4 clearly explains about various deep learning models comparison, in 

this CNN, RCNN and Xboost techniques were attained less performance analysis. The proposed model 

GRU CNN attains more improvement in terms of Accuracy, Recall, precision and True positive rate. 

 

 
Figure: 10 complex performance measures  

 

Figure 10 briefly explains about coefficient determination, Root mean square and mean absolute 

error. In this proposed model attains more improvement compared to existing ML, DL and conventional 

models. 

4. Conclusions 

This research highlights the critical role of weather conditions in enhancing the accuracy of air quality 

predictions. Statistical analysis of the Long Short-Term Memory (LSTM) and Gated Recurrent Units 

(GRU) models reveals that meteorological factors such as air pressure, temperature, and humidity 

significantly influence air quality forecasts. The integration of weather data with other air pollutants, 

such as PM2.5, improves prediction accuracy, with air pressure being the most influential factor, 

followed by temperature and humidity. The proposed GRU model achieves remarkable performance 

with an accuracy of 98.56%, recall of 98.43%, precision of 97.93%, and a true positive rate of 98.52%. 
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These results demonstrate the reliability, interpretability, and effectiveness of explainable deep learning 

models in air quality forecasting. The findings contribute to more precise and trustworthy air quality 

predictions, supporting effective pollution management and public health protection. Future research 

can focus on developing advanced deep learning models incorporating real-time data and additional 

meteorological factors like wind speed and solar radiation for improved accuracy. Expanding 

explainable AI techniques and using transfer learning can enhance model adaptability, aiding real-time 

monitoring and timely health risk mitigation. 
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