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Abstract. Recognizing isolated sign language gestures is difficult due to differences in body 

proportions and missing pose landmarks. Many current methods struggle to work well across 

different signers. To solve this, we propose reference-based normalization, which reduces body 

shape differences by separately normalizing body parts such as the full body, arms, face, and 

hands. We tested this method using LSTM and GRU models on two datasets: a custom American 

Sign Language (ASL) dataset with one amateur signer, and the public WLASL dataset with 

various signers. On the custom dataset, the highest accuracy (97.75%) was achieved using LSTM 

with normalization applied only to the full body and hands, since the signer was consistent. For 

the WLASL dataset, adding normalization for the arms and face improved accuracy by 3.10% 

for LSTM and 0.77% for GRU. The GRU model reached the best WLASL result (74.03%) with 

fewer parameters than other advanced models. These findings show that reference-based 

normalization improves sign recognition performance and has potential for real-world use, 

especially in recognizing signs in continuous sequences.  

Keywords: Isolated sign language recognition, Preprocessing, Feature engineering, Machine 

learning, Gated Recurrent Unit, Long Short-Term Memory 
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1.   Introduction  

According to the WHO, approximately 430 million people worldwide have hearing loss, a number 

expected to rise to 700 million by 2050 [1]. For these individuals, sign language serves as a primary 

means of communication. However, many people, particularly those without disabilities, often 

underestimate its importance. Developing automated sign language recognition (SLR) systems can 

bridge this communication gap, enabling the deaf and hard of hearing to fully engage in society through 
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sign language. SLR can be categorized based on the sequences of signs processed. Isolated Sign 

Language Recognition (ISLR) focuses on recognizing one sign at a time, corresponding to a single word 

or phrase [2]. In contrast, Continuous Sign Language Recognition (CSLR) handles a stream of signs, 

such as those used in natural conversation or sentences [3]. While CSLR is more relevant for real-world 

applications, ISLR provides a critical foundation by enabling the detection of individual signs in 

sequence. 

ISLR is typically framed as a time series classification problem, where sequences of human 

movements are classified into glosses. These movements are often recorded as videos and processed by 

ISLR models using either RGB data or pose-based representation. Recent studies leveraging RGB data 

have achieved high sign recognition accuracy [4-5]. These methods commonly employ Convolutional 

Neural Networks (CNNs) or pretrained CNNs to extract spatial features, followed by temporal models 

such as Long Short-Term Memory (LSTM) networks [6-7]. However, training with video data is 

computationally expensive due to its high dimensionality, making real-time deployment on mobile 

devices challenging. 

Pose-based models offer an alternative by utilizing skeletal landmarks to represent the body, hands 

and facial positions of the signer. This data is lower in dimensionality compared to raw video, resulting 

in more computationally efficient processing. Pose-based frameworks, trained on large datasets, are 

robust to variations in lighting and background conditions. However, landmark data often contains 

inconsistencies, such as variations in position, scale, and missing keypoints [8-9]. Preprocessing 

methods are therefore essential to standardize and refine landmark data, ensuring reliable inputs for 

ISLR models. 

Recent studies have explored various approaches to ISLR. For instance, Li et al. [10] introduced the 

WLASL dataset and evaluated the performance of RGB-based and pose-based models for word-level 

sign language recognition. Graph-based methods have also gained attention, with Naz et al. [11] utilizing 

a Graph Convolutional Network (GCN) to model landmarks as graph nodes, while Laines et al. [12] 

proposed a tree-structured representation to capture spatial relationships between keypoints. Multi-

stream architectures, such as the one proposed by Maruyama et al. [13], integrate skeletal information, 

local image features, and full-body motion to improve recognition accuracy. Transformer-based models 

have also been introduced, with Boháček et al. [9] presenting a bounding-box normalization and 

augmentation method tailored for Transformer inputs. Additionally, Roh et al. [14] proposed a 

preprocessing framework that addresses missing hand landmarks using interpolation and improved 

normalization techniques.  

In this work, we retain the original landmark data instead of transforming it into alternative 

representations. While previous normalization methods have addressed signer distance from the camera 

and positional variations, they often overlook differences in body proportions among signers. To address 

this limitation, we introduce a reference-based normalization method that accounts for body proportional 

bias in addition to signer distance and positional variations. Furthermore, prior studies on ISLR have 

used GRU models with OpenPose-extracted landmarks [10]. With the advent of newer pose estimation 

frameworks like Mediapipe and advancements in preprocessing techniques, it is essential to evaluate 

the continued relevance of recurrent architectures. While Transformers have gained attention for their 

performance, LSTM and GRU remain foundational components in many state-of-the-art models, 

excelling in sequential data tasks such as chatbot development, stock price prediction, and battery state-

of-charge estimation in electric vehicles [15-17]. This study aims to analyze the impact of different 

preprocessing methods on landmark data using Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) networks. 

 

2.   Methods 

This section outlines the dataset, the process of landmark extraction using Mediapipe Holistic, and 

preprocessing steps, including normalization, hand interpolation, and frame duplication. Additionally, 

it outlines the model architecture and experimental setup. 
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2.1.   Dataset 

To evaluate the effectiveness of our preprocessing methods, we utilized both a single-signer dataset and 

a multi-signer dataset. The controlled single-signer dataset allowed us to assess the impact of 

preprocessing without variability introduced by different signers, while the multi-signer dataset 

presented a more realistic and diverse setting. For the single-signer dataset, we created a custom ASL 

dataset to ensure consistency in recording conditions. This dataset was performed by a single amateur 

signer under natural lighting. It includes 20 different glosses, with 12 videos per gloss, resulting in a 

total of 240 videos.1 All videos were recorded with a resolution of 360 × 270, at 30 frames per second, 

and with a uniform length of 30 frames. 

For the multi-signer dataset, we selected the Word-Level American Sign Language (WLASL) dataset 

due to its signer diversity, variability, and differences in quality and aspect ratios. While larger datasets 

like ASL Citizen include more vocabulary and instances, studies have reported higher recognition 

accuracy on those datasets compared to WLASL [18], making WLASL a more challenging benchmark. 

The WLASL dataset was compiled from various educational sites and YouTube tutorials, resulting in 

diverse recording conditions and signer dialects [19]. WLASL is divided into subsets based on the 

number of glosses: 𝐾 = 100, 𝐾 = 300, and 𝐾 = 2000. These subsets are ordered by the largest number 

of instances per gloss, with smaller subsets containing glosses that have more samples. For our research, 

we selected the 𝐾 = 100 subset to prioritize glosses with a larger number of instances. The WLASL100 

subset includes 2038 videos, with lengths ranging from 15 frames to under 200 frames. It is worth noting 

that we used the version of the WLASL dataset available on Kaggle, which had already been processed 

using Mediapipe Holistic to extract landmarks.2 While the dataset authors did not explicitly state this, 

an analysis of their accompanying notebook, which includes several datasets, suggests that 

approximately 1100 of the 2038 samples are high-quality originals, while the remainder are resized 

versions. A comparison of the datasets is outlined in Table 1. 

 

Table 1. Comparison of Custom ASL Dataset and WLASL100. 

Attribute Custom ASL Dataset WLASL100 

Signers Single signer Diverse signers 

Videos 240 2038 

Frames per video Fixed at 30 frames Varies (15-200 frames) 

Vocabulary size (glosses) 20 100 

 

2.2.   Mediapipe Holistic 

Several pose estimation frameworks are available, including OpenPose, MM-Pose, Apple vision API, 

and Mediapipe. Among these, Mediapipe has demonstrated superior accuracy and computational 

efficiency [20]. Mediapipe Holistic, developed by Google, is a real-time pose detection framework that 

identifies keypoints representing landmarks on the human body [21]. In our study, we utilized 23 

landmarks from Mediapipe Pose and all 21 landmarks for each hand from Mediapipe Hand, as shown 

in Figure 1. Each landmark is defined by (𝑥, 𝑦, 𝑧) coordinates, corresponding to the width, height, and 

depth of the frame. However, we excluded the 𝑧-coordinate due to its unreliability, as noted in the 

documentation. This resulted in a total of 65 2D landmarks being extracted from each video frame. To 

ensure consistency, the 𝑥 and 𝑦 coordinates were normalized to a range of 0 to 1 within the frame. 

Undetected landmarks were assigned default coordinates of (0,0). 
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Figure 1. Mediapipe pose (left) and hand (right) landmarks index. 

2.3.   Reference-based normalization 
Landmarks extracted from the video can vary significantly based on a person’s position or body size. 

These variations in scale and position can hinder the model’s ability to learn effectively. Normalization 

reduces such variations, enabling the model to focus on critical features for recognizing signs. In 

previous pose-based ISLR research, bounding box normalization was used to address positional bias 

[9]. Later, anchor-based normalization was introduced, demonstrating improved performance [14]. This 

method selects a specific landmark as an anchor point, adjusting and scaling the remaining landmarks 

based on the distance between the neck and face. 

However, a limitation of anchor-based normalization is its inability to account for variations in body 

proportions. Scaling based solely on neck distance may cause the model to misinterpret signs due to 

differences in the size of the shoulders, arms, and hands. To address this issue, we implemented 

reference-based normalization as an extension of anchor-based normalization. The key improvement 

lies in mitigating body shape variability by normalizing the face, body, arms, and hands separately. This 

process is applied independently to each frame of the landmark data. A visual comparison of landmarks 

before and after normalization for the body, arm, and hands is presented in Figure 2. The next paragraph 

outlines the detailed steps of the normalization process. 

 

 
Figure 2. Result of applying full-body normalization (left), arm normalization (middle), and hand 

normalization (right). In each figure, the green lines represent landmarks before normalization, while 

the purple lines represent landmarks after applying the respective normalization. The red dotted line 

used in the right figure indicates the bounding box used in hand normalization. 

Full-body normalization involves normalizing all body landmarks using the neck as the anchor point 

and scaling them by the distance between the left shoulder and the right shoulder. Let (𝑥𝑘, 𝑦𝑘) represent 

the coordinates of the 𝑘-th pose landmark, where 𝑘 ∈ {0, … ,22}. The neck anchor point, denoted as 
(𝑥𝑛𝑒𝑐𝑘 , 𝑦𝑛𝑒𝑐𝑘), is calculated as the average of the left shoulder (𝑘 =  12) and the right shoulder (𝑘 =
 11), using the formula: 

(𝑥𝑛𝑒𝑐𝑘 , 𝑦𝑛𝑒𝑐𝑘) = (
𝑥11 + 𝑥12

2
,
𝑦11 + 𝑦12

2
). 

 

After determining the neck landmark, each landmark is shifted relative to this reference point and scaled 

using the following formula: 
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(𝑥𝑘
′ , 𝑦𝑘

′ ) =
(𝑥𝑘 − 𝑥𝑛𝑒𝑐𝑘 , 𝑦𝑘 − 𝑦𝑛𝑒𝑐𝑘)

√(𝑥11 − 𝑥12)2 + (𝑦11 − 𝑦12)2
. 

 

Face normalization adjusts facial landmarks relative to the nose. Let 𝐹 = {0, … ,10} represent the set 

of facial landmarks. The normalization formula for these landmarks is as follows: 

 

(𝑥𝑓
′′, 𝑦𝑓

′′) = (𝑥𝑓
′ − 𝑥0

′ , 𝑦𝑓
′ − 𝑦0

′ ) for 𝑓 ∈ 𝐹. 

 

Arm normalization adjusts the scale of arm landmarks to account for variations in arm proportions 

relative to shoulder length. Let 𝐿 = {14,16,18,20,22} represent the set of landmarks in the left arm. 

Their positions are calculated as follows:  

  

(𝑥𝑙
′′, 𝑦𝑙

′′) =
(𝑥𝑙

′, 𝑦𝑙
′)

√(𝑥12
′ − 𝑥14

′ )2 + (𝑦12
′ − 𝑦14

′ )2
 for 𝑙 ∈ 𝐿. 

 

The normalization process for the right arm is similar to that of the left arm, using the set 𝑅 =
{13,15,17,19,21} and scaling by the distance between landmarks 11 and 13. 

 

Hand normalization differs from other normalizations because hands can take various poses, ranging 

from a flat palm to a clenched fist. The distance between two landmarks varies significantly with hand 

shape, making it an unreliable scaling factor. Instead, we use bounding box normalization, as propose 

in [9]. Let 𝐻 = {0, … ,21} represent the hand landmarks. The bounding box is defined by the minimum 

and maximum coordinates: 

 

𝑥𝑚𝑖𝑛 = 𝑥ℎ  ,  𝑥𝑚𝑎𝑥 = 𝑥ℎ   
𝑦𝑚𝑖𝑛 = 𝑦ℎ  ,  𝑦𝑚𝑎𝑥 = 𝑦ℎ  . 

 

The center of the bounding box is calculated as: 

 

(𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟) = (
𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥

2
,
𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥

2
). 

  

Each hand landmark is shifted and scaled by the width and height of the bounding box: 

 

(𝑥ℎ
′ , 𝑦ℎ

′ ) = (
𝑥ℎ − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
,
𝑦ℎ − 𝑦𝑐𝑒𝑛𝑡𝑒𝑟

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
) ,  ℎ ∈ 𝐻. 

This normalization ensures that the hand landmarks are always bounded within a box with coordinates 

𝑥 ∈ [−0.5,0.5] and 𝑦 ∈ [−0.5,0.5]. 
 

2.4.   Hands interpolation 
Missing or undetected hand landmarks are a common issue in sign language datasets due to rapid hand 

movements or occlusion. To address this, we applied hand interpolation based on the method described 

in [14]. This approach uses linear interpolation across time frames to fill in the gaps in the hand 

keypoints. For interpolation, missing landmarks require both a preceding and a succeeding detected 

landmark. To ensure that missing landmarks are always bounded by detected ones, we initialize the first 

and last frames with the average values of the detected landmarks. Formally, given a hand landmark 

𝑓𝑡 = (𝑥𝑡 , 𝑦𝑡) at the 𝑡-th time frame, the interpolated hand landmark is calculated using the following 

conditional formula:  
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𝑓𝑡
′ = {

𝛽𝑓𝑡−𝛼 + 𝛼𝑓𝑡+𝛽

𝛼 + 𝛽
 if 𝑓𝑡 = (0,0)

           𝑓𝑡               otherwise,

              

 

where  𝑓𝑡 = (0,0) represent a missing landmark, 𝛼 and 𝛽 are the minimum positive integers such that 

the hand landmark in the (𝑡 − 𝛼)-th and (𝑡 − 𝛽)-th frames are detected. 
 

2.5.   Frame duplication 

To ensure a fair and consistent evaluation of different preprocessing techniques, our goal is to 

standardize the number of frames across all samples. The data used in this research, WLASL100, 

consists of instances with varying time lengths, ranging from as few as 15 frames to just under 200 

frames. To address this variability, we applied frame duplication and truncation to standardize the input 

sequence length.  Specifically, we extended the instances by replicating the landmark data until they 

exceeded 200 frames. After lengthening the instances, we truncated the excess frames to ensure that all 

samples contained exactly 200 frames. In contrast, our custom ASL dataset has a fixed length of 30 

frames, so no frame duplication or truncation was applied. 

 

2.6.   Data preprocessing workflow 

The data preprocessing workflow is illustrated in Figure 3. The process begins with two datasets: 

WLASL and a custom ASL dataset. These videos are processed with Mediapipe, which extracts 

landmarks from each frame. Since the number of frames varies across videos, frame duplication is 

applied to WLASL dataset, while the custom ASL dataset bypasses this step. The data is then processed 

into eight different configurations, each representing a unique combination of preprocessing techniques. 

The configuration with the complete set of preprocessing methods is also shown in Figure 3, providing 

a detailed breakdown of its steps. Normalization is applied sequentially to each frame, starting with full-

body normalization, followed by face normalization, arm normalization, and hand normalization. Next, 

hand interpolation is performed by considering the entire video sample, rather than processing each 

frame independently. Once all configurations are generated, they are modeled and tested. 

 
Figure 3. The preprocessing workflow and a detailed breakdown of preprocessing steps of 

configuration with complete preprocessing methods. 

2.7.   Model architecture and experimental setup 

The preprocessing experiments will be conducted using recurrent neural networks (RNNs), specifically 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models. Each dataset will be 

evaluated with different configurations to accommodate its characteristics. The custom ASL dataset, 

which has shorter sequences and fewer glosses, will use a simpler model with a single RNN layer. In 
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contrast, WLASL100, with longer sequences and more classes, will require a more complex 

architecture, as detailed in Table 2. 

 

Table 2. Summary of LSTM/GRU model architecture for the Custom ASL (left) and the WLASL 

(right) data. 

 

Layer Description 

Input (30, 130 features) 

LSTM/GRU 128 units 

Dense 64 units, ReLu activation 

Dense 20 classes, softmax activation 
 

 

Layer Description 

Input (200, 130 features) 

LSTM/GRU 192 units, dropout=0.4 

LSTM/GRU 128 units, dropout=0.4 

Dense 100 classes, softmax activation 
 

 

All the experiments were conducted on a Kaggle notebook with an NVIDIA T4 GPU. The 

models were trained using the Adam optimizer, categorical cross entropy as the loss function, and a 

learning rate of 10-3. The experimental setup differed between the Custom ASL and the WLASL100, as 

detailed below: 

● Custom ASL data. Training was carried out for 50 epochs with a batch size of 8. The data was 

split with a ratio of 8:4, where 8 samples per class were used for training and 4 for testing. The 

evaluation metric was top-1 accuracy, averaged over 10 runs with different seeds. 

● WLASL100. Training was carried out for 200 epoch with a batch size of 32. The predefined 

training, validation, and testing splits were used. During training, checkpoints were saved based 

on the maximum validation categorical accuracy. The evaluation metric was top-1 accuracy, 

averaged over 5 runs with different seeds. 

Hyperparameters, including learning rate, batch size, and the number of hidden units, were selected 

based on preliminary experiments. Several configurations were tested manually, and the final values 

were chosen based on the best validation performance. 

 

3.   Results and Discussions 

In this section, we evaluate the impact of the preprocessing techniques applied in our study and compare 

the results with other methods. 

3.1.   Comparing preprocessing methods 

The effectiveness of various preprocessing configurations in model accuracy is summarized in Table 3.  

For the custom ASL dataset, the highest accuracy (97.75%) was achieved using full-body and hand 

normalization with the LSTM model. In contrast, the WLASL100 dataset achieved the highest accuracy 

(74.03%) with the GRU model, and all normalization methods were applied. In general, the GRU models 

outperformed the LSTM models in both datasets. 

 

Table 3. Comparison of preprocessing methods with corresponding accuracy of LSTM and GRU 

model on the WLASL100 and Custom ASL datasets (± 95% confidence interval). 

Dataset 
Body parts normalization Hands Accuracy (%) 

Full body Face Arm Hand Interpolation LSTM GRU 

  ✕ ✕ ✕ ✕ ✕ 68.13 ± 3.09 76.0 ± 2.28 
 

 ✓ ✕ ✕ ✕ ✕ 83.62 ± 1.28 87.6 ± 1.24 
 

 

 ✓ ✓ ✕ ✕ ✕ 82.62 ± 1.17 88.4 ± 1.05 
 

 

Custom ASL  83.38 ± 1.39 87.3 ± 1.52  
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✓ ✕ ✓ ✕ ✕  

 ✓ ✕ ✕ ✓ ✕ 97.75 ± 0.64 96.5 ± 0.88 
 

 

 ✓ ✕ ✕ ✓ ✓ 96.88 ± 0.77 97.0 ± 1.10 
 

 

 ✓ ✓ ✓ ✓ ✕ 97.5 ± 1.08 96.3 ± 0.68 
 

 

 ✓ ✓ ✓ ✓ ✓ 97.25 ± 0.55 95.9 ± 0.71 
 

 

  ✕ ✕ ✕ ✕ ✕ 13.95 ± 0.24 22.33 ± 0.74 
 

 

 ✓ ✕ ✕ ✕ ✕ 29.84 ± 2.05 43.41 ± 1.86 
 

 

 ✓ ✓ ✕ ✕ ✕ 29.61 ± 2.64 44.03 ± 0.95 
 

 

WLASL100 ✓ ✕ ✓ ✕ ✕ 29.53 ± 2.44 44.96 ± 1.07 
 

 

 ✓ ✕ ✕ ✓ ✕ 63.64 ± 2.33 73.26 ± 0.64 
 

 

 ✓ ✕ ✕ ✓ ✓ 62.87 ± 1.28 69.61 ± 1.09 
 

 

 ✓ ✓ ✓ ✓ ✕ 66.74 ± 1.47 74.03 ± 1.05 
 

 

 ✓ ✓ ✓ ✓ ✓ 65.27 ± 2.02 70.08 ± 1.21 
 

 

 

 

3.1.1.   Normalization 

In the custom ASL dataset, full-body and hand normalization resulted in the best performance. This 

approach was particularly effective because the dataset consists of videos performed by a single 

individual, meaning there is no body proportionality bias across signers. As a result, further 

normalization of the arms and face did not improve the accuracy. In contrast, the WLASL dataset 

comprises videos performed by multiple signers with varying body proportions. In this case, the addition 

of arm and face normalization, alongside full-body and hand normalization, helped standardized 

landmarks across signers, as shown in Figure 4. This preprocessing method led to an improvement in 

accuracy of 3.10% for the LSTM model and 0.77% for the GRU model, as presented in Table 3. The 

highest accuracy was achieved by the GRU model, reaching 74.03%. 

The impact of these preprocessing strategies aligns with findings from prior pose-based ISLR studies. 

Boháček et al.  [9] and Roh et al. [14] employed bounding-box hand normalization, which proved highly 

effective in their studies. Additionally, Roh et al. [14] applied anchor-based normalization to the full 

body, significantly improving accuracy. This study extends that approach by applying anchor-based 

normalization separately to different body parts, ensuring that the model focuses on motion while 

minimizing noise from signer-specific body proportions.  
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Figure 4. Heatmap comparison of WLASL100 data using different normalization methods. The 

heatmaps visualize the concentration of landmarks, where lighter colors indicate more observations, 

and darker color indicates fewer observations. The figure demonstrates how each normalization 

method makes the landmarks more compact and consistent, reducing variability and potential noise 

between signers. 

3.1.2.   Hand interpolation 

Hand interpolation showed a limited impact on model performance. Although it recovered a significant 

number of missing landmarks, as shown in Table 4, it did not improve model accuracy. In the custom 

ASL dataset, applying interpolation led to a minor decrease in accuracy for the LSTM model and a 0.5% 

increase for the GRU model. In the WLASL100 dataset, interpolation decreased accuracy by 1.47% for 

LSTM and 3.95% for GRU. This finding contrasts with prior studies; Roh et al. [14] utilized hand 

interpolation with a transformer-based model and observed improvements in accuracy. The discrepancy 

suggests that the effectiveness of hand interpolation may depend on the model architecture, with 

transformers potentially benefiting more from additional interpolated data than recurrent models like 

LSTM and GRU. 

Table 4. Comparison of the percentage of detected landmarks before and after applying hand 

interpolation. 

Data Region Before After 

Custom ASL 
Left hand 30.00% 45.00% 

Right hand 81.20% 100% 

WLASL100 
Left hand 33.50% 75.30% 

Right hand 62.20% 99.30% 

Further analysis based on Figure 5 suggests that when the presenter's hands are resting outside the 

frame, the absence of hand landmarks (represented as zero values) helps the model identify when the 

hands are inactive. Recovering these missing landmarks through interpolation introduces redundant 

information, as there is no meaningful data to add when the hands are at rest. While hand interpolation 

can be beneficial when hands are undetected due to fast movement, the negative impact of reconstructing 

resting hand positions seems to outweigh this advantage, potentially explaining the drop in performance. 
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Figure 5. Comparison of inputs before (top) and after (bottom) hand interpolation. The red dotted box 

indicates interpolated hand landmarks. The predicted gloss are the results of two different models tested on 

the same data with different preprocessing methods. 

3.2.   Comparison with other methods 

This section presents a comparison of our models (GRU and LSTM) against existing pose-based isolated 

sign language recognition methods, as shown in Table 5. Methods using OpenPose, such as Pose-GRU 

and GCNBERT, report lower accuracy compared to those using Mediapipe. In particular, Mediapipe-

based models, including SignGraph, SL-TSSI, and Transformer Encoder, achieve higher accuracies, 

with Transformer Encoder reaching the highest at 83.26%. 
Our proposed model, GRU, which uses Mediapipe, outperformed all models using OpenPose and 

the Apple Vision API, as well as SignGraph. However, it falls short in comparison to the Transformer 

Encoder and SL-TSSI in terms of accuracy. Several factors may explain the lower accuracy of our models. 

One key reason is that our model used fewer parameters: ours employed 0.32 M parameters, while SL-TSSI 

used 7.2 M and Transformer Encoder used 5.3M. Additionally, we used resized versions of videos from 

another source, leading to reduced landmark quality, which likely impacted accuracy. 

 

Table 5. Comparison of our proposed model (GRU and LSTM) with existing methods using different 

pose estimation frameworks. The comparison includes models utilizing OpenPose, Apple Vision API, 

and Mediapipe. The number of trainable parameters is listed in millions (M). 

Method Framework Parameters Acc. (\%) 

Pose-GRU [10] OpenPose - 46.51 

Pose-TGCN [10] OpenPose - 55.43 

GCNBERT [19] OpenPose - 60.15 

SPOTER [9] Vision API 5.92 M 63.18 

SignGraph [11] Mediapipe 0.62 M 72.09 

SL-TSSI [12] Mediapipe 7.2 M 81.47 

Tf Encoder [14] Mediapipe 5.3M 83.26 

LSTM (ours) Mediapipe 0.42 M 66.74 

GRU (ours) Mediapipe 0.32 M 74.03 
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3.3.   Computational time 

This subsection evaluates the computational time required for each stage of the pipeline: Mediapipe 

processing, preprocessing, and model inference. The experiments were conducted in a Kaggle Notebook 

environment utilizing an Intel Xeon(R) CPU 2.30GHz, with no GPU used for model inference. The 

Mediapipe and preprocessing times were measured using a sample of 3,000 frames, while the model 

inference time was averaged over 100 runs with an input of 200 frames per run. The final inference time 

per frame was calculated by dividing the total time by 200 frames. The results, shown in Table 6, indicate 

that Mediapipe is the most time-consuming stage, taking an average of 95.96 ms per frame. In contrast, 

preprocessing adds a negligible delay, ranging from 0 to 0.088 ms per frame, while model inference is 

similarly lightweight at 0.2878 ms per frame. The total processing time per frame ranges from 96.25 ms 

and 96.34 ms, resulting in an average frame rate of around 10.38 FPS. This shows that the preprocessing 

and model inference we implemented have a negligible impact on performance, with Mediapipe being 

the primary computational bottleneck. 

 

Table 6. Processing time per frame for different preprocessing configurations (Fb: full-body 

normalization, Fc: face normalization, A: arm normalization, H: hand normalization, Intp: 

interpolation). 

Preprocessing 

configuration 

Preprocessing 

(ms/frame) 

Mediapipe 

(ms/frame) 

Inference 

(ms/frame) 

Total 

(ms/frame) 

Total 

(frame/s) 

None 0 

95.9637 0.2878 

96.251 10.389 

Norm. (Fb) 0.0093 96.261 10.388 

Norm. (Fb,Fc) 0.0148 96.266 10.388 

Norm. (Fb,A) 0.0303 96.282 10.386 

Norm. (Fb,H) 0.0528 96.304 10.384 

Norm. (Fb,A) + Intp. 0.0573 96.309 10.383 

Norm. (Fb,Fc,A,H) 0.0826 96.334 10.381 

Norm. (Fb,Fc,A,H) + Intp. 0.0877 96.339 10.380 

 

 

4.   Conclusions 

In this study, we apply anchor-based normalization to independently normalize arms, face, and hands. 

This approach effectively minimizes body proportionality variations across different signers, making it 

particularly beneficial for datasets like WLASL that involve multiple performers. Among various 

preprocessing configurations, adding arm and face normalization to full-body and hand normalization 

resulted in a notable improvement in model performance. Specifically, it increased the accuracy of the 

LSTM model by 3.10% and the GRU model by 0.77%. Although hand interpolation successfully 

recovered a significant number of missing hand landmarks, our experiments revealed that it led to a 

decrease in overall model accuracy. This suggests that the recovered landmarks may introduce 

inconsistencies that adversely affect model prediction. These findings indicate that the normalization 

process can yield promising results when applied to CSLR, particularly in detecting individual signs in 

sequence.  

Furthermore, our methods achieve competitive accuracy compared to existing research while 

utilizing significantly fewer parameters, demonstrating the efficiency of our approach. Compared to 

models such as SPOTER and SL-TSSI, which require over five million parameters, our LSTM and GRU 

models achieve accuracies of 66.74% and 74.03%, respectively, with fewer than 0.5 million parameters. 

This highlights the effectiveness of our preprocessing techniques and model design in improving 

performance while maintaining computational efficiency. The total processing time per frame for the 

model to process until output ranges from 96.25 ms to 96.34 ms, resulting in an average frame rate of 

around 10.38 FPS. 
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