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Abstract. Maternal mortality is a global health issue that reflects disparities in access to and the 

quality of healthcare services. This study applies the Bayesian Generalized Poisson Regression 

(BGPR) approach to address the problem of overdispersion in the data, which renders the 

standard Poisson regression model less appropriate. The Generalized Poisson model was chosen 

for its ability to handle overdispersion, while the Bayesian approach provides more stable 

parameter estimates, particularly when working with small sample sizes. The analysis results 

show that all independent variables have a statistically significant effect on maternal mortality. 

In addition, the BGPR model yields a lower Bayesian Information Criterion (BIC) value 

compared to the standard Poisson model, indicating better model performance. The BGPR model 

helps identify the key factors that truly contribute to maternal mortality, making the results useful 

for local governments or health institutions in setting priorities for intervention. 
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1.   Introduction  

Maternal Mortality Ratio (MMR) is a key indicator of a country's healthcare quality and societal well-

being. According to WHO (2023), over 800 women die daily from pregnancy or childbirth 

complications, mostly in developing countries [1]. Indonesia, as one of the most populous nations, still 

faces major challenges in reducing MMR to meet the 2030 SDGs target of below 70 deaths per 100,000 

live births [2]. The maternal mortality rate (MMR) in Indonesia, particularly in NTT Province, remains 

high and is a serious concern in efforts to improve the quality of maternal healthcare services. Despite 

various interventions implemented by the government through national programs, such as the Maternity 

Insurance (Jampersal), increased coverage of antenatal care visits (K1 and K4), and training of 

healthcare workers, the decline in MMR has been slow and uneven across regions [3]. 
using Microsoft Office Word format (not .pdf). The full paper should be submitted as Microsoft Office 

Word (.doc or .docx) file.  

Poisson regression is a commonly used statistical method for analyzing count data. However, its key 
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assumption—that the mean is equal to the variance—is often violated in maternal mortality data due to 

the presence of overdispersion[4].  To overcome this limitation, various alternative approaches have 

been developed, one of which is the Generalized Poisson Regression (GPR). This model offers greater 

flexibility in handling both overdispersion and underdispersion without requiring a drastic change to the 

underlying distribution. [5]. Generalized Poisson Regression (GPR) usually uses Maximum Likelihood 

Estimation (MLE) to estimate parameters. However, MLE can be less reliable when the data is highly 

overdispersed or when the sample size is small, as it may lead to unstable results[6]. To solve these 

problems, the Bayesian approach offers a more flexible and informative solution. It uses prior 

information and combines it with observed data using Bayes' Theorem to produce a posterior 

distribution that better shows the uncertainty in the parameter estimates [7]. 
Unlike the frequentist approach, which only uses current data, the Bayesian approach combines data 

with prior knowledge to provide more reliable parameter estimates [8]. In frequentist estimation, 

multicollinearity can lead to unstable parameter estimates, with high variance and wide confidence 

intervals. This reduces the accuracy of the model and increases uncertainty in statistical inference. In 

contrast, the Bayesian approach can handle multicollinearity by incorporating appropriate priors, which 

help stabilize parameter estimates. The use of priors reduces the large variance of parameters and 

improves estimation accuracy, even when the data exhibits high multicollinearity [9]. 
This study focuses on the Generalized Poisson Regression (GPR) method to address overdispersion 

in count data. Previous studies have shown GPR to be effective, such as Sari’s work on HIV cases in 

Riau Province, Aminullah’s use of Bivariate GPR for infant and maternal mortality, and Chaniago’s 

comparison of GPR and Negative Binomial Regression (NBR) for infant mortality in Probolinggo, with 

GPR performing better[10][11][12]. Alkema et al. applied a Bayesian approach combining multilevel 

regression and ARIMA for more accurate MMR estimation[13]. Meanwhile, Jakperik et al. analyzed 

maternal mortality in Ghana using Zero-Inflated Negative Binomial and Bayesian INLA, identifying 

age, marital status, and place of death as significant factors, and recommending improved health 

workforce distribution and facilities in rural areas[14]. 

Previous studies using Generalized Poisson Regression (GPR) still estimated parameters with the 

Maximum Likelihood Estimation (MLE) method, which has the drawback of potential bias when the 

sample size is small. Therefore, this study employs an alternative approach, namely Bayesian 

Generalized Poisson Regression (BGPR), which can accommodate overdispersion in the data[15]. The 

application of BGPR in health data analysis has been widely used to improve the accuracy of parameter 

estimation and enhance understanding of risk factors. This study aims to identify the significant factors 

affecting maternal mortality in NTT Province using the Bayesian Generalized Poisson Regression 

approach. The data used are secondary data obtained from the Central Statistics Agency (BPS) and the 

NTT Provincial Health Office for the year 2024. By applying BGPR, this study is expected to produce 

an optimal model that more accurately, stably, and comprehensively describes the relationship between 

predictor variables and maternal mortality. 

2.   Methods  

2.1.   Dataset 

The data used in this study comprise 27 regencies and cities in NTT Province for 2024, as published by 

Statistics Indonesia (BPS) in 2024. The data is secondary data obtained from the 2024 NTT Provincial 

Health Profile [16]. This study uses districts/cities in NTT Province as the unit of analysis. The response 

variable in this study is the number of maternal deaths (Y), while the predictor variables include: 

percentage of K4 antenatal care visits (X1), percentage of blood pressure examinations (Td+) (X2), 

percentage of iron tablet supplementation coverage (TTD) (X3), percentage of active family planning 

participants (X4), number of complications treated by midwives (X5), and percentage of women who 

were married under the age of 17 (X6).  
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2.2.   Overdispersion 

Overdispersion occurs when the variance of count data is greater than its expected value, thereby 

violating the equidispersion assumption of Poisson regression[17]. If ignored, this can lead to inefficient 

estimates and invalid significance tests. Overdispersion can be detected by comparing the deviance or 

Pearson chi-square to the degrees of freedom; a ratio greater than 1 indicates the presence of 

overdispersion [18]. 

 

(1) 

 

(2) 

2.3.   Posterior Distribution 

The posterior distribution is the core of Bayesian inference, obtained through Bayes' Theorem as 

follows: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃) 

𝑝(𝑦)
 (3) 

where 𝑝(𝜃|𝑦) is the posterior distribution, 𝑝(𝑦|𝜃)  is the likelihood, 𝑝(𝜃) is the prior, and 𝑝(𝑦) is 

the evidence (marginal likelihood). For the Generalized Poisson Regression model, the explicit form of 

the posterior distribution is generally not analytically available due to the complexity of the likelihood 

function. Therefore, posterior parameter estimation is carried out numerically using sampling methods 

such as Markov Chain Monte Carlo (MCMC) [7], particularly Metropolis-Hastings or Gibbs sampling 

[19]. 

2.4.   Bayesian information criterion (BIC) 

Bayesian Information Criterion (BIC) is one of the tools used to compare statistical models and is 

commonly employed in model selection, including within the Bayesian approach[20]. BIC can be 

defined as: 

𝐵𝐼𝐶 = −2 log 𝐿(𝜃) + 𝑘 log 𝑛 (4) 

 

where 𝐿(𝜃) is the maximum value of the model's likelihood function, k s the number of parameters 

in the model, and n is the number of data points. Although BIC originates from the frequentist approach, 

it is still widely used due to its ease of implementation and its ability to provide an asymptotic 

approximation to model evidence or marginal likelihood  [21]. 

2.5.   Flow System Diagram 

The system flow diagram is a visual representation that illustrates the sequence or workflow of a 

program. The system to be developed aims to model the number of maternal deaths in NTT Province 

using the Bayesian Generalized Poisson Regression approach. 
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Figure 1. Flowchart 

 

3.   Results and Discussion 

This chapter lays out specific instructions for writing the full text, including the article section, the 

systematic chapter and its contents. These specific instructions will guide the entire editorial process of 

the article as shown in Figure 2. 

3.1.   Overdispersion 

The overdispersion is greater than 1, indicating that the data is overdispersion in the Poisson regression 

model. This was assessed by calculating Pearson's chi-squared value divided by the degrees of freedom 

[22]. The result, 12.31, is greater than 1, confirming that the data exhibit overdispersion in the Poisson 

regression model. 

3.2.   Bayesian Poisson Regression 

In classical Poisson regression, the count data 𝑦𝑖 is modeled as [23]: 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 

𝜆𝑖 = exp (𝑥𝑖
𝑇𝛽) (5) 

Before estimating the parameters in Bayesian Poisson Regression, the first step is to determine the 

posterior distribution. The posterior distribution is obtained by applying Bayes’ Theorem, which 

combines information from the likelihood and the prior distribution. 
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𝐿(𝛽) = ∏
𝑒−𝜆𝑖𝜆𝑖

𝑦

𝑦!

𝑛

𝑖=1

 

𝐿(𝛽) = ∏
𝑒−𝑒𝑥𝑝(𝑥𝑖

𝑇𝛽). 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽)

𝑦

𝑦!

𝑛

𝑖=1

 (6) 

𝑓(𝛽|𝑦) =
𝛽𝛼

Γ(𝛼)
𝜃𝛼−1𝑒−𝛽𝜃 (7) 

Thus, the posterior distribution is obtained as follows: 

𝑓(𝛽|𝑦) ∝
𝛽𝛼

Γ(𝛼)
𝜃𝛼−1𝑒−𝛽𝜃 × ∏

𝑒−𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽). 𝑒𝑥𝑝(𝑥𝑖

𝑇𝛽)
𝑦

𝑦!

𝑛

𝑖=1

 (8) 

The posterior distribution above is difficult to compute analytically; therefore, the Gibbs Sampling 

method is used as a solution. In Bayesian Poisson regression, a Gamma distribution is used as the prior 

because it is the conjugate prior of the Poisson distribution. The first step to ensure reliable parameter 

estimation is to examine the trace plot and the Monte Carlo (MC) Error value [24]. A stable trace plot 

with no clear pattern indicates that the sampling process has converged. Meanwhile, a small MC Error 

(less than 5% of the standard deviation) suggests that the parameter estimates are accurate [25]. 
Subsequently, parameter estimates are derived from the credible interval, which provides a range of 

values with a high level of confidence [26]. 

 
Figure 2. Trace Plots of the Estimated Beta Parameters in Bayesian Poisson Regression 

From Figure 1, it can be observed that the beta values from 𝛽0 to 𝛽6 exhibit stability or stationarity. 

This is evident from the trace plots, which fluctuate randomly around the mean without any discernible 

trend. Such behaviour indicates that the parameter estimation process has reached convergence, meaning 

the results are reliable for further analysis. The stable trace plots also suggest that the sampling algorithm 

has effectively explored the parameter space and provided representative estimates of the posterior 

distribution [27]. 
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Table 1. MC Error Bayesian Poisson Regression 

Parameter  
Standard 

Deviation 

5% Standard 

Deviation 
MC Error Comment 

𝜷𝟎 0.0411 0.0021 0.0001 convergence 

𝜷𝟏 0.0709 0.0035 0.0027 convergence 

𝜷𝟐 0.0495 0.0025 0.0017 convergence 

𝜷𝟑 0.0595 0.0030 0.0012 convergence 

𝜷𝟒 0.0484 0.0024 0.0021 convergence 

𝜷𝟓 0.0469 0.0023 0.0018 convergence 

𝜷𝟔 0.0499 0.0025 0.0003 convergence 

From Table 1, it can be concluded that the MC Error (Monte Carlo Error), which is less than 5% of 

the standard deviation, shows that the model's estimates are quite accurate. A low MC Error means the 

uncertainty in the estimates is small compared to the standard deviation, indicating stable and reliable 

results. This also suggests that the simulation or estimation process has reached convergence, meaning 

the algorithm has stabilized and the parameter values no longer change significantly, even with more 

iterations. This stability ensures that the results are trustworthy and not fluctuating too much. Therefore, 

the estimates can be considered reliable. 

Table 2. Bayesian Poisson Regression Estimation Parameter 

Parameter 
Parameter 

Estimator 
2.5% Percentile 

97.5% 

Percentile 
Comment 

𝜷𝟎 3.1412 3.0595 3.2204 Significant 

𝜷𝟏 0.5157 0.3757 0.6550 Significant 

𝜷𝟐 0.1318 0.0342 0.2296 Significant 

𝜷𝟑 -0.2487 -0.3625 -0.1282 Significant 

𝜷𝟒 0.0243 -0.0697 0.1193 Not Significant 

𝜷𝟓 -0.0113 -0.1054 0.0789 Not Significant 

𝜷𝟔 0.1672 0.0693 0.2641 Significant 

Based on Table 2, the significant variables in the model are X1, X2, X3, and X6. This determination 

is made by examining each variable’s credible interval (CI). If the CI does not include zero, the variable 

is considered to have a significant effect on the model [26]. In this case, the CI for X1, X2, X3, and X6 

do not include zero, indicating that these four variables have a statistically significant influence. On the 

other hand, variables whose CI include zero are considered not significant, as there is insufficient 

evidence to suggest a meaningful effect in the model. 

3.3.   Bayesian Generalized Poisson Regression 

In the Generalized Poisson Regression model, the conditional probability function of 𝑦𝑖  given the 

predictors 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖 is defined as follows [28]. 

𝑃(𝑦, 𝜇, 𝜃) = (
𝜇

1 + 𝜃𝜇
)

𝑦 (1 + 𝜃𝜇)𝑦−1

𝑦!
𝑒𝑥𝑝 (−

𝜇(1 + 𝜃𝜇)

1 + 𝜃𝜇
)       (9) 

Based on Equation (5), the likelihood function is derived and presented in Equation (6). The prior 

specification in the Generalized Poisson Regression model assumes that the regression parameters 𝛽 

follow a Gamma distribution, while the dispersion parameter 𝜃 is assumed to follow a Normal 

distribution. 

𝐿(𝛽, 𝜃) = ∏ (
𝑒𝑥𝑖

𝑇𝛽

1 + 𝜃𝑒𝑥𝑖
𝑇𝛽

)

𝑛

𝑖=1

(1 + 𝜃𝑦)𝑦−1

𝑦!
𝑒𝑥𝑝 (

𝑒𝑥𝑖
𝑇𝛽(1 + 𝜃𝑦)

1 + 𝜃𝑒𝑥𝑖
𝑇𝛽

) 
(10) 

𝑓(𝜃|𝑦) =
𝛽𝛼

Γ(𝛼)
𝜃𝛼−1𝑒−𝛽𝜃 

(11) 



  

02503013-07 

𝑓(𝛽|𝑦) =
1

√2𝜋σ2
𝑒

−(
𝛽−𝜇𝛽

2𝜎2 )
 

(12) 

The resulting posterior distribution is as follows: 

𝑓(𝛽, 𝜃|𝑦) ∝
1

√2𝜋σ2
𝑒

−(
𝛽−𝜇𝛽

2𝜎2 )
×

𝛽𝛼

Γ(𝛼)
𝜃𝛼−1𝑒−𝛽𝜃

× ∏ (
𝑒𝑥𝑖

𝑇𝛽

1 + 𝜃𝑒𝑥𝑖
𝑇𝛽

)

𝑛

𝑖=1

(1 + 𝜃𝑦)𝑦−1

𝑦!
𝑒𝑥𝑝 (

𝑒𝑥𝑖
𝑇𝛽(1 + 𝜃𝑦)

1 + 𝜃𝑒𝑥𝑖
𝑇𝛽

) 

(13) 

 

 
Figure 3. Trace Plots of Beta Parameter Estimates in Bayesian Generalized Poisson Regression 

 

Figure 3 shows the trace plot generated from simulations using the Gibbs sampling algorithm, 

involving 500,000 iterations to obtain samples from the posterior distribution of the model parameters. 

This approach was taken because the posterior distribution is analytically intractable. Prior to sampling 

for analysis, a burn-in period of 10,000 iterations was conducted to ensure that the MCMC chain reached 

a stationary state. The resulting trace plots for the beta parameters exhibit stable and random patterns, 

indicating that the model has achieved good convergence. 

Table 3. MC Error Bayesian Generalized Poisson Regression 

Parameter  
Standard 

Deviation 

5% Standard 

Deviation 
MC Error Comment 

𝜷𝟎 0.0405 0.002025 0.0011 convergence 

𝜷𝟏 0.0653 0.003265 0.0019 convergence 

𝜷𝟐 0.0454 0.00227 0.001 convergence 

𝜷𝟑 0.0542 0.00271 0.0017 convergence 

𝜷𝟒 0.0441 0.002205 0.0021 convergence 

𝜷𝟓 0.0422 0.00211 0.0016 convergence 

𝜷𝟔 0.0455 0.002275 0.0021 convergence 

Based on Table 3, the MC Error value for the Bayesian Generalized Poisson model, which is less 

than 5% of the standard deviation, indicates that the beta parameters have reached convergence. This 

suggests that the sampling process using the MCMC method has stabilized, and the obtained parameter 
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estimates can be relied upon. In other words, the low MC Error value indicates that the variation in 

parameter estimates is minimal, making the model results consistent and accurate. 

Table 4. Bayesian Generalized Poisson Regression Estimation Parameter 

Parameter 
Parameter 

Estimator 
2.5% Percentile 

97.5% 

Percentile 
Comment 

𝜷𝟎 3.2146 3.1342 3.2930 Significant 

𝜷𝟏 -0.4873 0.3595 0.6154 Significant 

𝜷𝟐 0.1252 0.0357 0.2137 Significant 

𝜷𝟑 -0.2399 -0.3446 -1.1319 Significant 

𝜷𝟒 -0.0234 -0.0640 -1.1091 Significant 

𝜷𝟓 0.0092 -0.0925 -1.0724 Significant 

𝜷𝟔 0.1564 0.0682 0.2468 Significant 

Based on Table 4, which shows the credible intervals of the Bayesian Generalized Poisson 

Regression model, it can be concluded that all tested parameters show high significance values. This 

means that each parameter has a credible interval that does not include zero, indicating that these 

parameters have a significant influence on the observed variable. 

3.4.   Model Evaluation 

The best model is determined using the BIC value of each model. The better model to use is the one 

with the smallest BIC value. Table 5 shows BIC values for every model. 

Table 5. BIC Values 

Model BIC 

Bayesian Poisson Regression 827.95 

Bayesian Generalized Poisson Regression 400.40 

Based on Table 7, the smallest BIC value for the Bayesian Generalized Poisson Regression model is 

400.40. Therefore, it can be concluded that the best model in this study is the Bayesian Generalized 

Poisson Regression. 

3.5.   Interpretation 

The parameter estimates for the Bayesian Generalized Poisson Regression model are as follows: 

�̂� = exp(3.2146 − 0.4873𝑋1 + 0.1252𝑋2 − 0.2399𝑋3 − 0.0234𝑋4 + 0.0092𝑋5 + 0.1564𝑋6) 

Based on the parameter significance testing in the Bayesian Generalized Poisson Regression model, 

all parameters were found to be statistically significant. For the parameter 𝛽1, which is estimated at -

0.4873, it can be interpreted that for every 1% increase in the percentage of pregnant women who 

undergo at least four antenatal care visits (K4), assuming other variables remain constant, the average 

number of maternal deaths (Y) tends to decrease by a factor of 𝜇𝑖 = exp (0.4873) = 1.628, or 

approximately 2 fewer maternal deaths in NTT. This indicates that a higher number of antenatal visits 

(K4) is associated with a reduction in maternal mortality. 

For the parameter 𝛽2, which is estimated at 0.1252, it suggests that for every 1% increase in the 

percentage of pregnant women who receive complete Tetanus Toxoid (Td⁺) immunization, assuming 

other variables remain constant, the average number of maternal deaths (Y) tends to increase by a factor 

of μᵢ = exp (0.1252) = 1.133, or approximately 1 additional maternal death in NTT Province. This finding 

implies that an increase in Td⁺ immunization coverage does not necessarily lead to a reduction in 

maternal mortality. While the immunization is crucial in preventing tetanus infection in mothers and 

infants, increasing its coverage alone may not be sufficient to reduce maternal death rates. 

For 𝛽3 = 0.2399, it can be said that for every 1% increase in the percentage of pregnant women 

receiving Iron and Folate supplementation (TTD), with other variables held constant, the average 

number of maternal deaths tends to increase by approximately 1 maternal death in NTT, as μᵢ = exp 

(0.2399) ≈ 1.271. This suggests that, despite TTD's primary aim to prevent anemia in pregnant women 

and support healthy pregnancies, it may not be directly correlated with a decrease in maternal mortality. 
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For 𝛽4 = 0.0234, it can be said that for every 1% increase in the percentage of pregnant women using 

active family planning (KB Aktif), with other variables held constant, the average number of maternal 

deaths tends to increase by approximately 1 maternal death in NTT, as μᵢ = exp (0.0234) ≈ 1.024. This 

indicates that an increase in the participation of active family planning among pregnant women is 

correlated with a rise in maternal mortality. 

For 𝛽5 = 0.0092, it can be said that for every 1% increase in the percentage of maternal complications 

handled by midwives, with other variables held constant, the average number of maternal deaths tends 

to increase by approximately 1 maternal death in NTT, as μᵢ = exp(0.0092) ≈ 1.009. This suggests that 

an increase in complications managed by midwives correlates with an increase in maternal mortality. 

This could indicate that complications during pregnancy or childbirth remain relatively high, and even 

though they are handled by healthcare providers such as midwives, delays in treatment, limited facilities, 

or the complexity of cases still pose a risk factor for maternal death. 

For 𝛽6= 0.1564, it can be said that for every 1% increase in the percentage of women married under 

the age of 17, with other variables held constant, the average number of maternal deaths tends to increase 

by approximately 1 maternal death in NTT, as μᵢ = exp (0.1564) ≈ 1.169. This indicates that the higher 

the number of women who marry at a young age (<17 years), the greater the risk of maternal mortality. 

This may be due to the higher risk of complications during pregnancy at a young age, both physically, 

mentally, and in terms of access to healthcare services. An underdeveloped body biologically and the 

lack of knowledge and readiness for pregnancy can increase the potential for maternal death. 

3.6.   Discussion 

The results of this study indicate that the analysis was carried out comprehensively and 

systematically. The research process began with the development of a workflow (flowchart), the 

collection of maternal mortality data from official government sources, and the selection of an 

appropriate statistical algorithm to handle count data with overdispersion characteristics. In this case, 

the Bayesian Generalized Poisson Regression (BGPR) model was selected, as it is capable of 

accommodating variance greater than the mean thereby providing greater modeling flexibility compared 

to the classical Poisson regression model. The BGPR model uses a conjugate prior, and posterior 

parameter estimation is performed using the Markov Chain Monte Carlo (MCMC) simulation method, 

particularly the Gibbs Sampling algorithm. The study also compares the performance of the Bayesian 

Poisson Regression (BPR) and BGPR models using the Bayesian Information Criterion (BIC) to 

determine the most appropriate model. Furthermore, the use of credible intervals supports the 

identification of statistically significant predictor variables. 

From a public health policy perspective, the findings offer valuable insights. The variables identified 

as significant through the credible intervals may reflect real health service gaps or socioeconomic factors 

contributing to maternal mortality. These can be used by regional health departments to prioritize 

interventions, such as increasing antenatal care coverage, addressing teenage marriage, or ensuring 

access to skilled birth attendants. Thus, the model not only serves an academic function but also provides 

evidence-based direction for maternal health policy formulation. Despite these contributions, the study 

has several limitations that warrant consideration. One limitation concerns the choice of prior 

distribution. While this study adopts a conjugate prior for computational simplicity, future research is 

encouraged to explore the use of uninformative or weakly informative priors to minimize subjectivity 

and better reflect real-world uncertainty. 

Additionally, this study does not incorporate spatial dependencies between regions, which may be 

essential in understanding localized health disparities. Therefore, future studies could integrate spatial 

modeling techniques (e.g., Bayesian spatial regression or Geographically Weighted models) to capture 

regional variations and potentially improve model accuracy and policy relevance. Another potential 

source of bias could stem from the quality or completeness of the input data, which must be critically 

evaluated in future implementations 
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4.   Conclusion 

This study concludes that the Bayesian Generalized Poisson Regression (BGPR) model is effective in 

addressing overdispersion in maternal mortality data in East Nusa Tenggara Province. The model 

successfully identifies key factors associated with maternal mortality, such as antenatal care coverage 

(K4), complications handled by midwives, and early marriage rates. The parameter estimation using 

Markov Chain Monte Carlo (MCMC) with Gibbs Sampling demonstrates improved accuracy and 

flexibility compared to classical approaches. 

The findings have important implications for maternal health policy, particularly in regions with 

similar challenges. Local governments can prioritize improving antenatal care quality, enhancing 

emergency obstetric services, and implementing community-based programs to reduce early marriage. 

Moreover, the Bayesian approach's ability to integrate prior information makes it especially suitable for 

data-limited or resource-constrained environments. 

For future research, it is recommended to expand the spatial coverage and improve the quality of 

maternal health data, especially from remote areas. Using longitudinal data may also provide deeper 

insights into temporal trends and the effectiveness of health interventions. Additionally, incorporating 

spatial modeling approaches such as Bayesian Spatial Regression could help capture geographical 

disparities and guide more targeted policy decisions. 
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