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Abstract. Cloud and shadow interference in satellite imagery reduces the quality and reliability
of remote sensing data. The traditional method would face issue to predict data near the shadow
and cloud. To address this challenge, this study is focus improve the accuracy the area near
shadow and cloud detection in Landsat-8 imagery. The implementation of hybrid module using
standard CNN and U-Net CNN and a machine learning model using K-Nearest Neighbors
(KNN) on SPARCS and CCA18 Landsat 8 dataset. A hybrid approach was then implemented
by integrating CNN outputs and metadata into the second model (KNN/RF), and final evaluation
was conducted using accuracy metrics. The research results show that the proposed hybrid deep
and machine learning approach improves the accuracy of cloud and shadow segmentation in
Landsat-8 imagery. Additionally, the implementation demonstrates that this method can reduce
manual effort and computational cost, making it suitable for researchers with limited resources.
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1. Introduction
Satellite imagery refers to images produced by satellites and is commonly used as a basis for decision-
making. The utilization of high-resolution satellite imagery can be applied across various fields [1]. The
process that researchers must perform before utilizing satellite imagery begins with a procedure known
as masking. Masking is necessary to ensure that the obtained information is free from noise [2]. Noise
refers to data that provide biased information; in the case of satellite imagery, this is caused by clouds
obscuring the objects of interest or cloud shadows that alter the values from their true representation.
The process can be time-consuming; therefore, additional technologies such as machine learning and
deep learning are needed to assist researchers.

Supervised machine learning, which involves gathering features such as spectrum, intensity, color
temperature, camera correction, and geometric characteristics, can be challenging to collect [3]. In the
study conducted by He, the use of RGB spectrum made the process relatively simple compared to
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Landsat 8 data. To address this issue, unsupervised machine learning is employed. Among the various
deep learning models, the most complex algorithm is the Convolutional Neural Network (CNN) [4].
The implementation of Convolutional Neural Network (CNN) technology is not new and has been
commonly used by previous researchers, such as Hughes. CNN has been implemented to detect several
target objects, including clear-sky, clouds, shadows, and snow [2]. Based on the research conducted by
Kennedy, the accuracy for each object varies, with the highest accuracy reaching 98.1% and the lowest
at 90.5%. The other implementation is using CNN-based Cloud Masking (CCM), but the accuracy below
85%, an need a significant improvement [5].

To improve the accuracy of cloud and shadow segmentation, the principle of solar direction
determination can be utilized. The determination of shadow and cloud shadow direction can be achieved
through the calculation of the Apparent Solar Azimuth [6]. Based on Ibrahim's research, the cloud
direction was obtained with an angular accuracy range of less than 15 degrees. The calculation process
of the apparent solar azimuth is formulated in Eq. (1) below, where ¢, and 8, represent the solar azimuth
and zenith angles, respectively. The angle formation includes two types of angles based on the difference
in radians.

tan tan (¢,) = (sinpstanf; — sing,tand,) | (cospscosbs — cos,cosb,) 1)

The accuracy of prediction results can be improved through post-processing. This can be achieved
by utilizing shadow direction information found in the dataset metadata and performing further
predictions using the K-Nearest Neighbor (KNN) method. The implementation of KNN offers
advantages in pixel-based classification [7]. In this study, a hybrid model is implemented by initially
performing predictions using a CNN and KNN. The results of predictions are then enhanced with
additional parameters for further predictions using a subsequent model. This method has been
implemented and has a better result [8]. The implementation of machine learning can be used multiple
times and with the additional of the data the better model can be generated, the process in machine
learning also can be used repeatedly based on the usage case [9].

Previous study by [10] state that the Learning Attention Network Algorithm (LANA), a deep
learning-based method for cloud and cloud shadow detection in Landsat imagery that outperforms
traditional methods like Fmask and the U-Net Wieland model. Unlike previous pixel-based approaches,
LANA leverages spatial attention within a U-Net architecture to enhance detection, particularly for
challenging classes such as thin clouds and shadows. Trained on a large and diverse annotated dataset,
LANA achieved higher classification accuracy (up to 88.84%) and better F1-scores across all classes. It
also demonstrated superior performance in temporal smoothness analysis, indicating fewer undetected
clouds and shadows. The study emphasizes the importance of high-quality annotations, identifies
challenges in generalizing across sensors, and suggests LANA's potential for broader application,
including for future sensor data like Sentinel-2 and MSS, provided proper retraining is done.

[11] Also state that a comprehensive overview of cloud detection algorithms in optical remote
sensing, emphasizing deep learning-based approaches. It outlines the limitations of traditional methods
and demonstrates how models such as FCN, encoder—decoder, attention mechanisms, and GAN offer
improved accuracy and adaptability. The analysis compares these methods to classical and machine
learning techniques, highlighting their respective advantages and drawbacks. It also examines public
datasets and essential post-processing steps like cloud shadow detection and removal. Ultimately, the
survey identifies current challenges and suggests future directions to enhance the effectiveness and
precision of deep learning models in cloud detection tasks.

This study introduces a novel hybrid framework that combines deep learning and machine learning
methods for cloud and cloud shadow segmentation in Landsat-8 imagery. Unlike previous approaches
that rely solely on one technique, this research integrates the spatial-contextual strengths of deep
learning with the stable and interpretable classification capabilities of machine learning. The primary
objective is to enhance the accuracy of detecting complex features such as thin clouds and subtle cloud
shadows, while maintaining consistent performance across varying imaging conditions. By leveraging
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the complementary strengths of both approaches, the study aims to deliver a more robust and reliable
segmentation solution to support advanced remote sensing analysis.

2. Literature Review

2.1 Landsat-8 Spectral Bands

Landsat is well known satellite for generate imagery and has been started from Landsat-1, the usage of

the the imagery satellite is give a huge resources to a lot of the development of the Landsat satellite is

continue and the newest one is Landsat-9 [12]. Landsat-8 is the satellite that being used to capture
images. The Landsat-8 has been launched since 2013 with the implementation to be operated for 5 years

[13], but it still operated until now. it still operated. The features used in the development of the CNN

model are derived from the information in the spectral bands. The sensor that being used in Landsat-8

has implemented a system to minimize the effect of atmospheric particles to ensure the data quality [14].

The detailed explanation of each Landsat 8 spectral band based on information from NASA are: (NASA

Goddard Space Flight Center)

(i) Band 1 (Coastal/Aerosol): Wavelength range of 0.435 - 0.451 pum, used for detecting aerosol
particles in the atmosphere, such as in coastal mapping activities.

(i) Band 2 (Blue): Wavelength range of 0.452 - 0.512 um, useful for mapping deep water zones and
coastal areas. Additionally, it can be used for vegetation mapping.

(iii) Band 3 (Green): Wavelength range of 0.533 - 0.590 um, applicable for vegetation and water
analysis.

(iv) Band 4 (Red): Wavelength range of 0.636 - 0.673 um, used for vegetation analysis or land
classification.

(v) Band 5 (NIR - Near-Infrared): Wavelength range of 0.851 - 0.879 um, suitable for analyzing
vegetation biomass and vegetation changes.

(vi) Band 6 (SWIR-1 - Short-Wave Infrared 1): Wavelength range of 1.566 - 1.651 pm, capable of
penetrating clouds to extract information beneath them. It can also be used for soil moisture and
vegetation analysis.

(vii) Band 7 (SWIR-2 - Short-Wave Infrared 2): Wavelength range of 2.107 - 2.294 um, useful for
studying mineral rocks and vegetation.

(viii) Band 8 (Pan - Panchromatic): Wavelength range of 0.503 - 0.676 um, provides higher spatial
resolution and more detailed satellite imagery.

(ix) Band 9 (Cirrus): Wavelength range of 1.363 - 1.384 um, specifically designed to detect cirrus
clouds, which are high-altitude, thin clouds that can affect land observation.

(x) Band 10 (TIR-1- Thermal Infrared 1): Wavelength range of 10.60 —11.19 pm, used for measuring
Earth's surface temperature and emitted heat.

(xi) Band 11 (TIR-2 - Thermal Infrared 2): Wavelength range of 11.50 — 12.51 um, provides
additional data for measuring surface temperature.

2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is an advancement of neural networks and represents one of the
most efficient versions (Figure 1). CNN is an algorithm that establishes connections between data,
mimicking the structure of the human brain. It features a multi-layer neural network, enabling the model
to learn and extract features automatically without human intervention. CNN is commonly used in
developing models for tasks such as image segmentation and natural language processing, particularly
in 2D data formats [15].
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Figure 1. CNN Components [15]

Convolutional Neural Network (CNN) has been effective for several usage of image satellite data such
as land use [16]. CNN model can be used for supervised learning for the classification from the available
data that has been through labelling process [17].

2.3 K-Nearest Neighbour

K-Nearest Neighbor (KNN) is a machine learning algorithm that can be used for classification and
regression tasks. KNN is a non-parametric method that identifies similarities based on the K nearest
samples [7]. This algorithm considers spatial relationships to determine the class or value based on the
closest K samples. KNN is widely used in pattern recognition, image processing, and multimedia data
analysis due to its ease of implementation and high accuracy in many cases. In the context of remote
sensing, predictions can be modeled based on properties and shapes, making KNN a suitable approach
for classifying data.

2.4 Random Forest

Random Forest (Random Forest) is a machine learning algorithm that well-known for the classification
data. It implement ensemble of decision tree that randomly selected based on the data given [18].
Random forest work as parallel classifier, that means on the training process every single decision tree
would be through training independently. The difference of the parallel process would make the
ensemble method can be implemented.

2.5 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is the machine learning algorithm that really good for classify
large and complex dataset [18], the usage of the XGBoost can be used to handle data noise and
occurrence of the outliers data. The algorithm works well in detecting patern based on important rating.
The scability and the speed of XGBoost works well for the big data such as Landsat-8.

2.6 Cloud and Shadow Association
To detect the relationship between buildings and their shadows, it was concluded that buildings generate
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shadows when illuminated by sunlight, with the shadows resembling the shape and distance of the
buildings [19]. This occurs because light cannot fully penetrate solid structures, causing shadows to
form as light particles are blocked by the buildings (Figure 2). The study also explains that the sun's
angle relative to the building significantly influences the shape and distance of the resulting shadow.
When buildings are closely packed, the shadows tend to overlap and partially cover adjacent structures.

Ghost image

" vlag2

The light of sun

Figure 2. Building and shadow association [19].

2.7 Ensemble and Cascading Method

In this study, a hybrid model is implemented by initially performing predictions using a machine
learning model. The prediction results are then enriched with additional parameters for use in subsequent
predictions. Cascading and ensemble methods can be applied to improve accuracy, which is referred to
as the Improved Neural Network method [8]. The Improved Neural Network method incorporates both
ensemble and cascading approaches. The implementation of ensemble combined with cascading has
been proven to enhance the accuracy of the developed model. According to the study, the cascading
method specifically demonstrated superior accuracy compared to other implementations.

3. Methods

3.1 Data Identification

The Landsat 8 data was obtained through the USGS webpage using the Landsat-8 SPARCS dataset.
This dataset has been previously utilized for CNN model to predict data in remote sensing [20] (Figure
3). The distribution of satellite images is evenly spread across almost all continents. Metadata
information is available for each location, which includes details about the solar direction.
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Figure 3. Data distribution

The dataset contains the distribution of interpretation results into six main categories. This information
was manually created by analysts, with a total of 8 satellite images, 5 dataset will be treated as data train
and the 3 dataset will be treated as data test. These images are provided in TIF file format, which retains
spatial information within the image. Additionally, the metadata includes information related to solar
azimuth, which is crucial as a primary feature for developing the KNN model. The distribution of
prediction results (Table 1).

Table 1. The distribution of prediction results.

Category Total Percentage
Fill 16,959,968 26.12%
Shadow 1,390,173 2.14%
Thin Cloud 37,061,292 57.06%
Cloud 1,104,429 1.70%
Other 1,936,429 2.98%

3.2 Data Preprocessing

Preprocessing is carried out through several main steps, including identifying missing values, incorrect
data types, handle different bands range, and handling outlier values. In cases of missing values or
incorrect data types, the missing data can be filtered out. Data cleaning can also be done using standard
scaling; however, this is part of the optimization process. This ensures that the resulting model is not
overly rigid and can still adapt to other data cases [21]. One of the process of data preprocessing for
Landsat-8 data atmospheric correction, it will make sure the value of the raw band is clear from the
atmosphere altered value (NASA Goddard Space Flight Center).

The preprocessing stage in this study is essential to ensure the Landsat-8 imagery is suitable for input
into the hybrid deep and machine learning framework. The process involves several key steps, starting
with the identification and handling of missing values and incorrect data types, which are either filtered
out or imputed using statistical techniques such as mean substitution. Next, normalization is applied to
account for differences in the range of spectral bands, typically using standard scaling to ensure
uniformity across input features. Outlier values, which may distort the learning process, are identified
using methods such as Z-score or interquartile range (IQR) filtering and subsequently removed. A
critical part of preprocessing specific to satellite imagery is atmospheric correction, which converts raw
digital numbers into surface reflectance by eliminating atmospheric effects such as scattering and

02504031-06



absorption. This correction ensures that the reflectance values more accurately represent true surface
conditions. Together, these preprocessing steps not only improve data quality but also enhance the
robustness and adaptability of the model across various environmental conditions.

3.3 Data Splitting

Based on the cleaned data from the previous stage, the dataset will be split 5 dataset will be used as the
training data meanwhile the other 3 dataset be used as testing data. For the training The process for
generate hybrid model the dataset will be split into 80% data training and 20% data validation for CNN.
Meanwhile for KNN or RF Model will be used all train data for training. This separation is performed
using packages provided by scikit-learn. An important point to consider is the treatment process for the
data, such as applying functions like median, mode, and mean, which need to be conducted separately
for each dataset. The separation between training and final testing dataset is used to make sure the result
can be applicable for another image satellite and make the model become more reliable. Each of dataset
created on different location, time, sun position, and angle of the satellite camera.

3.4 Convolutional Neural Network Model Creation

The model development in this study is divided into two main stages: the CNN model and the KNN
model. The first CNN model uses an 11 x 11 x 16 input as the initial input. In the first convolutional
pooling stage, data reduction is performed because Hughes research disregarded padding at the edges
of the image. The convolutional layer employs the ReLU activation function. The architecture also
incorporates BatchNorm2d to accelerate the process and downsampling, which is carried out using
MaxPool2d in the second convolutional pooling stage. This approach is necessary due to the large size
of satellite imagery (Table 2).

Table 2. The parameters used for building the CNN model.

Block Layer Parameter [size, stride] or weight Size
input Reshape - 1x10x1
CP1 Conv2D [3%3, stride=1] 1x10x 32

ReLU - 1x10x 32

MaxPool2D [2x2, stride=2] 1x5x32
CP2 Conv2D [3x3, stride=1] 1x5x64

ReLU - 1x5x64

MaxPool2D [2x2, stride=2] 1x2x64
FC1 Flatten - 128

Dense 128 units 128

Dropout rate=0.5 128
FC2 Dense (Output) 3 units (softmax) 3

The second CNN model used is CNN Unet model. This model is the advances model that can boost the
model accuracy. The implementation of CNN Unet using encoder and decoder which can boost the
accuracy (Pang, et. al., 2023). The model that has been generated will be more complex than a simple
CNN model (Table 3).

Table 3. The parameters used for building the CNN model.

Block Layer Parameter Size
Input Input Layer - 256 x 256 x 11
CP1 Conv2D 64 filters, 3x3, stride=1 256 x 256 x 64
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BatchNorm2D - 256 x 256 x 64
MaxPooling2D 2x2, stride=2 128 x 128 x 64

CP2 Conv2D 128 filters, 3x3, stride=1 128 x 128 x 128
BatchNorm2D - 128 x 128 x 128
MaxPooling2D 2x2, stride=2 64 x 64 x 128

CP3 Conv2D 256 filters, 3x3, stride=1 64 x 64 x 256
BatchNorm2D - 64 x 64 x 256
MaxPooling2D 2x2, stride=2 32 x 32 x 256

CP4 Conv2D 512 filters, 3x3, stride=1 32 x 32 x512
BatchNorm2D - 32 x 32 x512
MaxPooling2D 2x2, stride=2 16 x 16 x 512

Bottleneck Conv2D 1024 filters, 3x3, stride=1 16 x 16 x 1024

Decoderl Conv2DTranspose 512 filters, 2x2, stride=2 32 x 32 x512
Concatenate 0 32 x 32 %1024
Conv2D 512 filters, 3x3, stride=1 32 x 32 x512

Decoder2 Conv2DTranspose 256 filters, 2x2, stride=2 64 x 64 x 256
Concatenate 0 64 x 64 x 512
Conv2D 256 filters, 3x3, stride=1 64 x 64 x 256

Decoder3 Conv2DTranspose 128 filters, 2x2, stride=2 128 x 128 x 128
Concatenate 0 128 x 128 x 256
Conv2D 128 filters, 3x3, stride=1 128 x 128 x 128

Decoder4 Conv2DTranspose 64 filters, 2x2, stride=2 256 x 256 x 64
Concatenate 0 256 x 256 x 128
Conv2D 64 filters, 3x3, stride=1 256 x 256 x 64

Output Conv2D 5 filters (softmax), 1x1 256 x 256 x 5

3.5 The second model for hybrid model

The second model that being used to create hybrid model is K Nearest Neighbor (KNN). KNN model is
one of the model that can be used to predict image satellite data [7]. The implementation of KNN can
be used to do the classification automatically [22]. For the specific case the accuracy of the KNN model
can reach 94% [23]. The second model that being implemented for the comparison for KNN model is
Random Forest (RF), because RF has been implemented in remote sensing for the spatial data to target
distribution of the forest fire [24]. The usage of Random Forest is used for the benchmarking the
efficiency of the accuracy for the second model prediction for the hybrid model. The development of
the second model involves creating features based on the prediction results of the CNN model,
specifically the accuracy of cloud, shadow, and other classifications. Additional features, such as sun
direction and spatial location, are also included to enhance the second model. The construction and
training of the second model incorporate experimental thresholds set at 80%, 70%, and 60%. These
thresholds are applied to ensure that predictions are not performed on data with accuracy exceeding the
specified values (Figure 4). This approach helps to optimize the model's performance and focus
computational resources on areas requiring further refinement.
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Figure 4. The Flow of Hybrid Concept

3.6 Model Evaluation

In the Keras library, there are methods to evaluate a model and obtain performance metrics such as
accuracy Eqg. (2. These evaluation parameters are reliably used for neural network models, particularly
in Convolutional Neural Networks (CNN) cases [25]. Accuracy is the proportion of correct predictions
made by the model. In addition, the model evaluation will include an analysis of the categorical cross-
entropy loss graph during the training process using CNN. This graph provides insights into the model's
performance and learning behaviour over time.

TP+TN
TP+TN+FP+FN

)

Accurracy =

4, Results and Discussion

4.1. Data Preparation

The dataset used in this study, as shown in Table 4, comprises eight scenes five designated for training
and three for testing. Previously utilized by researchers such as [20], this dataset includes imagery from
various regions captured under different conditions and timeframes. The diversity of the data is essential
for developing a robust model capable of generalizing across varying scenarios; however, it also presents
significant challenges in the preprocessing stage.
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Table 4. USGS Raster to generate the model.

Stage Biome Landsat ID Cloud Cover
Barren LC81640502013179LGNO1 7.33%
Grass / Crops LC80290372013257LGNO0O 25.61%

Training Grass / Crops LC81750512013208LGNOO 58.97%
Shrubland LC81020802014100LGNOO 76.28%
Urban LC81620432014072LGNOO 20.29%
Barren LC81930452013126LGNO1 64.06%

Test Forest LC80070662014234L.GNOO 5.05%
Shrubland LC80010732013109LGNOO 6.71%

Based on this research, the publicly accessible dataset from USGS must undergo a preprocessing stage
that includes atmospheric correction and normalization. Several tools, such as ENVI, Google Earth
Engine (GEE), and GRISS, can assist in performing atmospheric correction. In this study, a simplified
atmospheric correction was conducted following the guidelines provided in the Landsat 8 (L8) Data
Users Handbook. Although the results of this correction are limited, they are sufficient to produce a
more reliable dataset from the original imagery. Normalization was applied using standard scaling,
transforming the data into a range between 0 and 1, as shown in Table 5.

Table 5. Preprocessing Landsat 8 Images LC81640502013179LGNO1

Raw Atmospheric Correction and Normalization
Count Min  Max Mean Std Count Min  Max Mean  Std
Band-1 58452291 45,372 9,803.84 6,546.13 58,452,291 0.0 1.0 0.216  0.121
Band-2 58452291 46,948  9,798.42 6,577.34 58,452,291 0.0 1.0 0.208 0.116
Band-3 58452291 46,778  10,488.91  7,068.56 58,452,291 0.0 1.0 0.224  0.135
Band-4 58452291 48,910 11,968.76  8,172.4 58,452,291 0.0 1.0 0.244  0.152
Band-5 58452291 52,262  13,944.82  9,625.84 58,452,291 0.0 1.0 0.266  0.185
Band-6 58452291 65,535 15,962.56  11,100.83 58,452,291 0.0 1.0 0.243  0.161
Band-7 58452291 62,125 14,19441  9,797.64 58,452,291 0.0 1.0 0.228 0.142
Band-8 58452291 47,154  10,969.65  7,405.04 58,452,291 0.0 1.0 0.232  0.143
Band-9 58452291 9,681 3,692.18 2,377.81 58,452,291 0.0 1.0 0.381  0.190
Band-10 58452291 45,092  23,087.15 15,692.14 58,452,291 0.0 1.0 0.512  0.303
Band-11 58452291 38,080 21,022.65  14,238.26 58,452,291 0.0 1.0 0.552  0.378

Bands

O |O |Oo |o |o |o |o |o |o |o |o

Previous researchers applied transfer learning on different datasets to improve model accuracy [20].
Although this study also uses Landsat-8 imagery, the clean dataset employed here differs significantly,
as it was processed using a simpler atmospheric correction method. As a result, the model’s accuracy
may be slightly lower compared to studies that used more refined preprocessing. Additionally,
normalization was not fully optimized due to limited resources for atmospheric correction. However,
this research focuses on utilizing cloud and shadow direction as added features to enhance CNN model
performance, and the current dataset remains sufficient to achieve this objective.

4.2. Training and Testing Model with CNN and CNN Unet

The initial CNN model in this research was developed based on the approach by [2], which demonstrated
strong performance using the SPARCS Landsat-8 dataset. Model training was conducted on Google
Colab T4, utilizing 50 GB of RAM and a GPU with up to 16 GB. Raster images were divided into 256
x 256 patches to build the model, with a maximum batch size of 4 due to hardware limitations. Initially,
training with raw data resulted in poor performance, achieving only 32.97% accuracy, indicating the
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necessity of a proper preprocessing step. After applying atmospheric correction and normalization, the
model’s accuracy improved to 53.65%. Further improvements through hyperparameter tuning—
specifically, increasing epochs and reducing the learning rate—raised the accuracy to 71.32%. Finally,
modifying the architecture to use a CNN U-Net model significantly boosted accuracy to 81.23%, as
shown in Table 6.

Table 6. Comparison of Overall Accuracy based on previous researcher.
Sequence Method Overall Accurracy
CNN Model, Predict using raw data (batch size = 4, epoch = 5, 32 97%
learning rate=0.001) N
CNN Model , Atmospheric Correction with Normalization (batch size 53.65%
=4, epoch = 5, learning rate=0.001) '
CNN Model (batch size = 4, epoch = 6, learning rate=0.00001) 71.32%
CNN Unet Model (batch size = 4, epoch = 6, learning rate=0.00001) 81.27%

Hyperparameter tuning, model architecture, and dataset quality play a crucial role in determining the
performance of the generated model. Adjusting the learning rate, in particular, has shown a significant
impact on accuracy; in this study, a lower learning rate yielded better model performance. Given that
the dataset consists of over 50 million raster pixels, a smaller learning rate is beneficial for capturing
complex patterns and achieving more stable convergence. Although increasing the number of epochs
showed improvement, the difference between epoch 5 and epoch 6 was minimal, likely due to the large
and diverse dataset already providing sufficient learning opportunities in earlier iterations. Previous
studies, such as those by [26] and [27], also highlight the importance of tuning learning rates and model
structures, especially when dealing with high-resolution satellite imagery, to maximize segmentation
performance.

4.3. Comparison CNN and CNN Unet with the previous researcher

The comparison of the model accuracy with the previous researcher is required to make sure that this
research will give a better understanding of the quality of model that generated and implementation of
the hybrid model later on. There are some previous researchers published papers using the same raw
dataset, but every researchers used different method and additional information to make sure the model
generation will be great. On the generation a good model additional dataset would give a greater result,
and actually some of the researchers using transfer learning add other datasets that successfully boosted
the accuracy of the model (Table 7).

Table 7. Comparison of Overall Accuracy based on previous researcher.

Model Overall Accuracy
Zhu’s method 87.71%
Li’s method 88.95%
Zi’s method 91.16%
CNN 71.32%
CNN Unet 81.27%

Zi’s method demonstrates a notable advantage due to its use of a two-step superpixel classification
strategy, combining a double PCA Network with a Support Vector Machine to enhance classifier
performance. In contrast, this research focuses on utilizing cloud and shadow directional features to
improve model accuracy. Although the CNN U-Net model in this study achieved an accuracy of 81.27%,
which may not be ideal for direct comparison with Zi’s approach, it remains valid within the study’s
context. Zi’s findings also acknowledge the importance of incorporating cloud and shadow
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relationships, which supports the premise of this research. Moreover, given the limited computational
resources and the absence of an external dataset for training, the performance of the CNN U-Net model
is considered acceptable, especially as the primary objective is to evaluate the impact of cloud and
shadow distance features on enhancing model prediction accuracy.

4.3. CNN Unet Result Analysis

This initial result of CNN Unet from testing dataset generate a different accuracy from the each of the
testing scene. The range of the accuracy show a quite large difference of accuracy. The better result
comes from model LC81930452013126LGNO1, and the lowest one is LC80010732013109LGNOQO. The
accuracy differences come from a several factors the first factor is the different dataset statistic value,
the second factor come from the difference of Biome, the third factors come from the different location
and position, and the fourth factor is the imbalance data (Table 7).

Table 7. CNN Unet detail prediction.

Model LC81930452013126LGNO  LC80070662014234LGNO  LC80010732013109LGNO
1 0 0

Accuracy 87.22% 82.41% 74.19%

The initial raw dataset exhibits varying statistical characteristics, even after atmospheric correction is
applied, with noticeable differences in minimum and mean values between training and testing datasets.
These discrepancies significantly affect model accuracy, particularly because low minimum values are
often interpreted as "Fill" data, which can distort model predictions (Table 8). For example, Band 1,
which captures atmospheric aerosol particles, displays varying mean values, indicating different data
distributions—especially in raster LC80010732013109LGNO0O, which belongs to a barren biome with a
low cloud cover (7.33%) that is vastly different from the over-30% cloud cover seen in the training data.

This mismatch negatively impacts model performance. Conversely, rasters like
LC80070662014234LGNO0 and LC81930452013126L.GNO1, which are located in forest and shrubland
biomes respectively, show better accuracy due to biome similarity with training data (which includes
grassland and shrubland). This indicates that similarity in biome and cloud cover between training and
testing datasets leads to improved model accuracy. Additionally, the dataset is highly imbalanced, with
Cloud, Shadow, and other categories each comprising less than 10% of the total data, which poses
further challenges for model training and classification.

Table 8. Basic Statistics of Atmospheric Correction and Normalized of Band 1 in dataset.

Scene Type  Min Max  Mean Std

LC81640502013179LGNO1 0.231156 1.0 0.304418 0.049333
LC80290372013257LGNO0 0.152812 1.0 0.209326 0.064557
LC81750512013208LGNO0 Train  0.151095 1.0 0.313551 0.161350
LC81020802014100LGNOO 0.183382 1.0 0.441112 0.140887
LC81620432014072LGNOO 0.167775 1.0 0.282354 0.087249
LC81930452013126LGNO1 0.154284 1.0 0.401218 0.184777
LC80070662014234LGNOO Test 0.151295 1.0 0.200698 0.054720
LC80010732013109LGNOO 0.116258 1.0 0.206243 0.093744

4.4. Implementation of Cascading

The implementation of cascading is a crucial step in developing the hybrid model, as it enables the
dataset to be enriched with two additional features: the distance to cloud and the distance to shadow.
These distance features are derived from the softmax output of the initial CNN model, which provides
class probabilities for cloud, thin cloud, shadow, fill, and other. Not all softmax outputs are used in the
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second-stage model; instead, thresholds are applied to selectively filter the data. Two types of thresholds
are introduced: the top threshold, which identifies high-confidence predictions (e.g., 60% to 90%) for
temporary classification of cloud or shadow based on softmax scores, and the bottom threshold (set at
50% and 40%) to capture uncertain predictions requiring further analysis. With the sun azimuth angle
as a reference, distances to cloud and shadow objects are calculated and added to the dataset. This
approach ensures that only ambiguous or low-confidence classifications (below the bottom threshold)
are passed to the second model for refinement, improving overall prediction accuracy through informed
data enhancement.

Table 9. Threshold vs the second dataset for the next model

Top Threshold Bottom Threshold All Retrain Percentage
90% 58,452,291 418,817 0.71651084
80% 40% 58,452,291 543,136 0.9291954

70% 58,452,291 632,953 1.08285405
60% 58,452,291 749,184 1.28170169
90% 58,452,291 1,551,976 2.65511578
80% 50% 58,452,291 3,914,029 6.6961088

70% 58,452,291 5,243,476 8.97052264
60% 58,452,291 6,593,840 11.2807212

4.5. Comparison of the second model

The retrain of the cascading will be train with the second model with three different model which are
KNN (K Nearest Neighbor), RF (Random Forest), and XGBoost. The usage of three model will be used
as a comparison to make sure the concept of adding shadow and cloud distance have an effect for the
accuracy of the model prediction. The point that would be focus is the changes in percentage of the
retrain dataset from the CNN prediction and the second model prediction. Based on the dataset and the
architecture model, the higher value of accuracy would give implications of the shadow and cloud
distance to predict the cloud and shadow. The positive result on the result also tell that the research have
correctly implement the cascading method for the dataset and the model creation. The result of
comparison result can be shown on (Table 10).

Table 10. Threshold vs the second dataset for the next model
Top  Threshold Increase Accurracy From

Model Percentage Bottom Threshold Percentage CNN Percentage
90 9.188546731
KNN 80 4.956111359
70 2.381118637
60 2.638317978
90 6.554294976
RE 80 40 2.64100475
70 1.876032865
60 3.111741082
90 8.304700162
XGBoost 80 5.86155478
70 5.283616135
60 4.349633829
KNN 90 50 -2.692840065
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80 2.498011976

70 -2.175121468
60 -2.295652544
90 -3.710156711
RF 80 0.863693034
70 -3.251195312
60 -2.401452448
90 -2.362768727
XGBoost 20 1.813554688
70 -3.995365603
60 -1.708619003

Based on the comparison, when a bottom threshold below 50% is applied, the resulting second model
generally performs poorly. However, when the threshold is lowered to 40%, the new dataset
significantly improves the model's accuracy compared to the initial CNN. This indicates that predictions
with lower confidence (below 40%) from the CNN model likely contain misclassified data, which are
effectively corrected using additional features such as cloud and shadow distances. The experimental
results confirm that a lower bottom threshold in retraining the second model leads to better predictions,
while a higher top threshold (e.g., above 80%) used to identify temporary cloud and shadow objects
further enhances performance. Among the models tested, KNN consistently outperforms RF and
XGBoost in terms of accuracy. This suggests that the data features generated especially the spatial
distances—are more suitable for algorithms like KNN that rely on proximity and similarity. XGBoost’s
slightly better performance than RF also aligns with findings from previous studies [28], which
emphasized the importance of incorporating advanced feature relationships to handle large, complex
datasets. In this research context, the superior performance of KNN reinforces that the second dataset,
enriched with cloud and shadow distances, contains structured patterns that are effectively captured
through neighborhood-based methods. As a result, KNN will be used in an ensemble configuration to
contribute to the final prediction output, improving upon the original CNN model.

4.6. Hybrid model analysis

Based on this research with the given that showed with the experimental top and bottom threshold, the
hybrid model that has been create successfully can enhance the accuracy of the data. Another experiment
on this research implemented to a single scene and the train and test data are being split into proportion
80 : 20, this experiment can be treat as if the data preprocessing is really ideal scenario. The same model
creation then created for the single scene from the one of SPARCS data that being used by [2]. The one
dataset that being used is LC81830642014203LGNOO, the model creation through the same process with
the first model is CNN meanwhile the second model used is KNN.

Table 11. New Hybrid Model Prediction for the single dataset LC81830642014203LGNO00

Model Cloud Accurracy Shadow Accurracy Other Accurracy
CNN 89.31% 96.97% 76.45%
New Hybrid Model 95.13% 96.08% 81.25%

With the removal of atmospheric distortion, the CNN model’s accuracy improved significantly. The
CNN architecture used in this case was simpler than CNN Unet, as the feature characteristics of the
Landsat-8 SPARCS image LC81830642014203LGNOO differed from those in previous datasets.
Additionally, the newly proposed hybrid model demonstrated the ability to improve accuracy,
particularly in dealing with imbalanced datasets, by incorporating cascading methods that add features
like cloud and shadow distances. This approach aligns with findings from prior research such as Sun et
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al., (2024) who highlighted the advantages of using two-step classification strategies and additional
spatial features to enhance model performance. Although the hybrid model in this study does not adopt
the same complex architecture or preprocessing as previous studies, it achieves competitive results
through strategic use of thresholds and distance-based features. Therefore, the use of top and bottom
thresholds as part of the cascading method proves to be a key innovation in model design, and the
proposed hybrid framework shows potential for application in future studies that aim to generate
improved training datasets and enhance prediction performance from initial CNN outputs.

5. Conclusion

The results of the study demonstrate that the implementation of a cascading-based hybrid deep and
machine learning model significantly enhances the accuracy of cloud and shadow segmentation in
Landsat-8 imagery. By generating two new features distance to cloud and shadow derived from softmax
outputs of a CNN model, the cascading process enables the creation of a refined secondary dataset. This
dataset is then used to train a second model (KNN, RF, or XGBoost), with experimental top and bottom
thresholds helping to filter high-confidence predictions and uncertain areas needing further
classification. Findings reveal that applying a bottom threshold of 40% and a top threshold between 60%
to 90% yields notable improvements in accuracy, particularly when using the KNN model, which
consistently outperformed RF and XGBoost. The second-stage model effectively captured misclassified
areas from the initial CNN output, validating the benefit of cascading features. When the approach was
tested on a single SPARCS scene (LC81830642014203LGNO00), the hybrid model achieved superior
accuracies 95.13% for clouds and 96.08% for shadows compared to the standalone CNN, further
confirming the model’s robustness. These results underscore the effectiveness of integrating spatial
features and threshold-based filtering in hybrid modeling to address challenges in remote sensing
segmentation tasks.
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