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Abstract. Cloud and shadow interference in satellite imagery reduces the quality and reliability 

of remote sensing data. The traditional method would face issue to predict data near the shadow 

and cloud. To address this challenge, this study is focus improve the accuracy the area near 

shadow and cloud detection in Landsat-8 imagery. The implementation of hybrid module using 

standard CNN and U-Net CNN and a machine learning model using K-Nearest Neighbors 

(KNN) on SPARCS and CCA18 Landsat 8 dataset. A hybrid approach was then implemented 

by integrating CNN outputs and metadata into the second model (KNN/RF), and final evaluation 

was conducted using accuracy metrics. The research results show that the proposed hybrid deep 

and machine learning approach improves the accuracy of cloud and shadow segmentation in 

Landsat-8 imagery. Additionally, the implementation demonstrates that this method can reduce 

manual effort and computational cost, making it suitable for researchers with limited resources. 
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1.   Introduction  

Satellite imagery refers to images produced by satellites and is commonly used as a basis for decision-

making. The utilization of high-resolution satellite imagery can be applied across various fields [1]. The 

process that researchers must perform before utilizing satellite imagery begins with a procedure known 

as masking. Masking is necessary to ensure that the obtained information is free from noise [2]. Noise 

refers to data that provide biased information; in the case of satellite imagery, this is caused by clouds 

obscuring the objects of interest or cloud shadows that alter the values from their true representation. 

The process can be time-consuming; therefore, additional technologies such as machine learning and 

deep learning are needed to assist researchers. 

Supervised machine learning, which involves gathering features such as spectrum, intensity, color 

temperature, camera correction, and geometric characteristics, can be challenging to collect [3]. In the 

study conducted by He, the use of RGB spectrum made the process relatively simple compared to 
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Landsat 8 data. To address this issue, unsupervised machine learning is employed. Among the various 

deep learning models, the most complex algorithm is the Convolutional Neural Network (CNN) [4]. 

The implementation of Convolutional Neural Network (CNN) technology is not new and has been 

commonly used by previous researchers, such as Hughes. CNN has been implemented to detect several 

target objects, including clear-sky, clouds, shadows, and snow [2].  Based on the research conducted by 

Kennedy, the accuracy for each object varies, with the highest accuracy reaching 98.1% and the lowest 

at 90.5%. The other implementation is using CNN-based Cloud Masking (CCM), but the accuracy below 

85%, an need a significant improvement [5]. 

To improve the accuracy of cloud and shadow segmentation, the principle of solar direction 

determination can be utilized. The determination of shadow and cloud shadow direction can be achieved 

through the calculation of the Apparent Solar Azimuth [6]. Based on Ibrahim's research, the cloud 

direction was obtained with an angular accuracy range of less than 15 degrees. The calculation process 

of the apparent solar azimuth is formulated in Eq. (1) below, where 𝜑𝑠 and 𝜃𝑠 represent the solar azimuth 

and zenith angles, respectively. The angle formation includes two types of angles based on the difference 

in radians. 

 

𝑡𝑎𝑛 𝑡𝑎𝑛 (𝜑𝑎)  = (𝑠𝑖𝑛𝜑𝑠𝑡𝑎𝑛𝜃𝑠 −  𝑠𝑖𝑛𝜑𝑣𝑡𝑎𝑛𝜃𝑣) / (𝑐𝑜𝑠𝜑𝑠𝑐𝑜𝑠𝜃𝑠 −  𝑐𝑜𝑠𝜑𝑣𝑐𝑜𝑠𝜃𝑣)                  (1) 

 

The accuracy of prediction results can be improved through post-processing. This can be achieved 

by utilizing shadow direction information found in the dataset metadata and performing further 

predictions using the K-Nearest Neighbor (KNN) method. The implementation of KNN offers 

advantages in pixel-based classification [7].   In this study, a hybrid model is implemented by initially 

performing predictions using a CNN and KNN. The results of predictions are then enhanced with 

additional parameters for further predictions using a subsequent model. This method has been 

implemented and has a better result [8]. The implementation of machine learning can be used multiple 

times and with the additional of the data the better model can be generated, the process in machine 

learning also can be used repeatedly based on the usage case [9]. 

Previous study by [10] state that the Learning Attention Network Algorithm (LANA), a deep 

learning-based method for cloud and cloud shadow detection in Landsat imagery that outperforms 

traditional methods like Fmask and the U-Net Wieland model. Unlike previous pixel-based approaches, 

LANA leverages spatial attention within a U-Net architecture to enhance detection, particularly for 

challenging classes such as thin clouds and shadows. Trained on a large and diverse annotated dataset, 

LANA achieved higher classification accuracy (up to 88.84%) and better F1-scores across all classes. It 

also demonstrated superior performance in temporal smoothness analysis, indicating fewer undetected 

clouds and shadows. The study emphasizes the importance of high-quality annotations, identifies 

challenges in generalizing across sensors, and suggests LANA's potential for broader application, 

including for future sensor data like Sentinel-2 and MSS, provided proper retraining is done. 

[11] Also state that a comprehensive overview of cloud detection algorithms in optical remote 

sensing, emphasizing deep learning-based approaches. It outlines the limitations of traditional methods 

and demonstrates how models such as FCN, encoder–decoder, attention mechanisms, and GAN offer 

improved accuracy and adaptability. The analysis compares these methods to classical and machine 

learning techniques, highlighting their respective advantages and drawbacks. It also examines public 

datasets and essential post-processing steps like cloud shadow detection and removal. Ultimately, the 

survey identifies current challenges and suggests future directions to enhance the effectiveness and 

precision of deep learning models in cloud detection tasks. 

This study introduces a novel hybrid framework that combines deep learning and machine learning 

methods for cloud and cloud shadow segmentation in Landsat-8 imagery. Unlike previous approaches 

that rely solely on one technique, this research integrates the spatial-contextual strengths of deep 

learning with the stable and interpretable classification capabilities of machine learning. The primary 

objective is to enhance the accuracy of detecting complex features such as thin clouds and subtle cloud 

shadows, while maintaining consistent performance across varying imaging conditions. By leveraging 
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the complementary strengths of both approaches, the study aims to deliver a more robust and reliable 

segmentation solution to support advanced remote sensing analysis. 

 

2.   Literature Review 

2.1 Landsat-8 Spectral Bands 

Landsat is well known satellite for generate imagery and has been started from Landsat-1, the usage of 

the the imagery satellite is give a huge resources to a lot of the development of the Landsat satellite is 

continue and the newest one is Landsat-9 [12]. Landsat-8 is the satellite that being used to capture 

images. The Landsat-8 has been launched since 2013 with the implementation to be operated for 5 years 

[13], but it still operated until now. it still operated. The features used in the development of the CNN 

model are derived from the information in the spectral bands. The sensor that being used in Landsat-8 

has implemented a system to minimize the effect of atmospheric particles to ensure the data quality [14]. 

The detailed explanation of each Landsat 8 spectral band based on information from NASA are: (NASA 

Goddard Space Flight Center) 

(i) Band 1 (Coastal/Aerosol): Wavelength range of 0.435 - 0.451 µm, used for detecting aerosol 

particles in the atmosphere, such as in coastal mapping activities. 

(ii) Band 2 (Blue): Wavelength range of 0.452 - 0.512 µm, useful for mapping deep water zones and 

coastal areas. Additionally, it can be used for vegetation mapping. 

(iii) Band 3 (Green): Wavelength range of 0.533 - 0.590 µm, applicable for vegetation and water 

analysis. 

(iv) Band 4 (Red): Wavelength range of 0.636 - 0.673 µm, used for vegetation analysis or land 

classification. 

(v) Band 5 (NIR - Near-Infrared): Wavelength range of 0.851 - 0.879 µm, suitable for analyzing 

vegetation biomass and vegetation changes. 

(vi) Band 6 (SWIR-1 - Short-Wave Infrared 1): Wavelength range of 1.566 - 1.651 µm, capable of 

penetrating clouds to extract information beneath them. It can also be used for soil moisture and 

vegetation analysis. 

(vii) Band 7 (SWIR-2 - Short-Wave Infrared 2): Wavelength range of 2.107 - 2.294 µm, useful for 

studying mineral rocks and vegetation. 

(viii)  Band 8 (Pan - Panchromatic): Wavelength range of 0.503 - 0.676 µm, provides higher spatial 

resolution and more detailed satellite imagery. 

(ix) Band 9 (Cirrus): Wavelength range of 1.363 - 1.384 µm, specifically designed to detect cirrus 

clouds, which are high-altitude, thin clouds that can affect land observation. 

(x) Band 10 (TIR-1 - Thermal Infrared 1): Wavelength range of 10.60 – 11.19 µm, used for measuring 

Earth's surface temperature and emitted heat. 

(xi) Band 11 (TIR-2 - Thermal Infrared 2): Wavelength range of 11.50 – 12.51 µm, provides 

additional data for measuring surface temperature. 

 

2.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is an advancement of neural networks and represents one of the 

most efficient versions (Figure 1). CNN is an algorithm that establishes connections between data, 

mimicking the structure of the human brain. It features a multi-layer neural network, enabling the model 

to learn and extract features automatically without human intervention. CNN is commonly used in 

developing models for tasks such as image segmentation and natural language processing, particularly 

in 2D data formats [15]. 
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Figure 1. CNN Components [15] 

 

Convolutional Neural Network (CNN) has been effective for several usage of image satellite data such 

as land use [16]. CNN model can be used for supervised learning for the classification from the available 

data that has been through labelling process [17].  

 

2.3 K-Nearest Neighbour 

K-Nearest Neighbor (KNN) is a machine learning algorithm that can be used for classification and 

regression tasks. KNN is a non-parametric method that identifies similarities based on the K nearest 

samples [7]. This algorithm considers spatial relationships to determine the class or value based on the 

closest K samples. KNN is widely used in pattern recognition, image processing, and multimedia data 

analysis due to its ease of implementation and high accuracy in many cases. In the context of remote 

sensing, predictions can be modeled based on properties and shapes, making KNN a suitable approach 

for classifying data. 

 

2.4 Random Forest 

Random Forest (Random Forest) is a machine learning algorithm that well-known for the classification 

data. It implement ensemble of decision tree that randomly selected based on the data given [18]. 

Random forest work as parallel classifier, that means on the training process every single decision tree 

would be through training independently. The difference of the parallel process would make the 

ensemble method can be implemented. 

 

2.5 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is the machine learning algorithm that really good for classify 

large and complex dataset [18], the usage of the XGBoost can be used to handle data noise and 

occurrence of the outliers data. The algorithm works well in detecting patern based on important rating. 

The scability and the speed of XGBoost works well for the big data such as Landsat-8. 

 

2.6 Cloud and Shadow Association 

To detect the relationship between buildings and their shadows, it was concluded that buildings generate 
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shadows when illuminated by sunlight, with the shadows resembling the shape and distance of the 

buildings [19]. This occurs because light cannot fully penetrate solid structures, causing shadows to 

form as light particles are blocked by the buildings (Figure 2). The study also explains that the sun's 

angle relative to the building significantly influences the shape and distance of the resulting shadow. 

When buildings are closely packed, the shadows tend to overlap and partially cover adjacent structures. 

 

 
 

Figure 2. Building and shadow association [19]. 

 

2.7 Ensemble and Cascading Method 

In this study, a hybrid model is implemented by initially performing predictions using a machine 

learning model. The prediction results are then enriched with additional parameters for use in subsequent 

predictions. Cascading and ensemble methods can be applied to improve accuracy, which is referred to 

as the Improved Neural Network method [8]. The Improved Neural Network method incorporates both 

ensemble and cascading approaches. The implementation of ensemble combined with cascading has 

been proven to enhance the accuracy of the developed model. According to the study, the cascading 

method specifically demonstrated superior accuracy compared to other implementations. 

 

3.   Methods 

 

3.1 Data Identification 

The Landsat 8 data was obtained through the USGS webpage using the Landsat-8 SPARCS dataset. 

This dataset has been previously utilized for CNN model to predict data in remote sensing [20] (Figure 

3). The distribution of satellite images is evenly spread across almost all continents. Metadata 

information is available for each location, which includes details about the solar direction. 
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Figure 3. Data distribution 

 

The dataset contains the distribution of interpretation results into six main categories. This information 

was manually created by analysts, with a total of 8 satellite images, 5 dataset will be treated as data train 

and the 3 dataset will be treated as data test. These images are provided in TIF file format, which retains 

spatial information within the image. Additionally, the metadata includes information related to solar 

azimuth, which is crucial as a primary feature for developing the KNN model. The distribution of 

prediction results (Table 1). 

 

Table 1. The distribution of prediction results. 

Category Total Percentage 

Fill 16,959,968 26.12% 

Shadow 1,390,173 2.14% 

Thin Cloud 37,061,292 57.06% 

Cloud 1,104,429 1.70% 

Other 1,936,429 2.98% 

 

3.2 Data Preprocessing 

Preprocessing is carried out through several main steps, including identifying missing values, incorrect 

data types, handle different bands range, and handling outlier values. In cases of missing values or 

incorrect data types, the missing data can be filtered out.  Data cleaning can also be done using standard 

scaling; however, this is part of the optimization process. This ensures that the resulting model is not 

overly rigid and can still adapt to other data cases [21]. One of the process of data preprocessing for 

Landsat-8 data atmospheric correction, it will make sure the value of the raw band is clear from the 

atmosphere altered value (NASA Goddard Space Flight Center). 

The preprocessing stage in this study is essential to ensure the Landsat-8 imagery is suitable for input 

into the hybrid deep and machine learning framework. The process involves several key steps, starting 

with the identification and handling of missing values and incorrect data types, which are either filtered 

out or imputed using statistical techniques such as mean substitution. Next, normalization is applied to 

account for differences in the range of spectral bands, typically using standard scaling to ensure 

uniformity across input features. Outlier values, which may distort the learning process, are identified 

using methods such as Z-score or interquartile range (IQR) filtering and subsequently removed. A 

critical part of preprocessing specific to satellite imagery is atmospheric correction, which converts raw 

digital numbers into surface reflectance by eliminating atmospheric effects such as scattering and 
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absorption. This correction ensures that the reflectance values more accurately represent true surface 

conditions. Together, these preprocessing steps not only improve data quality but also enhance the 

robustness and adaptability of the model across various environmental conditions. 

 

3.3 Data Splitting 

Based on the cleaned data from the previous stage, the dataset will be split 5 dataset will be used as the 

training data meanwhile the other 3 dataset be used as testing data. For the training The process for 

generate hybrid model the dataset will be split into 80% data training and 20% data validation for CNN. 

Meanwhile for KNN or RF Model will be used all train data for training. This separation is performed 

using packages provided by scikit-learn. An important point to consider is the treatment process for the 

data, such as applying functions like median, mode, and mean, which need to be conducted separately 

for each dataset. The separation between training and final testing dataset is used to make sure the result 

can be applicable for another image satellite and make the model become more reliable. Each of dataset 

created on different location, time, sun position, and angle of the satellite camera. 

 

3.4 Convolutional Neural Network Model Creation  

The model development in this study is divided into two main stages: the CNN model and the KNN 

model. The first CNN model uses an 11 x 11 x 16 input as the initial input. In the first convolutional 

pooling stage, data reduction is performed because Hughes research disregarded padding at the edges 

of the image. The convolutional layer employs the ReLU activation function. The architecture also 

incorporates BatchNorm2d to accelerate the process and downsampling, which is carried out using 

MaxPool2d in the second convolutional pooling stage. This approach is necessary due to the large size 

of satellite imagery (Table 2). 

 

Table 2. The parameters used for building the CNN model. 

Block Layer Parameter [size, stride] or weight Size 

input Reshape - 1 × 10 × 1 

CP1 Conv2D [3×3, stride=1] 1 × 10 × 32 

 ReLU - 1 × 10 × 32 

 MaxPool2D [2×2, stride=2] 1 × 5 × 32 

CP2 Conv2D [3×3, stride=1] 1 × 5 × 64 

 ReLU - 1 × 5 × 64 

  MaxPool2D [2×2, stride=2] 1 × 2 × 64 

FC1 Flatten - 128 

 Dense 128 units 128 

 Dropout rate=0.5 128 

FC2 Dense (Output) 3 units (softmax) 3 

 

The second CNN model used is CNN Unet model. This model is the advances model that can boost the 

model accuracy. The implementation of CNN Unet using encoder and decoder which can boost the 

accuracy (Pang, et. al., 2023). The model that has been generated will be more complex than a simple 

CNN model (Table 3). 

 

Table 3. The parameters used for building the CNN model. 

Block Layer Parameter Size 

Input Input Layer - 256 × 256 × 11 

CP1 Conv2D 64 filters, 3×3, stride=1 256 × 256 × 64 
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 BatchNorm2D - 256 × 256 × 64 

 MaxPooling2D 2×2, stride=2 128 × 128 × 64 

CP2 Conv2D 128 filters, 3×3, stride=1 128 × 128 × 128 

 BatchNorm2D - 128 × 128 × 128 

 MaxPooling2D 2×2, stride=2 64 × 64 × 128 

CP3 Conv2D 256 filters, 3×3, stride=1 64 × 64 × 256 

 BatchNorm2D - 64 × 64 × 256 

 MaxPooling2D 2×2, stride=2 32 × 32 × 256 

CP4 Conv2D 512 filters, 3×3, stride=1 32 × 32 × 512 

 BatchNorm2D - 32 × 32 × 512 

  MaxPooling2D 2×2, stride=2 16 × 16 × 512 

Bottleneck Conv2D 1024 filters, 3×3, stride=1 16 × 16 × 1024 

Decoder1 Conv2DTranspose 512 filters, 2×2, stride=2 32 × 32 × 512 

 Concatenate 0 32 × 32 × 1024 

 Conv2D 512 filters, 3×3, stride=1 32 × 32 × 512 

Decoder2 Conv2DTranspose 256 filters, 2×2, stride=2 64 × 64 × 256 

 Concatenate 0 64 × 64 × 512 

 Conv2D 256 filters, 3×3, stride=1 64 × 64 × 256 

Decoder3 Conv2DTranspose 128 filters, 2×2, stride=2 128 × 128 × 128 

 Concatenate 0 128 × 128 × 256 

 Conv2D 128 filters, 3×3, stride=1 128 × 128 × 128 

Decoder4 Conv2DTranspose 64 filters, 2×2, stride=2 256 × 256 × 64 

 Concatenate 0 256 × 256 × 128 

  Conv2D 64 filters, 3×3, stride=1 256 × 256 × 64 

Output Conv2D 5 filters (softmax), 1×1 256 × 256 × 5 

 

 

3.5 The second model for hybrid model 

The second model that being used to create hybrid model is K Nearest Neighbor (KNN). KNN model is 

one of the model that can be used to predict image satellite data [7]. The implementation of KNN can 

be used to do the classification automatically [22]. For the specific case the accuracy of the KNN model 

can reach 94% [23]. The second model that being implemented for the comparison for KNN model is 

Random Forest (RF), because RF has been implemented in remote sensing for the spatial data to target 

distribution of the forest fire [24]. The usage of Random Forest is used for the benchmarking the 

efficiency of the accuracy for the second model prediction for the hybrid model. The development of 

the second model involves creating features based on the prediction results of the CNN model, 

specifically the accuracy of cloud, shadow, and other classifications. Additional features, such as sun 

direction and spatial location, are also included to enhance the second model. The construction and 

training of the second model incorporate experimental thresholds set at 80%, 70%, and 60%. These 

thresholds are applied to ensure that predictions are not performed on data with accuracy exceeding the 

specified values (Figure 4). This approach helps to optimize the model's performance and focus 

computational resources on areas requiring further refinement. 
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Figure 4. The Flow of Hybrid Concept 

 

 

3.6 Model Evaluation 

In the Keras library, there are methods to evaluate a model and obtain performance metrics such as 

accuracy Eq. (2. These evaluation parameters are reliably used for neural network models, particularly 

in Convolutional Neural Networks (CNN) cases [25]. Accuracy is the proportion of correct predictions 

made by the model. In addition, the model evaluation will include an analysis of the categorical cross-

entropy loss graph during the training process using CNN. This graph provides insights into the model's 

performance and learning behaviour over time. 

 

𝐴𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (2) 

 

 

4.   Results and Discussion 

 

4.1. Data Preparation 

The dataset used in this study, as shown in Table 4, comprises eight scenes five designated for training 

and three for testing. Previously utilized by researchers such as [20], this dataset includes imagery from 

various regions captured under different conditions and timeframes. The diversity of the data is essential 

for developing a robust model capable of generalizing across varying scenarios; however, it also presents 

significant challenges in the preprocessing stage. 
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Table 4. USGS Raster to generate the model. 

Stage Biome Landsat ID Cloud Cover 

Training 

Barren 

Grass / Crops 

Grass / Crops 

Shrubland 

Urban 

LC81640502013179LGN01 

LC80290372013257LGN00 

LC81750512013208LGN00 

LC81020802014100LGN00 

LC81620432014072LGN00 

7.33% 

25.61% 

58.97% 

76.28% 

20.29% 

Test 

Barren 

Forest 

Shrubland 

LC81930452013126LGN01 

LC80070662014234LGN00 

LC80010732013109LGN00 

64.06% 

5.05% 

6.71% 

 

Based on this research, the publicly accessible dataset from USGS must undergo a preprocessing stage 

that includes atmospheric correction and normalization. Several tools, such as ENVI, Google Earth 

Engine (GEE), and GRISS, can assist in performing atmospheric correction. In this study, a simplified 

atmospheric correction was conducted following the guidelines provided in the Landsat 8 (L8) Data 

Users Handbook. Although the results of this correction are limited, they are sufficient to produce a 

more reliable dataset from the original imagery. Normalization was applied using standard scaling, 

transforming the data into a range between 0 and 1, as shown in Table 5. 

 

Table 5. Preprocessing Landsat 8 Images LC81640502013179LGN01 

Bands 
Raw Atmospheric Correction and Normalization 

Count Min Max Mean Std Count Min Max Mean Std 

Band-1 58452291 0 45,372 9,803.84 6,546.13 58,452,291 0.0 1.0 0.216 0.121 

Band-2 58452291 0 46,948 9,798.42 6,577.34 58,452,291 0.0 1.0 0.208 0.116 

Band-3 58452291 0 46,778 10,488.91 7,068.56 58,452,291 0.0 1.0 0.224 0.135 

Band-4 58452291 0 48,910 11,968.76 8,172.4 58,452,291 0.0 1.0 0.244 0.152 

Band-5 58452291 0 52,262 13,944.82 9,625.84 58,452,291 0.0 1.0 0.266 0.185 

Band-6 58452291 0 65,535 15,962.56 11,100.83 58,452,291 0.0 1.0 0.243 0.161 

Band-7 58452291 0 62,125 14,194.41 9,797.64 58,452,291 0.0 1.0 0.228 0.142 

Band-8 58452291 0 47,154 10,969.65 7,405.04 58,452,291 0.0 1.0 0.232 0.143 

Band-9 58452291 0 9,681 3,692.18 2,377.81 58,452,291 0.0 1.0 0.381 0.190 

Band-10 58452291 0 45,092 23,087.15 15,692.14 58,452,291 0.0 1.0 0.512 0.303 

Band-11 58452291 0 38,080 21,022.65 14,238.26 58,452,291 0.0 1.0 0.552 0.378 

 

Previous researchers applied transfer learning on different datasets to improve model accuracy [20]. 

Although this study also uses Landsat-8 imagery, the clean dataset employed here differs significantly, 

as it was processed using a simpler atmospheric correction method. As a result, the model’s accuracy 

may be slightly lower compared to studies that used more refined preprocessing. Additionally, 

normalization was not fully optimized due to limited resources for atmospheric correction. However, 

this research focuses on utilizing cloud and shadow direction as added features to enhance CNN model 

performance, and the current dataset remains sufficient to achieve this objective. 

 

4.2. Training and Testing Model with CNN and CNN Unet 

The initial CNN model in this research was developed based on the approach by [2], which demonstrated 

strong performance using the SPARCS Landsat-8 dataset. Model training was conducted on Google 

Colab T4, utilizing 50 GB of RAM and a GPU with up to 16 GB. Raster images were divided into 256 

× 256 patches to build the model, with a maximum batch size of 4 due to hardware limitations. Initially, 

training with raw data resulted in poor performance, achieving only 32.97% accuracy, indicating the 
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necessity of a proper preprocessing step. After applying atmospheric correction and normalization, the 

model’s accuracy improved to 53.65%. Further improvements through hyperparameter tuning—

specifically, increasing epochs and reducing the learning rate—raised the accuracy to 71.32%. Finally, 

modifying the architecture to use a CNN U-Net model significantly boosted accuracy to 81.23%, as 

shown in Table 6.  

 

Table 6. Comparison of Overall Accuracy based on previous researcher. 

Sequence Method Overall Accurracy 

CNN Model, Predict using raw data (batch size = 4, epoch = 5, 

learning rate=0.001) 
32.97% 

CNN Model , Atmospheric Correction with Normalization (batch size 

= 4, epoch = 5, learning rate=0.001) 
53.65% 

CNN Model (batch size = 4, epoch = 6, learning rate=0.00001) 71.32% 

CNN Unet Model (batch size = 4, epoch = 6, learning rate=0.00001) 81.27% 

 

Hyperparameter tuning, model architecture, and dataset quality play a crucial role in determining the 

performance of the generated model. Adjusting the learning rate, in particular, has shown a significant 

impact on accuracy; in this study, a lower learning rate yielded better model performance. Given that 

the dataset consists of over 50 million raster pixels, a smaller learning rate is beneficial for capturing 

complex patterns and achieving more stable convergence. Although increasing the number of epochs 

showed improvement, the difference between epoch 5 and epoch 6 was minimal, likely due to the large 

and diverse dataset already providing sufficient learning opportunities in earlier iterations. Previous 

studies, such as those by [26] and [27], also highlight the importance of tuning learning rates and model 

structures, especially when dealing with high-resolution satellite imagery, to maximize segmentation 

performance.  

 

4.3. Comparison CNN and CNN Unet with the previous researcher 

The comparison of the model accuracy with the previous researcher is required to make sure that this 

research will give a better understanding of the quality of model that generated and implementation of 

the hybrid model later on. There are some previous researchers published papers using the same raw 

dataset, but every researchers used different method and additional information to make sure the model 

generation will be great. On the generation a good model additional dataset would give a greater result, 

and actually some of the researchers using transfer learning add other datasets that successfully boosted 

the accuracy of the model (Table 7). 

 

Table 7. Comparison of Overall Accuracy based on previous researcher. 

Model Overall Accuracy 

Zhu’s method 87.71% 

Li’s method 88.95% 

Zi’s method 91.16% 

CNN 71.32% 

CNN Unet 81.27% 

 

Zi’s method demonstrates a notable advantage due to its use of a two-step superpixel classification 

strategy, combining a double PCA Network with a Support Vector Machine to enhance classifier 

performance. In contrast, this research focuses on utilizing cloud and shadow directional features to 

improve model accuracy. Although the CNN U-Net model in this study achieved an accuracy of 81.27%, 

which may not be ideal for direct comparison with Zi’s approach, it remains valid within the study’s 

context. Zi’s findings also acknowledge the importance of incorporating cloud and shadow 



  

02504031-012 

 

relationships, which supports the premise of this research. Moreover, given the limited computational 

resources and the absence of an external dataset for training, the performance of the CNN U-Net model 

is considered acceptable, especially as the primary objective is to evaluate the impact of cloud and 

shadow distance features on enhancing model prediction accuracy. 

 

4.3. CNN Unet Result Analysis 

This initial result of CNN Unet from testing dataset generate a different accuracy from the each of the 

testing scene. The range of the accuracy show a quite large difference of accuracy. The better result 

comes from model LC81930452013126LGN01, and the lowest one is LC80010732013109LGN00. The 

accuracy differences come from a several factors the first factor is the different dataset statistic value, 

the second factor come from the difference of Biome, the third factors come from the different location 

and position, and the fourth factor is the imbalance data (Table 7). 

 

Table 7. CNN Unet detail prediction. 

Model 
LC81930452013126LGN0

1 

LC80070662014234LGN0

0 

LC80010732013109LGN0

0 

Accuracy 87.22% 82.41% 74.19% 

 

The initial raw dataset exhibits varying statistical characteristics, even after atmospheric correction is 

applied, with noticeable differences in minimum and mean values between training and testing datasets. 

These discrepancies significantly affect model accuracy, particularly because low minimum values are 

often interpreted as "Fill" data, which can distort model predictions (Table 8). For example, Band 1, 

which captures atmospheric aerosol particles, displays varying mean values, indicating different data 

distributions—especially in raster LC80010732013109LGN00, which belongs to a barren biome with a 

low cloud cover (7.33%) that is vastly different from the over-30% cloud cover seen in the training data. 

This mismatch negatively impacts model performance. Conversely, rasters like 

LC80070662014234LGN00 and LC81930452013126LGN01, which are located in forest and shrubland 

biomes respectively, show better accuracy due to biome similarity with training data (which includes 

grassland and shrubland). This indicates that similarity in biome and cloud cover between training and 

testing datasets leads to improved model accuracy. Additionally, the dataset is highly imbalanced, with 

Cloud, Shadow, and other categories each comprising less than 10% of the total data, which poses 

further challenges for model training and classification.  

 

Table 8. Basic Statistics of Atmospheric Correction and Normalized of Band 1 in dataset. 

Scene Type Min Max Mean Std 

LC81640502013179LGN01 

Train 

0.231156 1.0 0.304418 0.049333 

LC80290372013257LGN00 0.152812 1.0 0.209326 0.064557 

LC81750512013208LGN00 0.151095 1.0 0.313551 0.161350 

LC81020802014100LGN00 0.183382 1.0 0.441112 0.140887 

LC81620432014072LGN00 0.167775 1.0 0.282354 0.087249 

LC81930452013126LGN01 

Test 

0.154284 1.0 0.401218 0.184777 

LC80070662014234LGN00 0.151295 1.0 0.200698 0.054720 

LC80010732013109LGN00 0.116258 1.0 0.206243 0.093744 

 

4.4. Implementation of Cascading 

The implementation of cascading is a crucial step in developing the hybrid model, as it enables the 

dataset to be enriched with two additional features: the distance to cloud and the distance to shadow. 

These distance features are derived from the softmax output of the initial CNN model, which provides 

class probabilities for cloud, thin cloud, shadow, fill, and other. Not all softmax outputs are used in the 
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second-stage model; instead, thresholds are applied to selectively filter the data. Two types of thresholds 

are introduced: the top threshold, which identifies high-confidence predictions (e.g., 60% to 90%) for 

temporary classification of cloud or shadow based on softmax scores, and the bottom threshold (set at 

50% and 40%) to capture uncertain predictions requiring further analysis. With the sun azimuth angle 

as a reference, distances to cloud and shadow objects are calculated and added to the dataset. This 

approach ensures that only ambiguous or low-confidence classifications (below the bottom threshold) 

are passed to the second model for refinement, improving overall prediction accuracy through informed 

data enhancement. 

 

Table 9. Threshold vs the second dataset for the next model 

Top Threshold Bottom Threshold All Retrain Percentage 

90% 

40% 

58,452,291 418,817 0.71651084 

80% 58,452,291 543,136 0.9291954 

70% 58,452,291 632,953 1.08285405 

60% 58,452,291 749,184 1.28170169 

90% 

50% 

58,452,291 1,551,976 2.65511578 

80% 58,452,291 3,914,029 6.6961088 

70% 58,452,291 5,243,476 8.97052264 

60% 58,452,291 6,593,840 11.2807212 

 

4.5. Comparison of the second model 

The retrain of the cascading will be train with the second model with three different model which are 

KNN (K Nearest Neighbor), RF (Random Forest), and XGBoost. The usage of three model will be used 

as a comparison to make sure the concept of adding shadow and cloud distance have an effect for the 

accuracy of the model prediction. The point that would be focus is the changes in percentage of the 

retrain dataset from the CNN prediction and the second model prediction. Based on the dataset and the 

architecture model, the higher value of accuracy would give implications of the shadow and cloud 

distance to predict the cloud and shadow. The positive result on the result also tell that the research have 

correctly implement the cascading method for the dataset and the model creation. The result of 

comparison result can be shown on (Table 10).  

 

Table 10. Threshold vs the second dataset for the next model 

Model 
Top Threshold 

Percentage 
Bottom Threshold Percentage 

Increase Accurracy From 

CNN Percentage 

KNN 

90 

40 

9.188546731 

80 4.956111359 

70 2.381118637 

60 2.638317978 

RF 

90 6.554294976 

80 2.64100475 

70 1.876032865 

60 3.111741082 

XGBoost 

90 8.304700162 

80 5.86155478 

70 5.283616135 

60 4.349633829 

KNN 90 50 -2.692840065 
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80 2.498011976 

70 -2.175121468 

60 -2.295652544 

RF 

90 -3.710156711 

80 0.863693034 

70 -3.251195312 

60 -2.401452448 

XGBoost 

90 -2.362768727 

80 1.813554688 

70 -3.995365603 

60 -1.708619003 

 

Based on the comparison, when a bottom threshold below 50% is applied, the resulting second model 

generally performs poorly. However, when the threshold is lowered to 40%, the new dataset 

significantly improves the model's accuracy compared to the initial CNN. This indicates that predictions 

with lower confidence (below 40%) from the CNN model likely contain misclassified data, which are 

effectively corrected using additional features such as cloud and shadow distances. The experimental 

results confirm that a lower bottom threshold in retraining the second model leads to better predictions, 

while a higher top threshold (e.g., above 80%) used to identify temporary cloud and shadow objects 

further enhances performance. Among the models tested, KNN consistently outperforms RF and 

XGBoost in terms of accuracy. This suggests that the data features generated especially the spatial 

distances—are more suitable for algorithms like KNN that rely on proximity and similarity. XGBoost’s 

slightly better performance than RF also aligns with findings from previous studies [28], which 

emphasized the importance of incorporating advanced feature relationships to handle large, complex 

datasets. In this research context, the superior performance of KNN reinforces that the second dataset, 

enriched with cloud and shadow distances, contains structured patterns that are effectively captured 

through neighborhood-based methods. As a result, KNN will be used in an ensemble configuration to 

contribute to the final prediction output, improving upon the original CNN model. 

 

4.6. Hybrid model analysis 

Based on this research with the given that showed with the experimental top and bottom threshold, the 

hybrid model that has been create successfully can enhance the accuracy of the data. Another experiment 

on this research implemented to a single scene and the train and test data are being split into proportion 

80 : 20, this experiment can be treat as if the data preprocessing is really ideal scenario. The same model 

creation then created for the single scene from the one of SPARCS data that being used by [2]. The one 

dataset that being used is LC81830642014203LGN00, the model creation through the same process with 

the first model is CNN meanwhile the second model used is KNN. 

 

Table 11. New Hybrid Model Prediction for the single dataset LC81830642014203LGN00 

Model Cloud Accurracy Shadow Accurracy Other Accurracy 

CNN 89.31% 96.97% 76.45% 

New Hybrid Model 95.13% 96.08% 81.25% 

 

With the removal of atmospheric distortion, the CNN model’s accuracy improved significantly. The 

CNN architecture used in this case was simpler than CNN Unet, as the feature characteristics of the 

Landsat-8 SPARCS image LC81830642014203LGN00 differed from those in previous datasets. 

Additionally, the newly proposed hybrid model demonstrated the ability to improve accuracy, 

particularly in dealing with imbalanced datasets, by incorporating cascading methods that add features 

like cloud and shadow distances. This approach aligns with findings from prior research such as Sun et 
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al., (2024) who highlighted the advantages of using two-step classification strategies and additional 

spatial features to enhance model performance. Although the hybrid model in this study does not adopt 

the same complex architecture or preprocessing as previous studies, it achieves competitive results 

through strategic use of thresholds and distance-based features. Therefore, the use of top and bottom 

thresholds as part of the cascading method proves to be a key innovation in model design, and the 

proposed hybrid framework shows potential for application in future studies that aim to generate 

improved training datasets and enhance prediction performance from initial CNN outputs. 

  

5.   Conclusion 

The results of the study demonstrate that the implementation of a cascading-based hybrid deep and 

machine learning model significantly enhances the accuracy of cloud and shadow segmentation in 

Landsat-8 imagery. By generating two new features distance to cloud and shadow derived from softmax 

outputs of a CNN model, the cascading process enables the creation of a refined secondary dataset. This 

dataset is then used to train a second model (KNN, RF, or XGBoost), with experimental top and bottom 

thresholds helping to filter high-confidence predictions and uncertain areas needing further 

classification. Findings reveal that applying a bottom threshold of 40% and a top threshold between 60% 

to 90% yields notable improvements in accuracy, particularly when using the KNN model, which 

consistently outperformed RF and XGBoost. The second-stage model effectively captured misclassified 

areas from the initial CNN output, validating the benefit of cascading features. When the approach was 

tested on a single SPARCS scene (LC81830642014203LGN00), the hybrid model achieved superior 

accuracies 95.13% for clouds and 96.08% for shadows compared to the standalone CNN, further 

confirming the model’s robustness. These results underscore the effectiveness of integrating spatial 

features and threshold-based filtering in hybrid modeling to address challenges in remote sensing 

segmentation tasks. 
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