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Abstract. The esterification of levulinic acid to ethyl levulinate presents challenges in catalyst 

efficiency, reusability, and environmentally friendly process design, restricting commercial 

scalability.  This study examines recent studies on diverse catalysts, including Deep Eutectic 

Solvents (DES), homogeneous and heterogeneous systems, and their effects on yield.  DES is 

positioned as a more sustainable option, with yields as high as 99.8%, quicker reaction times, 

and a lower environmental effect.  While heterogeneous catalysts require harsher conditions and 

have reusability difficulties, DES provides a greener and more efficient alternative to produce 

ethyl levulinate.  Life cycle assessments (LCA) of DES procedures reveal reductions in energy 

usage and greenhouse gas emissions of up to 69.72%.  Future research should focus on improving 

DES recovery and scalability for industrial applications.  This effort supports the United Nations' 

Sustainable Development Goals (SDGs), namely SDG 7 (Affordable and Clean Energy), SDG 

12 (Responsible Consumption and Production), and SDG 13 (Climate Action). 
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1.   Introduction  

The growth in demand for renewable and green chemicals has prompted extensive research on chemicals 

derived from biomass. Recent advancements mention the green synthesis of chemicals derived from 

biomass such as reductive amination for nitrogen compounds [1], pyruvate-producing microbe 

metabolic engineering [2], the valorization of biomass using carbon-based nanocatalysts (CnCs) [3],  

and the development of biochar briquettes from biomass waste for sustainable energy production [4]. 

Levulinic acid, a platform chemical obtained from the acid hydrolysis of lignocellulosic biomass, has 

emerged as a significant precursor for many industrial uses among biomass-derived chemicals [5]. Ethyl 

levulinate is notable among its several derivatives for its versatility and potential applications in the 

fragrance [6], flavor [7], and biofuel sectors [8]. 

Esterification is a chemical reaction in which an acid reacts with an alcohol to produce an ester and 
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water. This process is essential for converting levulinic acid into ethyl levulinate. It enhances the value 

of levulinic acid and plays a role in advancing green chemistry. By relying on renewable resources and 

minimizing waste, this process supports sustainability and environmental goals [9]. The transformation 

of levulinic acid into ethyl levulinate is valuable because of the desirable features of ethyl levulinate, 

such as its ability to adhere well to metals, its low toxicity, and its biodegradability, making it a strong 

candidate for replacing petrochemical-based products [10]. Furthermore, ethyl levulinate has shown 

promise as a fuel additive in diesel, with potential benefits like improving fuel efficiency and lowering 

emissions [8,11]. 

Although ethyl levulinate presents promising applications, the esterification process of levulinic acid 

encounters multiple challenges that impede its scalability and sustainability in industrial contexts. 

Conventional homogeneous acid catalysts come with several drawbacks, such as causing equipment 

corrosion, difficulty in separation, and lack of reusability, all of which go against the principles of green 

chemistry [12]. Heterogeneous catalysts, although reusable, generally require harsh conditions to 

function effectively or encounter stability issues after being used multiple times, which can limit their 

performance in various reactions [13]. Achieving the optimal balance in reaction conditions to improve 

selectivity, yield, and energy efficiency is a complex task due to the interplay of factors such as 

temperature, the amount of catalyst, and reaction time [14,15]. These issues emphasize the necessity to 

design more efficient, green catalytic systems and reaction parameters to satisfy both the requirements 

of industry and the environment. 

This review is distinguished from previous studies by its broader focus on the various types of 

catalysts employed in the esterification process of levulinic acid. Previous reviews have mainly 

concentrated on specific catalysts, especially heterogeneous ones [16]. However, recent studies and 

emerging trends have underscored the potential of alternative catalysts, including Deep Eutectic 

Solvents (DES) [17,18] and enzymes [19]. Alternative catalysts present significant environmental and 

efficiency advantages, generating optimism regarding the industry's future. Comparing the effectiveness 

of these catalysts in industrial-scale applications is essential. This review addresses a critical need within 

the industrial sector for catalysts that demonstrate high efficiency and reusability while adhering to green 

chemistry principles, thereby promoting sustainable and scalable production processes. This study seeks 

to address the existing literature gap by conducting a comprehensive comparison of emerging catalysts 

and evaluating their feasibility for large-scale industrial application. 

2.   Methods 

Records identified through database searching using the 

keywords  ethyl levulinate  in the title, abstract, and keyword 

fields in Scopus.  (n = 789)

Records after duplicates removed (n = 789)

Records selected for title, abstract, and keywords screening 

searching the words 'levulinic acid' and 'esterification' and 

further selected for publication date range      –      (n = 63)

Records excluded (n = 726)

Studies that only contain the word 'ethyl levulinate' in the 

title, abstract, or keywords and were published before 2020

Full-text articles assessed for eligibility (n = 63)
Records excluded (n = 0)

Studies not in English language

Studies included (n = 63)
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Figure 1. Research Methodology 
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This research adheres to the PRISMA methodology as outlined by [20], as shown in Figure 1. Initially, 

789 records were identified through database searches in Scopus using the keywords 'ethyl levulinate' 

in the title, abstract, and keyword fields. The total count remained at 789 records after removing 

duplicates. In the screening phase, records were selected based on their title, abstract, and keyword 

screening, incorporating additional search terms such as 'levulinic acid' and 'esterification.' The selection 

process was further refined based on the publication date range of 2020–2025, resulting in the retention 

of 63 studies. These 63 full-text articles were subsequently assessed for eligibility. Ultimately, no studies 

were excluded based on language, and the final set of 63 studies was included for analysis.  

Subsequently, the papers were analysed to identify significant characteristics, extracting essential 

aspects, including catalyst type, catalyst load, reaction duration, molar ratio, temperature, and yield from 

the research. The next phase involved comparing the data., in which the identified parameters were 

analysed across several research studies. A study of parameter influence was performed to assess the 

impact of each element on the overall reaction outcomes. In conclusion, the main findings of the research 

were summarized, along with recommendations for future inquiries and advancements in the field. 

3.   Results and Discussion 

3.1.   Recent Studies in the Esterification of Levulinic Acid into Ethyl Levulinate 

Levulinic acid is an economical and easily produced biomass-derived compound that can be converted 

into various compounds through catalytic reactions [21]. Chemically, levulinic acid has a structure 

consisting of a carbon chain with one carboxyl group and one carbonyl group, making it a keto acid  

useful in various chemical applications [22]. Figure 2 illustrates the various valuable compounds that 

can be produced from levulinic acid. Levulinic acid can be turned into γ-valerolactone, a biofuel additive 

and green solvent [23], and methyl-tetrahydrofuran, a solvent and fuel additive that improves fuel 

economy [24]. Diphenolic acid is used to make sustainable and biodegradable polymers [25], while 

angelica lactone is an important intermediary in pharmaceuticals and fine chemicals [26]. Levulinate 

esters, such as ethyl levulinate, are commonly utilised in the energy industry as biofuel additives [27]. 

Other derivatives, such as δ-amino levulinic acid, have potential in medicine and agriculture [28]. 

Furthermore, levulinic acid can be converted into succinic acid, an important step in chemical synthesis 

 
Figure 2. Transformation of Levulinic Acid 



02503027-04 

 

[29], and hydrogenation of levulinic acid produces chemicals such as 1,5-pentanediol and valeric acid, 

which are employed in plastics, solvents, and medical applications [30]. 

One approach to produce ethyl levulinate is to esterify ethanol with levulinic acid, as shown in Figure 

3. Ethyl levulinate is a carbon chain compound containing one ester and one carbonyl group and it falls 

into the class of keto ester compound [31]. It is a very useful compound which has many uses but mainly 

found in the biofuel industry and in the production of a large number of chemicals. Ethyl levulinate is 

a suitable biofuel additive that may enhance the burning characteristics of the fuel while not lowering 

the octane number [32]. Ethyl levulinate is also applicable in fragrance and flavoring industries due to 

its agreeable smell and solubility [14]. The great scientific and technological groundwork laid over the 

years on different catalytic methods proposed to produce ethyl levulinate emphasizes its industrial and 

environmental relevance, when used as an interesting compound not only for biofuel but also for 

chemical industries [33]. 

The esterification process of levulinic acid to ethyl levulinate involves three main steps, as illustrated 

in Figure 4. First, an acid catalyst such as sulfuric acid protonates the carboxyl group of levulinic acid. 

This protonation makes the carbon atom in the carboxyl group more electrophilic, thus more susceptible 

to nucleophilic attack. Next, ethanol attacks the protonated carbon atom in levulinic acid, forming a 

tetrahedral intermediate. In this step, ethanol acts as a nucleophile attacking the electrophile at the carbon 

 
Figure 4. Esterification of Levulinic Acid to Ethyl Levulinate Reaction Mechanism 

 
Figure 3. Esterification of Levulinic Acid to Ethyl Levulinate Reaction 
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of the protonated carboxyl group. Finally, the tetrahedral intermediate undergoes deprotonation and 

elimination of water, resulting in ethyl levulinate as the final product with the release of a water molecule 

as a byproduct [34–36]. 

Table 1. Recent studies in the esterification of levulinic acid into ethyl levulinate 

 Catalyst 
Catalyst 

Load 

Reaction

Time 

Molar 

Ratio 
Temperature Yield (%) Reference 

Choline chloride 

and para-toluene 

sulfonic acid 

DES 

5 wt% 1 h 1:1 80°C 99,8 [37] 

MsOH 2.75 g 5.25 h N.A. 90°C 92,2 [38] 

SFCB-4 80 mg 6 h 1:16 60°C 97.6 [39] 

AlCl3·6H2O 5 mol% 2 h 1:01 75°C 98.48 [40] 

SAPO-11 0.1 g 0,5 h 1:11 180°C N.A. [41] 

MoPO supported 

on TiO2-ZrO2 
20 wt% 6 h 1:8 70°C N.A. [42] 

ChCl/sulfanilic 

acid 
2 g 3 h 1:7 80°C 90.6 [43] 

UCC-S-Fe 10 wt% 4 h 1:10 80°C 99.5 [44] 

ChCl/pTSA 5 wt% 1 h 1:5 80°C N.A. [45] 

lipase@amino-

grafted silica 

nanoflower 

25 mg 8 h 1:10 40°C 99.5 [46] 

Thermomyces 

lanuginosus 

lipase 

5 wt% 12 h 1:4 45°C 90 [47] 

Ethyl levulinate production can be achieved through various routes, including both non-catalytic and 

catalytic methods, as shown in Table 1. Microwave non-catalytic synthesis has been proved to be an 

efficient green method leading to high conversion efficiencies without the catalyst [48]. Catalytic 

processes include the use of various catalysts such as AlCl3·6H2O catalytic reaction favors the separation 

of the phases to facilitate the recovery of the product [49], and deep eutectic solvents are 

environmentally friendly and highly efficient [50]. Furthermore, alternative solid acid catalysts such as 

kitchen waste-derived materials have been investigated and proposed as green and low-cost alternatives 

[37]. Especially in the presence of a catalyst, high yield and selectivity to ethyl levulinate can be 

obtained by the esterification of levulinic with ethanol, which is an attractive method to prepare ethyl 

levulinate [33].  

Table 1 summarises recent studies on the esterification of levulinic acid into ethyl levulinate, 

detailing the catalysts, operating conditions, and yields obtained.  The studies provide significant 

insights into the influence of different catalysts, reaction conditions, and process parameters on the 

efficiency and scalability of ethyl levulinate production.  An analysis of these factors is essential for 

understanding their broader implications on reaction outcomes.  This section will analyse the primary 

factors affecting esterification efficiency, including catalyst type and concentration, reaction 

temperature, molar ratio of reactants, water content, and reaction time, and assess their impact on overall 

yield and process sustainability. 

3.2.   Factors Affecting Reaction Outcomes 

3.2.1.   Catalyst Type and Concentration 
Homogeneous catalysts, such as MsOH and DES, achieve increased yields in esterification reactions 

owing to their exceptional catalytic activity and selectivity.  The addition of MsOH with a catalyst load 

of 2.75 g results in a yield of 92.2% at 90°C after 5.25 hours [38]. In contrast, using DES at a 5 wt% 

catalyst load and a molar ratio of 1:1 achieves a yield of 99.8% after just 1 hour at 80°C [37].  Increasing 
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the concentration of these catalysts typically leads to enhanced reaction rates and yields, as it raises the 

availability of active sites [51]. However, their practicality for large-scale applications is limited by 

notable challenges in post-reaction separation and reusability [52]. While DES offers greater 

environmental benefits, it still faces obstacles related to scalability and the effective recovery of catalysts 

[53]. 

Heterogeneous catalysts like AlCl3·6H2O and SFCB-4 offer easier separation and recycling, which 

improves their reusability and simplifies operational processes. For example, AlCl3·6H2O with a catalyst 

load of 5 mol% can reach a yield of 98.48% at 75°C after 2 hours [40], whereas SFCB-4 with a catalyst 

load of 80 mg results in a yield of 97.6% at 60°C after 6 hours [39].  These catalysts demonstrate greater 

cost efficiency over time because they can be employed repeatedly.  However, they often require harsher 

reaction conditions, including higher temperatures, which may diminish their environmental advantages 

and raise energy costs [54]. Therefore, it is essential to identify the ideal concentration for heterogeneous 

catalysts based on the operational needs to achieve an effective balance in their performance. 

Enzymatic catalysts, including lipases, offer mild reaction conditions, exceptional selectivity, and 

sustainability, in balance with the principles of green chemistry. The use of lipase catalysts at a 

concentration of 25 mg results in an impressive yield of 99.5% after 8 hours at 40°C [46].  Enhancing 

reaction rates can be achieved through an increase of enzyme concentration; nonetheless, this frequently 

leads to higher costs and challenges associated with enzyme recovery. While these materials are 

biodegradable and non-toxic, their reduced stability and the difficulties associated with recovering and 

reusing enzymes on an industrial scale make them less efficient for large-scale esterification processes 

[55].  As a result, enzymatic catalysts are ideal for reactions that require high purity and small scale; 

nonetheless, their use in industrial settings is limited due to operational difficulties and concerns 

regarding cost-effectiveness [56]. Table 2 presents the conclusion on each catalyst type, along with its 

efficiency and associated challenges. 

Table 2. Overview of Catalyst Types, Efficiencies, and Challenges 

Catalyst Type Efficiency Challenges 

Homogeneous Catalyst 

High yields are achieved with 

both DES (99.8%) and MsOH 

(92.2%) catalysts. 

Require a large amount of 

catalyst, as well as pose 

challenges in post-reaction 

separation and reusability. 

Heterogeneous Catalyst 

High yield is also obtained for 

both AlCl3·6H2O (98.48%) and 

SFCB-4 (97.6%). 

Require harsh conditions, such as 

higher temperatures, which 

diminish the environmental 

advantages and increase energy 

costs. 

Enzyme 

Enzymes require lower 

temperatures, but the yield is not 

as high as the previous catalysts 

(90%). 

Enzymes are costly, and enzyme 

recovery is complicated since 

they are living organisms and 

require a long reaction time. 

3.2.2.   Temperature 
The temperature has impact on the kinetics of reaction, the activation energy, and position of 

equilibrium. Higher temperatures generally raise reaction rates by furnishing the kinetic energy that 

reactant molecules need to surmount the barriers to reaction. Nonetheless, the use of high temperature 

could result in side reactions or decomposition of the labile compounds, decreasing yields and purity of 

the products. For example, . For example, in the esterification of acrylic acid with n-butanol, the 

equilibrium conversion increased from 67.55% to 77.81% as the temperature was raised from 50°C to 

70°C [57]. Other works have also demonstrated that higher temperature favors higher degree of 

substitution in starch esterification, thus evidencing the importance of temperature in diverse 

esterification systems [58]. 

3.2.3.   Molar Ratio of Reactants 
The molar ratio of reactants is also an important factor that significantly affects the conversion and yield 
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of esterification reactions. The ideal molar ratio provides enough reactant for a reaction and a minimum 

quantity of unreacted starting materials. A study reported the optimal substrate molar ratio of 2:1 for 

esterification as an excess reactant could prevent the reaction by the increase in viscosity that can inhibit 

mass transfer and kinetics of a reaction in aggregate [59]. Relatedly, another study reported that the 

reactant molar ratios directly affect product distribution and conversion efficiencies in different 

esterification systems [60]. 

3.2.4.   Water Content 
The amount of water in the reaction system is a key factor in the esterification reaction, as water is not 

only a product but also a reactant in the hydrolytic equilibrium. The formation of esters can be reversible 

at high water concentrations and the esters are consequently converted back to fatty acids, which results 

in a decreased yield. Water content of deep eutectic solvents (DES) can significantly influence the 

reaction viscosity and the reactant mobilization revealing a reduction of viscosity that promotes optimal 

diffusion and reaction kinetics [61]. This observation was in line with another study, highlighted the 

importance of withdrawing the water products from the reaction while it progresses to the favour the 

reaction momentum and conversion to higher percentage [62]. 

3.2.5.   Reaction Time 
The reaction time is crucial to achieve a required yield in esterification reactions. There should be 

enough time to permit the reactants to mix properly and establish equilibrium. Increasing reaction time 

can lead to higher ester content but the benefits tend to diminish as the system reaches the equilibrium 

as a result of the water product generated blocking the further reaction progress [60]. Also, it has been 

reported that at certain conditions, reaction times can be optimized resulting in improved enzyme 

activity in the enzymatic esterification, which could have a significant effect on the respective 

conversion rates [63]. 

3.3.   Future Perspective for Esterification of Levulinic Acid to Ethyl Levulinate 

The esterification process of levulinic acid to ethyl levulinate remains one of the promising green routes 

for the synthesis of bio-based chemicals as a result of the increasing demand for bio-based feed stock 

in the chemical industry. Levulinic acid is largely prepared from biomass, with industrial production by 

major manufacturers such as Biofine Technology (U.S.), GF Biochemicals (Italy), and Chinese 

manufacturers; however, current production is not yet at industrial scale. The worldwide levulinic acid 

market size was USD 27.2 million in 2019 and is anticipated to progress at an 8.8% CAGR expected to 

reach USD 60.2 million by 2030, COVID-19 impact notwithstanding [64]. Although ethyl levulinate is 

a new entry into the market (a market size of 32.4 ton in 2014), the use of the compound is projected to 

increase to 49.1 ton by 2022 and US$14 million in 2026, due to the development of the production 

technology and the increase of applications in fragrances, food and biofuel. Asia Pacific, contributing 

to 30% of global levulinic acid market share in 2014, is expected to dominate as a potential market due 

to China and India industrial growth. With increasing production and cost reduction driven by process 

optimization and economy of scale, wider acceptance of ethyl levulinate across sectors is likely, 

potentially cementing its position in the renewable chemicals arena [65]. 

Many industries promote for heterogeneous catalysts because of their reusability and cost-

effectiveness [54]. However, Deep Eutectic Solvents (DES) are gaining recognition as a viable option 

for industrial applications.  DES catalysts demonstrate considerable potential, attaining high yields of 

up to 99.8% within reduced reaction times, such as 1 hour at 80°C .  Their elevated activity, combined 

with a reduced environmental impact, renders them a compelling alternative for large-scale esterification 

processes [37].  Advancements in process intensification, including continuous flow reactors and 

membrane systems, enhance heat and mass transfer efficiency, thereby reducing energy costs.  The 

utilization of agricultural residues in levulinic acid production increases both sustainability and 

economic value.  Sustainability metrics, such as life cycle impact and E-factor, are increasingly used to 

evaluate the environmental performance of processes [66], and DES catalysts show promise for reducing 

both energy consumption and greenhouse gas emissions. Life cycle assessment (LCA) studies have 

shown that DES-assisted processes, when optimized for recovery, can reduce fossil fuel consumption 
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by up to 69.72%, although DES synthesis and recovery processes remain key areas for improvement to 

lower energy input and global warming potential [67].  Optimizing reaction conditions and catalyst 

recovery enables the scaling of DES for industrial applications, in accordance with green chemistry 

principles and enhancing the bio-economy. 

4.   Conclusion 

This review emphasizes the potential of Deep Eutectic Solvents (DES) in the esterification of levulinic 

acid to ethyl levulinate. Heterogeneous catalysts are widely utilized in industries due to their reusability 

and cost-effectiveness. However, deep eutectic solvents (DES) offer notable benefits, such as increased 

yields and diminished environmental impact, positioning them as an attractive choice for industrial 

applications. Process intensification techniques, including continuous flow reactors, along with 

sustainable feedstocks such as agricultural residues, significantly improve the viability of DES. Future 

research should concentrate on enhancing DES recovery techniques and refining reaction conditions for 

large-scale application. The industrial sector needs to invest in the expansion of DES applications and 

enhance cost-effectiveness to promote widespread adoption and achieve sustainability objectives. To 

facilitate the ongoing advancement of DES in industrial applications, the following innovations are 

suggested: 

• Innovative techniques for the recovery of deep eutectic solvents (DES) are being developed to reduce 

energy consumption and enhance reusability, including the integration of membrane filtration with 

recrystallization. 

• Designing continuous flow reactors aims to optimize heat and mass transfer, enhance energy 

efficiency, and minimize environmental impact. 

• Increasing the utilization of agricultural residues as feedstocks for levulinic acid production to 

improve sustainability and economic value. 
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