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Abstract. This study presents a high-accuracy predictive model for rice production in Indonesia 

using Artificial Neural Networks (ANN), achieving an R² of 98.11%, Mean Absolute Error 

(MAE) of 0.0966, and Mean Squared Error (MSE) of 0.0189. Climate variability remains a 

significant challenge to rice cultivation in regions like Malang City, where unpredictable 

environmental factors such as rainfall, temperature, and humidity hinder effective crop planning 

and yield estimation. To address this, we developed a Multilayer Perceptron (MLP)-based ANN 

model incorporating agro-environmental variables: rainfall, temperature, humidity, harvested 

area, and production quantity. Historical data from 2009 to 2024 were sourced from the 

Meteorology, Climatology, and Geophysics Agency (BMKG) and the Central Statistics Agency 

(BPS). The dataset underwent preprocessing, including cleaning, feature extraction, Z-Score 

normalization, and partitioning into training and testing sets. The proposed ANN architecture 

consists of an input layer, three hidden layers, and an output layer for regression tasks. 

Comparative evaluation against Random Forest, K-Nearest Neighbors, and Support Vector 

Regression demonstrated the ANN’s superior ability to model complex nonlinear relationships 

in agricultural data. The results highlight the role of intelligent data-driven systems in enhancing 

the accuracy of yield forecasting, supporting sustainable agricultural practices, and informing 

national food security policy. 
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1.   Introduction  

Indonesia is one of the largest agrarian countries in the world, playing a crucial role in food supply, 

especially rice, which is the main staple for more than 270 million people [1]. As a country with diverse 

climates and geographical conditions, Indonesia faces significant challenges in rice production. Farmers 

often struggle to achieve optimal yields, especially amidst the uncertainty caused by climate change and 

varying soil conditions [2]. Increasingly erratic weather patterns, such as extreme rainfall and fluctuating 

temperatures, contribute to high uncertainty, making it difficult to predict and plan for optimal crop 

production[3]. This calls for serious attention from various stakeholders, including the government, 

researchers, and agricultural practitioners, to find effective solutions to ensure national food security[4]. 

Unpredictable weather, such as irregular rainfall, can lead to droughts or floods, both of which can 
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damage rice crops [5]. Furthermore, soil conditions, including pH levels and moisture, also play a critical 

role in determining the quality and quantity of the harvest. This uncertainty creates difficulties for 

farmers in planning production, which ultimately threatens food security in the region. Artificial Neural 

Networks (ANN), a method in artificial intelligence (AI), have been proposed as a solution due to their 

ability to model nonlinear relationships between various environmental factors and crop yields [6]. 

Unlike traditional statistical methods, ANNs can model complex dependencies between variables like 

rainfall, temperature, humidity, and soil pH, offering more accurate predictions under uncertain 

conditions [7]. ANN has also proven capable of handling irregular and noisy data, which is typical in 

agricultural contexts [8], [9]. 

Several recent studies have explored the application of advanced deep learning models, particularly 

Long Short-Term Memory (LSTM), in crop yield prediction tasks due to their effectiveness in handling 

time-series data. For instance, [10] developed an LSTM model optimized with an Improved 

Optimization Function (IOF) and demonstrated that it outperformed other architectures such as 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Gated Recurrent Units 

(GRU), achieving an RMSE of 2.19 and MAE of 25.4 Similarly, [11] compared LSTM, GRU, and CNN 

models for rice crop detection using time-series satellite data and found that temporal models like LSTM 

provided more stable and accurate results across seasonal datasets. Despite these advancements, most 

studies have focused on LSTM or CNN, while Artificial Neural Networks (ANN) remain relatively 

underutilized in agricultural prediction tasks. [12] acknowledged this imbalance and emphasized the 

potential of ANN in sustainable agrarian applications, especially where data availability is limited or 

interpretability is required. Moreover, [13] found that ANN models, although simpler, achieved 

competitive accuracy compared to LSTM for crop yield prediction based on climatic parameters. These 

findings reveal a significant research gap regarding the comparative effectiveness and applicability of 

ANN, particularly in modeling nonlinear agro-environmental relationships under climate uncertainty. 

Therefore, this study will focus solely on using ANN as the primary method for predicting rice yields. 

The ANN model in this research adopts a fixed Multilayer Perceptron (MLP) architecture with an input 

layer, three hidden layers (64, 32, and 16 neurons), and one output layer, using ReLU activation in 

hidden layers and a linear function in the output. The model inputs include weather-related variables 

(rainfall, temperature, humidity) and agricultural factors (soil pH, harvest area, and nutrients), with data 

spanning from 2009 to 2024. To ensure effective learning and generalization, preprocessing steps 

include Z-Score normalization and data cleaning. The model is trained using Stochastic Gradient 

Descent (SGD) with 200 epochs and a batch size of 32. A 5-fold cross-validation strategy is applied to 

evaluate model robustness and prevent overfitting. 

The use of a fixed architecture is intentional, as it provides a balance between performance, 

simplicity, and reproducibility—important considerations for practical implementation in sustainable 

agricultural systems. While LSTM-based models are often more complex and resource-intensive, this 

research demonstrates that a properly designed ANN can offer comparable predictive accuracy with 

greater interpretability[14], [15]. This study contributes to sustainability science by providing an 

accessible and scalable approach to intelligent crop yield forecasting. The findings can support 

agricultural planning, mitigate climate-related risks, and ultimately improve national food security. 

2.   Methods 

This study proposes the use of Artificial Neural Networks (ANN), specifically the Multilayer Perceptron 

(MLP) architecture, to predict rice yields based on weather and soil condition data. The superior 

performance of the Artificial Neural Network (ANN) model in this study can be attributed to its ability 

to model complex, non-linear relationships between agro-environmental variables. Unlike traditional 

models such as K-Nearest Neighbors (KNN) or Support Vector Regression (SVR), which depend on 

relatively simple approximation strategies, ANN utilizes multiple layers and nonlinear activation 

functions to capture intricate interactions in data with high variability and noise. These characteristics 

are especially crucial for modeling agricultural data, where environmental conditions do not follow 

linear trends. For instance, a recent study [16] in the Chhattisgarh region of India demonstrated that 

ANN models outperformed traditional regression techniques including SMLR, LASSO, and Ridge 
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Regression—in predicting rice yield, owing to their ability to handle nonlinear and high-dimensional 

climate-agriculture relationships  

 

This methodology is further illustrated in the flow chart below, which provides a visual 

representation of the steps involved, from data collection and preprocessing to model development, 

training, and evaluation. 

 

Figure 1. Research flow diagram 

2.1.   Data Collection  

The dataset used in this study consists of weather and agricultural data relevant to rice production in 

Malang City. Weather data comprising rainfall, temperature, and humidity were sourced from the 

Meteorology, Climatology, and Geophysics Agency (BMKG), while agricultural data, such as harvested 

area and rice yield from 2009 to 2024, were obtained from the Central Statistics Agency (BPS). These 

two data sources provide essential input features for the predictive model, capturing the influence of 

environmental and soil-related conditions on rice yields. 

2.2.   Data Preprocessing 

To ensure data quality and suitability for ANN modeling, several preprocessing steps were conducted. 

These include data cleaning to address missing values and outliers, feature extraction to reduce 

redundancy, and transformation of categorical variables into numerical formats[17]. The selected 

features rainfall, temperature, humidity, soil pH, moisture, and nutrients were then standardized using 

Z-Score normalization, ensuring all features have a mean of 0 and standard deviation of 1. 

. 

2.3.   Normalization (Z-Score) 

To ensure that all the features contribute equally to the model, normalization is applied to the dataset. 

The Z-Score normalization method is used to transform the data so that each feature has a mean of 0 

and a standard deviation of 1. This is especially important in ANN models, as the scaling of the data 

impacts the performance and convergence speed of the network. 

2.4.   Splitting Data (Train & Test) 

The dataset is split into two subsets: one for training the model and the other for testing its performance. 

Typically, around 70-80% of the data is used for training, and the remaining 20-30% is reserved for 

testing. This division helps evaluate how well the model generalizes to unseen data. 

2.5.   ANN Model Development 

This study adopts the Multilayer Perceptron (MLP) architecture of Artificial Neural Networks (ANN) 

for rice yield prediction. The model consists of an input layer with five features—rainfall, temperature, 

humidity, harvest amount, and harvest area—which represent key environmental and agricultural 

factors.   
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Figure 2. ANN  architecture 

As shown in Figure 2, the ANN architecture includes three hidden layers with 64, 32, and 16 neurons, 

respectively. Each layer uses the ReLU activation function to capture non-linear relationships within the 

data. These hidden layers enable the model to learn complex interactions, such as how temperature and 

humidity jointly influence rice growth. The final output layer contains a single neuron with a linear 

activation function, suitable for generating continuous output values in regression tasks. 

 

2.6. Model Training with K-Fold Cross Validation 

To evaluate the robustness and generalization of the model, a 5-fold cross-validation strategy was 

employed. The dataset was split into five equal parts; in each iteration, four parts were used for training 

and one part for testing. This process was repeated five times so that each subset served once as the 

testing set. The final performance metrics were averaged across all folds to assess model stability and 

reliability under varying data partitions. 

The training process utilized a feedforward propagation mechanism, where the input data flows 

through multiple layers to compute predictions, followed by backpropagation for updating the model’s 

weights. The optimization was carried out using Stochastic Gradient Descent (SGD) as the learning 

algorithm. The learning rate was set to 0.01, and the momentum was fixed at 0.9 to accelerate 

convergence and prevent local minima. The model was trained for 1,000 epochs per fold, with a batch 

size of 32 samples per iteration. Early stopping was not used, as the cross-validation strategy already 

provided a form of regularization and robustness check. The relatively high number of epochs ensured 

that the model had sufficient opportunity to converge, especially given the non-linear and multi-

dimensional nature of agro-environmental data. 

No hyperparameter tuning was applied in this study. Instead, the architecture and training parameters 

were predefined based on insights from prior empirical research and commonly adopted best practices 

for applying ANN in agricultural yield forecasting. This deliberate use of a fixed configuration was 

intended to balance model performance with computational efficiency, making the approach more 

accessible and reproducible especially in scenarios with limited computing resources or in field-based 

agricultural settings. 

 

2.7 Evaluation Matrix 

The performance of the ANN model is evaluated using three standard regression metrics: Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). MAE measures the average 

magnitude of prediction errors, providing a straightforward indication of accuracy[18]. RMSE penalizes 

larger errors more heavily, offering insight into prediction consistency[19]. R² evaluates how well the 

model explains the variance in the actual data, with values closer to 1 indicating stronger predictive 

power[20]. Together, these metrics offer a comprehensive assessment of model accuracy and 

generalization ability. 
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3.   Results and Discussion 

3.1.   Data Collection 

The dataset used in this study was sourced from BMKG and BPS, covering the years 2009–2024. 

Weather data include average temperature (°C), humidity (%), and rainfall (mm), while agricultural data 

consist of harvested area and rice yield (tons). These features serve as key inputs for predicting rice 

production using the ANN model. 

Table 1. Used Variables 

Category Variable Name Unit 

Input Features Average Temperature °C  
Humidity %  
Rainfall mm  
Harvest Area Hectares 

Output(Target) Rice Yield Tons 

These variables capture essential agro-environmental conditions that influence rice yield and form 

the basis of model training and evaluation. 

 

3.2.   Data Preprocessing 

Proper data preprocessing is essential to ensure that the data used in the Artificial Neural Networks 

(ANN) model is of high quality and suitable for analysis. The steps involved in data preprocessing are 

as follows: 

 

3.2.1.   Data Cleaning  

Before training the ANN model, data cleaning was conducted to ensure quality and reliability. The raw 

dataset contained several missing values, duplicate entries, and potential outliers. Missing values were 

addressed using mean or median imputation based on the distribution of each variable. Duplicate records 

were removed to prevent redundancy, and outliers were either corrected or excluded to avoid skewing 

the model. Table 2 presents examples of how missing or invalid values were handled during this process. 

 

Table 2. Data cleaning process 

Variable Original Value 
Imputed Value 

(Mean/Median) 

Temperature 22.5 23.0 

Rainfall NULL (8888) 120.0 

Humidity 78.2 78.2 

 

To further support data validation, Figure 1 illustrates the distribution and trend of rice production 

against key environmental variables such as average temperature (TAVG), rainfall (RR), and relative 

humidity (RH_AVG). These visualizations reveal the influence of each variable on rice yield over time 

and help identify extreme values or anomalies. For example, significant dips or spikes in rainfall or 

temperature often correspond with changes in production levels. Such visual checks are essential for 

confirming data integrity prior to model training. 

 

 
Figure 3. Production distribution to environmental variables 
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3.2.2.   Data Extraction and Transformation 

Data transformation and extraction are critical steps in preparing the dataset for the Artificial Neural 

Networks (ANN) model. During data extraction, only the relevant features from both the weather and 

agricultural datasets are selected, ensuring that unnecessary variables are excluded, which reduces 

redundancy and enhances model efficiency. This includes key environmental factors such as 

temperature, rainfall, and humidity, as well as agricultural variables like harvest area. 

Table 3. Selected Features for Model 

Feature Description 

Temperature (°C) Average temperature for the season 

Rainfall (mm) Total rainfall during the growing season 

Humidity (%) Average humidity during the season 

Rice Yield (tons) Total rice yield for the season (target variable) 

Harvest Area (hectares) Area of land used for rice cultivation 

 

The data transformation process follows, which standardizes the format of the dataset. This involves 

converting categorical variables into numerical values through encoding and aligning measurement units 

for consistency across the dataset, such as ensuring rainfall is in millimeters and temperature in degrees 

Celsius. These combined steps ensure that the data is both streamlined and consistent, making it ready 

for model training. 

3.2.3.   Z Score Normalization 

Z-Score normalization was applied to standardize all features, ensuring they have a mean of 0 and a 

standard deviation of 1. This step is crucial for ANN models, which are sensitive to differences in 

feature scales. 

Table 4. Z-Score Normalization 

Feature Original Value Z-Score Normalized Value 

Temperature 22.5 -0.75 

Rainfall 120 1.25 

Humidity 78.2 -0.20 

Soil pH 5.8 0.10 

 

As shown in Table 4, Z-Score normalization brings all features onto a comparable scale, helping the 

model learn more effectively. Without normalization, features like rainfall—due to their larger 

numerical range—could disproportionately influence the learning process. Standardizing the input 

ensures balanced contributions from all variables and improves the model’s prediction accuracy. 

 

3.2.4.   Split Data 

To evaluate model performance and generalization, the dataset was divided into training and testing 

subsets. Approximately 70–80% of the data was used for training, enabling the ANN to learn patterns 

and minimize prediction errors. The remaining 20–30% served as test data to assess the model’s ability 

to make accurate predictions on unseen inputs. This approach helps prevent overfitting and ensures 

reliable evaluation on real-world scenarios. 

 

3.3.   Modelling and Evaluation 

This section evaluates the performance of four machine learning algorithms: Artificial Neural Networks 

(ANN), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Regression (SVR), all 

selected for their effectiveness in handling complex regression tasks.To ensure robustness and reduce 

the risk of overfitting, model evaluation was conducted using a 5-fold cross-validation strategy. This 

iterative process provided a more reliable estimate of model performance across different data partitions. 
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The evaluation used R²-Score, Mean Absolute Error (MAE), and Mean Squared Error (MSE) to measure 

model accuracy and error levels. ANN was chosen as the primary model due to its ability to capture 

non-linear relationships in agricultural data. RF, KNN, and SVR served as comparative models, each 

offering different strengths—such as RF’s handling of feature interactions, KNN’s local proximity 

modeling, and SVR’s kernel-based decision boundaries. Among the four, the ANN model achieved the 

best performance with an R² score of 98.11%, indicating it could explain nearly all the variance in rice 

yield. Despite a slightly higher MAE (0.0966) compared to RF, its overall prediction accuracy was 

superior. The ANN's MSE was also low at 0.0189, showing minimal error between predicted and actual 

values. These results demonstrate that ANN effectively learns the complex interactions between input 

features like weather conditions, soil characteristics, and irrigation practices. Its strong performance 

reaffirms its suitability for non-linear forecasting tasks in agriculture, particularly in rice yield 

prediction. The internal structure of the proposed Artificial Neural Network, including the number of 

hidden layers and activation functions used, is visually depicted in Figure 2. 

 
Figure 4.  Actual Vs Predicted for ANN Model 

 

The plot demonstrates that the ANN model produces predictions that are nearly identical to the actual 

observed values. This suggests a strong relationship between the predicted and actual outcomes and 

highlights the effectiveness of ANN in capturing the underlying patterns in rice yield prediction. Also, 

the Learning Curve for ANN in Figure 3 shows that as the model gets more data, its performance 

stabilizes and remains consistent across both training and cross-validation sets, suggesting a well-trained 

model with good generalization. This matches the Actual vs Predicted plot, where the model's predicted 

values are very close to the actual values, confirming the model’s robustness in making accurate 

predictions. 

 
Figure 5. Cross Validation and Training ANN 

 

For a more comprehensive evaluation, we also compared the ANN model with other machine 

learning models commonly used in regression tasks. The results of these models are summarized below: 

Table 5. results of these models 

Model R2 MAE MSE 

Artificial Neural Network 98.107207 0.096600 0.018928 

Random Forest 97.834867 0.1611 0.181447 

K-Nearest Neighbors 78.730988 0.2655 0.286234 

Support Vector Regression 76.990749 0.2910 0,455139 

 

The ANN model's ability to capture complex, non-linear relationships in the data makes it 
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particularly suitable for agricultural predictions, where the interactions between variables like soil 

moisture, temperature, and humidity can be highly intricate. ANNs can model these interactions better 

than traditional linear models or tree-based methods, making them highly effective for forecasting rice 

yields in varying climatic and environmental conditions. This results is clearly reflected in the 

performance metrics shown in Figure 4, where the ANN outperforms other models across all evaluation 

criteria (R², MAE, and MSE). 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Performance comparison of rice yield forecasting models: 

(a) R² scores,(b) Mean Absolute Error,(c) Mean Squared Error  

 

Given the non-linear nature of agricultural data, ANNs are well-suited for modeling rice yield 

predictions. They are capable of handling the complex relationships that exist between input features 

(weather data, soil type, irrigation, etc.) and the output (rice yield). The ability of ANNs to model such 

complex interactions makes them a preferred choice in this context.In comparison, Random Forest and 

K-Neighbors were chosen for their flexibility in capturing feature interactions and local relationships, 

respectively. However, their performance was not as strong as ANN, indicating that ANNs provide a 

more accurate and robust approach for rice yield prediction. 

The high accuracy of ANN enables predictive tools that support farmers’ decisions (planting, 

irrigation, harvesting) and government strategies (logistics, subsidies, resource allocation). For 

sustainable agriculture, such models aid in reducing inputs, improving land use, and supporting food 

security. 

However, limitations exist, the model used fixed parameters (no hyperparameter tuning), relies on 

region-specific data (Malang), and lacks interpretability. To enhance generalizability and transparency, 

future research should explore explainable AI (XAI), larger multi-regional datasets, and sensor-based 

inputs. In conclusion, the ANN model shows strong promise for real-world agricultural applications, 

particularly in supporting climate-resilient farming and food system planning at regional and national 

levels. 

4.   Conclusion 

This study confirms the effectiveness of Artificial Neural Networks (ANN), particularly the Multilayer 

Perceptron (MLP) architecture, in predicting rice yields based on agro-environmental variables. By 

integrating weather and agricultural data specifically rainfall, temperature, humidity, harvest area, and 

harvest quantity the ANN model successfully captured complex nonlinear relationships that influence 
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rice production. The model achieved high prediction accuracy, with an R² score exceeding 98%, 

outperforming other machine learning models such as Random Forest, K-Nearest Neighbors, and 

Support Vector Regression. Beyond model accuracy, the findings highlight the potential of ANN to 

support data-driven decision-making in agriculture. The predictive insights from the model can assist 

policymakers, agricultural agencies, and farmers in planning adaptive strategies for planting schedules, 

irrigation management, and resource allocation particularly under climate uncertainty. However, this 

study also acknowledges certain limitations. The fixed ANN architecture, while interpretable and 

efficient, may not generalize optimally across different crops or regions without further tuning. 

Moreover, the model relies heavily on historical environmental data; future work should consider 

integrating remote sensing data and dynamic weather forecasts to enhance predictive robustness. Future 

research should also explore hybrid models that combine ANN with domain-specific knowledge or 

optimization frameworks to further improve interpretability and scalability in diverse agricultural 

settings. Overall, the study contributes to the advancement of sustainable precision agriculture by 

offering a practical, scalable AI-based tool for yield forecasting and adaptive planning, supporting 

national efforts toward food security and climate resilience. 
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