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Abstract. Short-Term Load Forecasting is crucial for grid stability and real-time energy 

management, particularly in residential settings where consumption is highly volatile and 

influenced by behavioral and external factors. Traditional models struggle to capture complex, 

non-linear patterns. This study proposes a forecasting framework based on the DLinear model, 

which decomposes time series data into trend and seasonal components using a simple linear 

neural network architecture. Designed for multi-horizon forecasting, the model predicts 

electricity demand across several future time points simultaneously. Experimental results show 

that DLinear performs best at a 24-hours prediction length, achieving the lowest mean absolute 

error of 5.11, indicating improved accuracy with longer horizons. These results confirm 

DLinear’s robustness in modeling residential electricity patterns and support its use in adaptive 

energy management within smart grid systems. DLinear shows strong potential for multi-horizon 

forecasting, offering a lightweight and efficient alternative to both traditional single-horizon 

models and computationally intensive transformer-based approaches.  
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1.   Introduction 

Short-Term Load Forecasting (STLF) plays an important role in energy management, with residential 

electricity demand presenting significant forecasting challenges due to its non-stationary nature, strong 

behavioral dependencies, and temporal volatility among households Click or tap here to enter text. [1], 

[2], [3], [4]. STLF aims to predict electricity demand over short time horizons, typically from minutes 

to a few hours ahead. It is essential for maintaining grid stability, balancing supply and demand, and 

enabling real-time energy dispatch [5]. While traditional STLF has focused on aggregated demand, 

forecasting at the individual household level presents a new set of challenges due to the high variability 

and uncertainty inherent in residential consumption. Household electricity usage is strongly influenced 
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by personal behaviors, daily routines, and irregular appliance usage patterns, making the load profiles 

highly volatile and challenging to model with conventional statistical methods [6]. These uncertainties 

lead to prediction errors, particularly in capturing peak loads, which are further amplified by phenomena 

such as the double penalty effect, where early or late errors in predicting demand spikes are penalized 

equally.  

STLF is classified within the group of time-series problems. There are two categories of approaches 

to solving the STLF problem, which can use classical methods and machine learning methods [7] [8]. 

Classical methods such as Auto-Regressive Integrated Moving Average (ARIMA) method are widely 

adopted for STLF as they require only historical load data and make no additional assumptions [9], [10]. 

However, Amin et al. [10] found that ARIMA shows limited performance in short-term load forecasting 

applications due to its inability to effectively model nonlinear data patterns. On the other hand, Support 

Vector Regression (SVR) provides better accuracy than ARIMA as it can predict electricity 

consumption patterns, which ARIMA fails to predict. Machine learning methods are a more reliable 

solution to implement compared to classical methods, as they can better capture more complex non-

linear relationships  [11], [12], [13], [14], [15]. Nevertheless, SVR is limited to forecasting only one step 

ahead by default, so it cannot be used for multi-horizon forecasting [16], [17] compared Long Short-

Term Memory (LSTM) and Recurrent Neural Network (RNN) for short-term load forecasting.  

Multi-horizon forecasting allows a model to predict several future time steps simultaneously, offering 

significant benefits over traditional single-step models that predict only one time point at a time. This 

approach improves the accuracy of forecasting by capturing the underlying temporal dependencies over 

multiple horizons, thus reducing errors, especially when predicting peak loads, which are often 

challenging due to their volatility [18]. Transformer models, on the other hand, are designed to handle 

multi-horizon forecasting more effectively by using attention mechanisms to focus on relevant past time 

steps, which allows them to better capture long-range dependencies [19]. However, transformers are 

computationally expensive and require significant resources, making them less suitable for real-time 

applications or environments with resource constraints [20]. LSTM can be adapted for multi-horizon 

forecasting by learning patterns across multiple time steps, but they often face challenges in capturing 

long-term dependencies and maintaining performance over extended horizons. This results in 

performance degradation as the forecast horizon increases. 

Previous research on short-term residential electricity load forecasting has shown various limitations. 

LSTM shows that performance is influenced by the number of lookbacks, which represent historical 

hours before the current hour. When the lookback used is fewer than 10, the accuracy of the model 

increases. However, when using 10 lookbacks the accuracy decreases and error increases. It shows that 

short-term load forecasting using LSTM only provides better accuracy if using less than 10 lookbacks 

[20]. Residential electricity that is influenced by social activities, weather, and day needs an accurate 

model to capture dynamic patterns and improve forecasting accuracy. In order to capture those dynamic 

patterns, Neethu et al. [21] used Dynamic Mode Decomposition (DMD) that shows DMD is adaptive to 

multiple seasonal and cyclic patterns. Adaptability suited for short-term residential electricity load 

forecasting is influenced by many external factors. The consequence of the existence of dynamic 

patterns is the emergence of trend change patterns that are characteristic in time series forecasting in 

terms of STLF. The handling of these trends can be achieved through DLinear approach [22]. DLinear 

is more accurate in capturing trends in time series data, because this model specifically processes the 

trend components [23]. In addition, DLinear has a simple structure and can better extract trends and 

seasonal features through time decomposition that are suitable for residential electricity that is 

influenced by external factors [24].  

The main contribution of this work is a forecasting framework that addresses the challenges of short-

term residential electricity prediction across multiple time horizons by integrating time series 

decomposition with a linear neural network structure through DLinear model. In this context, multi-

horizon refers to multi-step predictions, where the model forecasts electricity demand at several future 

time points simultaneously. The proposed approach enables accurate long-range short-term forecasting 

while remaining lightweight and robust in handling the volatility of household-level consumption. This 
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design allows flexible control over prediction length, making it adaptable to various operational 

requirements in residential energy management. 

2.   Methods 

DLinear is a time series forecasting approach designed to address the limitations of traditional 

Transformer-based models, particularly in terms of computational efficiency and the ability to capture 

long-term temporal trends. While the Transformer architecture has proven highly effective for natural 

language processing tasks, it tends to perform poorly when applied to time series data due to difficulties 

in modeling smoothly increasing or decreasing trends over time. Moreover, the complex structure of 

Transformers, originally built for sentence-level semantic understanding, results in excessive 

computational overhead when used for time series analysis [25]. 

To overcome these issues, DLinear applies a simple yet effective strategy by decomposing the input 

time series taken from a lookback window of length L into two separate components: trend and 

remainder. The trend component is extracted using a moving average, capturing the long-term behavior 

of the signal, while the remainder component represents short-term fluctuations and noise. Each 

component is then passed through its own linear layer, then the final prediction is obtained by summing 

up the outputs of both linear projections. This separation allows the model to learn different temporal 

dynamics using lightweight linear operations that enabling better interpretability and faster inference 

compared to other deep neural networks.  

 
Figure 1. Architecture of DLinear showing the input-output mapping. The model takes a lookback 

window of length L from historical time series data as input, which is decomposed into two 

components: the trend (capturing long-term patterns) and the remainder (representing short-term 

fluctuations). Each component is processed independently through a linear projection layer. The 

outputs from both projections are then summed to generate the final prediction. 

 

Figure 1 shows the architecture of DLinear that was used in this study. The DLinear architecture 

combines time series decomposition with linear modeling for effective forecasting. The model uses a 

lookback window of length L from historical data, which is decomposed into two components: the trend 

(capturing long-term patterns) and the remainder (representing short-term fluctuations). Each 

component is processed separately using a linear projection, and their outputs are summed to produce 

the final prediction. This approach allows DLinear to capture both trends and noise with fewer 

parameters than complex deep learning models. 
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For preprocessing, we apply standard scaler normalization based on the training data range, with 

validation and test subsets following the same range. We then use a sliding window approach, where 

the window size is L, and the window shifts by one time step at a time to generate the features for 

forecasting. 

3.   Results and Discussion 

 The proposed method was evaluated using the OpenEI dataset. This dataset contains hourly 

residential load demands from a variety of cities and states across the United States. For this study, one-

year load data from a selected region in 2012 is used. For this study, we selected the NY subset, which 

is publicly available and includes data from 24 individual households, and is commonly used in prior 

research for its widespread adoption. The model's performance was assessed using Mean Absolute Error 

(MAE), in Equation (1). MAE calculates the average of the absolute differences between predicted and 

actual values, treating all errors equally regardless of their magnitude, thus providing a more 

interpretable and balanced view of overall prediction accuracy. MAE provides a straightforward 

understanding of the typical size of prediction errors. 

  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌𝑖 −  Ŷ𝑖|𝑛

𝑖=1      (1) 

where n is the total household number, 𝑌𝑖 is the ith actual value, and 𝑌�̂� is ith predicted value. 

The configuration outlined in Table 1 provides insight into how the model is optimized during 

training. The model is set to run for a maximum of 100 epochs, with a batch size of 32, allowing it to 

process 32 samples at a time for each update step. A patience value of 3 is implemented as part of an 

early stopping strategy, meaning that training will cease if the validation loss does not improve for 3 

consecutive epochs, helping to prevent overfitting and reduce unnecessary training time. As shown in 

Table 2, the model is evaluated under three different prediction lengths 6-hours, 12-hours, and 24-hours 

to assess its performance across various forecasting horizons. The actual number of epochs completed 

before early stopping varies depending on the prediction length: training halts at the 13th epoch for the 

6-hour forecast, at the 11th epoch for the 12-hour forecast, and once more at the 13th epoch for the 24-

hour forecast. These results indicate that the model typically converges relatively quickly, and the early 

stopping mechanism effectively prevents overtraining by identifying when the model’s performance has 

plateaued. 

 Table 1. Hyperparameter Settings 

Name Value 

The number of times the entire experiment is repeated 3 

Epochs 100 

Batch size 32 

Patience 3 

Learning rate 0.0001 

Loss function mean absolute error 

We evaluate the performance of DLinear using a lookback and prediction window of 6-hours, 12-

hours, and 24-hours. Our findings indicate that the model's performance generally improves with longer 

lookback and prediction windows, with a notable increase in accuracy observed at a 24-step 

configuration, consistent with these findings. As shown in Table 2, the MAE consistently decreases as 

the lookback and prediction windows increase, with the most pronounced improvement observed at 24-

hours. These results suggest that DLinear performs satisfactorily in short-term load forecasting tasks. 

However, the risk of overfitting becomes more evident with longer lookback windows, warranting 

careful consideration in practical applications.  
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Table 2. Mean Absolute Error Result of the DLinear Model for Three Different Prediction Lengths 

Compared to Other Models 

 

Model 

Value for each prediction length 

 6-hours 12-hours 24-hours 

LSTM 6.15 6.49 8.64 

Transformer 6.20 6.12 6.24 

DLinear 5.78 5.68 5.11 

When comparing DLinear to other models, such as LSTM and Transformer, it consistently 

outperforms both in terms of MAE across all prediction horizons. Specifically, at the 24-hours prediction 

horizon, DLinear achieves the lowest MAE of 5.11, significantly outperforming LSTM (MAE of 8.64) 

and Transformer (MAE of 6.24). This superior performance highlights DLinear’s efficiency, reliability, 

and robustness in handling multi-horizon forecasting tasks, where capturing long-term dependencies 

and fluctuations is critical. The lower MAE observed in DLinear suggests it is better at generalizing 

across multiple horizons, especially when handling the inherent volatility of residential electricity 

demand. Furthermore, DLinear's simplicity and computational efficiency make it a highly viable 

solution for real-time applications, in contrast to the more complex and computationally expensive 

Transformer model, which, although powerful, requires significantly more resources. 

Example of prediction results in 6-hours, 12-hours, and 24-hours shown in Figure 2. The plots 

compare the actual load values (ground truth) with the predicted values at each time step using solid 

black and dashed blue lines, respectively. In the 6-hours forecast (Figure 2a), the model demonstrates 

reasonable accuracy, capturing the general trend of the actual data, although it slightly underestimates 

the magnitude of the load. The predictions are relatively close to the ground truth, indicating that the 

model performs well in the very short term. 

As the prediction horizon extends to 12-hours (Figure 2b), the accuracy of the model begins to 

decline. While the model still captures some overall trends, the predicted values begin to diverge more 

noticeably from the ground truth. This is typical in time-series forecasting, where uncertainty increases 

with time. In the 24-hours forecast (Figure 2b c), the performance further deteriorates. The predicted 

curve shows a smoothed version of the actual data, failing to capture some of the more abrupt changes 

and exhibiting both under- and over-estimations. This suggests that while the model retains some 

awareness of the general load pattern, it becomes less sensitive to fluctuations as the prediction window 

widens. Overall, the analysis indicates that the model is effective for very short-term forecasts (up to 6 

hours) but less reliable for longer horizons, which is a common limitation in STLF tasks. These findings 

are important for applications such as smart grid operation, demand response, and energy management, 

where accurate short-term forecasting is critical for operational efficiency and stability. 
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Figure 2. Example of Ground Truth vs Prediction in (a) 6-hours, (b) 12-hours, and (c) 24-hours 

4.   Conclusion 

This study introduces a decomposition-based linear neural network framework, DLinear, designed 

for multi-horizon short-term residential load forecasting. By integrating time series decomposition into 

trend and remainder components, DLinear effectively addresses the volatility and irregularity of 

household electricity consumption while maintaining a lightweight and interpretable structure. 

Evaluation on the OpenEI dataset demonstrated the model’s strong performance across different 

prediction horizons, with accuracy improving for longer prediction windows, particularly at 24 hours. 

These findings confirm DLinear’s ability to adapt to varying operational demands in energy 

management. 

However, while promising accuracy improvements were observed with longer prediction windows, 

the potential trade-off with overfitting suggests the need for further tuning and validation. We also 

acknowledge several limitations in our work. First, the use of data from a single region may limit 

generalizability to other areas with different consumption behaviors. Second, the exclusion of external 

factors, such as weather and occupancy, reduces the model's ability to adapt to broader real-world 

scenarios. 

For future research, we plan to explore the generalization of DLinear to multi-regional datasets and 

incorporate external contextual features like weather conditions and demographic data. Additionally, we 

aim to investigate hybrid architectures combining decomposition with lightweight attention mechanisms 

to further enhance model performance. 
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