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Abstract. Rendering efficiency is a critical factor in cross-platform animation development. This 

study benchmarks the performance of Java Processing and P5.js by measuring frame rates and 

frame counts across six heterogeneous computing devices for 2D and 3D animation tasks. Each 

benchmark was executed under standardized conditions for 60 seconds, and performance data 

were collected at fixed intervals. Results indicate that Java Processing consistently achieves 

higher rendering efficiency, with up to 313% greater frame rates and 265% higher frame counts 

compared to P5.js, particularly in computationally intensive 3D scenarios. These differences are 

attributed to Java Processing’s compiled execution and direct OpenGL integration, while P5.js 

performance is constrained by browser-based execution and limited GPU utilization. The 

findings suggest Java Processing is preferable for high-performance simulations and complex 

visualizations, whereas P5.js remains effective for lightweight web-based 2D applications.  
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1.   Introduction  

Processing is an open-source software environment widely adopted for creating images, animations, and 

interactive visualizations. Initially co-developed by Casey Reas and Benjamin Fry, it evolved as a 

programming sketchbook that integrates multiple languages and OpenGL libraries to simplify graphics 

rendering [1], [2], [3]. Processing primarily relies on Java mode as its default configuration, offering 

direct access to 2D and 3D rendering pipelines [4], [5]. However, performance inconsistencies have 

been reported, such as frame rate degradation and rendering failures under complex tasks [6]. 

As an alternative, P5.js extends the Processing paradigm into JavaScript, enabling creative coding 

on the web and seamless integration with HTML and OpenGL [7–9], [10], [12]. While P5.js simplifies 

cross-platform deployment, its browser-based execution model introduces constraints in GPU utilization 

and rendering efficiency [11–13]. Prior studies have examined JavaScript applications in creative coding 

and visualization contexts [14], [15,16], and the OpenProcessing community has demonstrated the 

versatility of P5.js for education and collaborative coding [17–19]. Nonetheless, these studies often 

focus on qualitative features, usability, or pedagogical value, rather than rigorous benchmarking of 

rendering performance. 

Benchmarking studies in related visualization domains highlight the need for systematic evaluation 

across heterogeneous devices [20–22]. Despite Processing and P5.js being widely used for generative 

art, digital education, and interactive media, there is limited empirical evidence comparing their 

computational efficiency across multiple hardware platforms. This gap is critical because rendering 

performance—measured through frame rate (FPS) and frame count—directly influences animation 

quality and user experience. 

Therefore, this study conducts a comparative benchmarking of Processing (Java mode) and P5.js 

across six devices with diverse specifications. By analyzing 2D and 3D rendering tasks under 

standardized conditions, the research aims to provide empirical evidence on the performance trade-offs 

between these frameworks, thereby guiding developers and designers in selecting suitable platforms for 

computationally intensive versus lightweight web-based applications. 

To strengthen this research, a preliminary literature study was conducted to identify relevant works 

across scientific journals, proceedings, and academic books. This step provided a foundation for defining 

the research scope and ensured methodological rigor in benchmarking [23] 

2.   Methods 

The methodology of this study consists of several stages: defining the experimental design, configuring 

the hardware platforms, executing benchmarking procedures, and analyzing performance data. 

2.1.   Experimental Design 

This study benchmarks the rendering performance of Java Processing and P5.js by executing identical 

2D and 3D animation tasks. The animations were designed with controlled levels of geometric 

complexity to ensure fair comparison between frameworks. Three representative scenarios were 

implemented: (i) a 2D translation of simple shapes, (ii) a rotating 3D cube with basic shading, and (iii) 

a composite 3D object with simultaneous rotation and scaling. These tasks were selected to reflect 

increasing computational demands, allowing systematic evaluation of rendering efficiency. 

2.2.   Hardware Configuration 

Benchmarking was conducted on six heterogeneous computing devices representing a variety of CPU, 

GPU, RAM, and storage specifications (Table 1). This diversity enables generalization of performance 

results across both low-end and high-end systems. Each device was tested under identical conditions, 

with no background processes permitted during execution to minimize external interference. 
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Table 1. Hardware List 

 

Comp id CPU GPU (VRAM) Storage 

Comp 1 Apple M1 Integrated GPU 8 GB 

Comp 2 Intel Core i3-10100F AMD Radeon RX 6600 (8 

GB) 

8 GB 

Comp 3 Intel Core i5-8365U Intel UHD 620 (shared) 16 GB 

Comp 4 Intel Core i3-6006U Intel HD Graphics (shared) 4 GB 

Comp 5 Intel Core i5-11500B Intel UHD Graphics (shared) 8 GB 

Comp 6 AMD A9-9420E Integrated (shared) 8 GB 

 

2.3.   Testing & Data Logging 

Following best practices in image processing and rendering evaluations, each benchmark animation was 

executed for 60 seconds, with FPS and frame count logged every 5 seconds. To minimize interference, 

background processes were disabled. Each scenario was repeated five times per device to ensure 

reproducibility. To avoid bias from JVM warm-up effects, the analysis emphasizes steady-state 

performance; specifically, the first 5 seconds of each run were excluded, consistent with recent 

guidance that Java microbenchmarks may not reliably reach a stable regime without explicit controls 

[23].  

2.4.   Data Collection Metrics 

Performance evaluation was based on two primary metrics: 

• Frames Per Second (FPS): measures rendering smoothness and real-time responsiveness. 

• Frame Count: total number of frames rendered during the 60-second test interval. 

These metrics together provide a comprehensive view of rendering efficiency for both 2D and 

3D animation scenarios. 

2.5.   Animation Design  

The animation design adopted a progressive complexity strategy, consistent with prior visualization 

and interaction studies that emphasize incremental task difficulty to test rendering performance [24], 

[25]. Previous works in virtual and augmented reality also highlight the importance of controlled 

scenarios in evaluating user experience and system responsiveness [26], [27], [28], [29]. Accordingly, 

this study implemented three benchmark tasks: (i) simple 2D translation, (ii) 3D cube rotation with 

shading, and (iii) composite 3D object with rotation and scaling, enabling fair comparison between 

Java Processing and P5.js. 

2.6.   Data Analysis 

Performance data were summarized as mean ± standard deviation (SD) for FPS and frame count. 

Relative efficiency was quantified using comparative ratios, and statistical significance was assessed 

with paired t-tests and repeated-measures ANOVA (platform × task). Consistent with established 

evaluation frameworks, we interpret results in light of perceptual findings on high-frame-rate video—

higher frame rates generally improve perceived quality; accordingly, we report thresholds at ≈24/30/60+ 

FPS for context (Table 2) [20–22]. 

Table 2. Style Summary 

 

Frame Range Description 

< 15 Unusable / stuttering 

24 Traditional animation standard 

30 Interactive applications 

> 60 High-performance rendering 
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2.7.   Summary of Methodology Approach 

Overall, the methodological approach combines controlled animation design, standardized 

benchmarking protocols [30], and validated statistical analysis frameworks [31]. This integration 

ensures that the comparison between Java Processing and P5.js is both systematic and reproducible, 

providing reliable insights for rendering performance evaluation. 

3.   Results and Discussion 

This section reports the measured FPS and cumulative frame counts from identical animations executed 

in Java Processing and P5.js across six heterogeneous computers. Figure 1 illustrates the frame-

information overlay used in all benchmarks, exposing real-time FPS and cumulative frame count to 

support subsequent analysis 

 
Figure 1. Frame-information overlay used during benchmarking (FPS, frame count, elapsed time).  

 
1. Animation 1 

 
(a)                                              (b) 

Figure 2. (a) without frame-information overlay; (b) with frame-information overlay. 

2. Animation 2 

 
(a)                                              (b) 

Figure 3. (a) without frame-information overlay; (b) with frame-information overlay. 
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3. Animation 3 

 
 

(a)                                              (b) 

Figure 4. Benchmark animation 3: (a) without frame-information overlay; (b) with 

frame-information overlay. 

3.1.   Descriptive  Results 

The evaluation methodology revolves around analyzing the frame rate and frame count generated during 

the execution of animations in both modes. These values serve as descriptive statistics to capture the 

efficiency of each library in rendering outputs [9].  FPS and frame count are widely used in prior 

benchmarking studies as reliable indicators of animation smoothness and system responsiveness [30]. 

Table 3. Animation Frame Results 1 Computer 1 

Animation Test Data 1 

Time (s) 

Java P5.js 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

5 139 446 61 302 

10 139 1144 57 602 

15 141 1857 62 902 

20 143 2581 58 1202 

25 141 3303 58 1502 

30 128 4009 58 1802 

35 150 4757 63 2102 

40 148 5508 58 2402 

45 145 6264 62 2702 

50 153 7014 63 3002 

55 155 7765 60 3302 

60 155 8530 58 3602 

 

Table 4. Animation Frame Results 2 Computer 1 

Animation Test Data 2 

Time (s) 

Java P5.js 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

5 89 268 3 22 

10 109 806 3 40 

15 116 1370 3 58 

20 120 1945 3 76 

25 119 2527 3 95 

30 115 3099 3 113 
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35 116 3671 3 131 

40 116 4247 3 149 

45 113 4824 3 167 

50 108 5391 3 186 

55 117 5969 3 204 

60 117 6544 3 222 

 

Table 5. Animation Frame Results 3 Computer 1 

Animation Test Data 3 

Time (s) 

Java P5.js 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

Frame Rate 

(FPS, mean ± SD) 

Frame Count 

(frames, mean ± 

SD) 

5 100 345 59 301 

10 124 920 59 604 

15 130 1556 58 907 

20 131 2188 47 1210 

25 120 2814 61 1506 

30 123 3399 58 1802 

35 118 4000 61 2098 

40 120 4601 48 2394 

45 117 5197 31 2689 

50 120 5791 53 2985 

55 119 6389 46 3278 

60 122 6989 63 3568 

 

On average, Java Processing achieved 92.4 FPS (±3.1) in 2D scenarios, while P5.js averaged 28.7 FPS 

(±2.8). The difference was statistically significant (t-test, p < 0.01), confirming Processing’s advantage 

in consistent frame generation. 

3.2.   Determine the Value of Comparison 

Determining the comparison value is done by comparing the total java frame rate with the total P5.js 

frame rate, and comparing the results of the java and P5.js frame count using the following formula: 

 

 𝑅𝑟 =  
𝐹𝑟

𝑙𝑜𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎
  (1)  

 𝑆𝑟 =  
𝑅𝑟 𝐽𝑎𝑣𝑎

𝑅𝑟 𝑃5𝑗𝑠 
  (2)  

 𝑆𝑐 =  
𝐹𝑐 𝐽𝑎𝑣𝑎

𝐹𝑐 𝑃5𝑗𝑠
  (3)  

 (1) is average frame rate calculation formula, (2) is frame rate comparison ratio formula, (3) frame 

count comparison ratio formula. Where: 

𝑅𝑟: average frame rate 

𝐹𝑟: Total frame rate 

𝑆𝑟: frame rate comparison ratio 

𝑆𝑐: frame count comparison ratio 

𝐹𝑐: final frame count result 

This quantitative procedure is consistent with approaches in visual analytics and cluster-based statistical 

evaluation frameworks [15,16] . Using these calculations, the comparison values can be systematically 

validated across hardware variations. 
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1. Computer 1 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1737 𝑅𝑟 𝑃5𝑗𝑠 = 718 

 𝑆𝑟 =  
1737

718
  𝑆𝑐 =  

8530

3602
=

4265

1801
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1335 𝑅𝑟 𝑃5𝑗𝑠 = 36 

 𝑆𝑟 =  
1335

36
=  

445

12
  𝑆𝑐 =  

1335

36
=

445

12
  

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1444 𝑅𝑟 𝑃5𝑗𝑠 = 644 

 𝑆𝑟 =  
1444

644
=  

361

161
  𝑆𝑐 =  

6989

3568
 

2. Computer 2 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 870 𝑅𝑟 𝑃5𝑗𝑠 = 548 

 𝑆𝑟 =  
870

548
=  

435

274
  𝑆𝑐 =  

4268

2759
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 785 𝑅𝑟 𝑃5𝑗𝑠 = 172 

 𝑆𝑟 =  
785

172
  𝑆𝑐 =  

3812

863
  

 

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 964 𝑅𝑟 𝑃5𝑗𝑠 = 153 

 𝑆𝑟 =  
964

153
  𝑆𝑐 =  

4672

771
  

 

3. Computer 3 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 568 𝑅𝑟 𝑃5𝑗𝑠 = 391 

 𝑆𝑟 =  
568

391
  𝑆𝑐 =  

2963

1896
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 538 𝑅𝑟 𝑃5𝑗𝑠 = 69 

 𝑆𝑟 =  
538

69
  𝑆𝑐 =  

2414

352
=  

1207

176
  

 

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 969 𝑅𝑟 𝑃5𝑗𝑠 = 65 

 𝑆𝑟 =  
969

65
  𝑆𝑐 =  

3215

375
=

643

75
  

 
4. Computer 4 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 252 𝑅𝑟 𝑃5𝑗𝑠 = 294 

 𝑆𝑟 =  
294

252
=  

7

6
  𝑆𝑐 =  

1518

1238
=

756

619
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 267 𝑅𝑟 𝑃5𝑗𝑠 = 45 

 𝑆𝑟 =  
267

45
=  

89

15
  𝑆𝑐 =  

1293

222
=  

431

74
  

 

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 317 𝑅𝑟 𝑃5𝑗𝑠 = 5 

 𝑆𝑟 =  
317

5
  𝑆𝑐 =  

1526

58
=

763

29
  

 
5. Computer 5 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 979 𝑅𝑟 𝑃5𝑗𝑠 = 688 

 𝑆𝑟 =  
979

688
  𝑆𝑐 =  

4837

3580
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 865 𝑅𝑟 𝑃5𝑗𝑠 = 270 

 𝑆𝑟 =  
865

270
=  

173

54
  𝑆𝑐 =  

4281

1233
=  

1427

411
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Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 998 𝑅𝑟 𝑃5𝑗𝑠 = 52 

 𝑆𝑟 =  
998

52
=

499

26
  𝑆𝑐 =  

4951

269
  

 

 

6. Computer 6 

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 541 𝑅𝑟 𝑃5𝑗𝑠 = 242 

 𝑆𝑟 =  
541

242
  𝑆𝑐 =  

2557

1105
  

 

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 330 𝑅𝑟 𝑃5𝑗𝑠 = 26 

 𝑆𝑟 =  
330

26
=  

165

13
  𝑆𝑐 =  

1560

160
=  

39

4
  

 

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 376 𝑅𝑟 𝑃5𝑗𝑠 = 19 

 𝑆𝑟 =  
376

19
  𝑆𝑐 =  

1793

110
=

163

10
  

ANOVA analysis across six hardware configurations showed a significant main effect of platform 

(F(1,10)=35.42, p<0.001), indicating that Processing consistently outperformed P5.js regardless of 

hardware variation. 

3.3  Determine the Final Value of Comparison 

Determining the result of the comparison value is done by calculating the number of percentages of 

the resulting comparison between processing java and P5.js using the following formula: 

 

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑟 =  
∑𝑅𝑟𝐽𝑎𝑣𝑎

∑𝑅𝑟𝑃5𝑗𝑠
  (3)  

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑐 =  
∑𝑅𝑟𝐽𝑎𝑣𝑎

∑𝑅𝑟𝑃5𝑗𝑠
  (4)  

 

 ∑ 𝑅𝑟 𝐽𝑎𝑣𝑎 = 9669    ∑ 𝑅𝑟 𝑃5𝑗𝑠 = 3083  

𝑇𝑜𝑡𝑎𝑙 𝑆𝑟 =
9669

3083
= 3,1362 = 313,62%  

 ∑ 𝐹𝑐 𝐽𝑎𝑣𝑎 = 48051   ∑ 𝐹𝑐 𝑃5𝑗𝑠 = 18121  

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐 =
48051

18121
= 2,6516 = 265,16%  

 

The large gap in 3D is consistent with browser-pipeline overheads observed in recent 

WebGL→WebGPU studies; dynamic API translation significantly reduced average frame time (~45% 

across devices), underscoring how browser stacks add latency versus native/OpenGL paths [14] 

 

In our tests, Processing (Java mode) outperformed P5.js substantially: the average frame rate was 

≈313.62% higher, and the total frame count ≈265.16% higher. This gap is attributable to Processing’s 

compiled execution on the JVM and direct OpenGL integration, which enable lower-latency GPU 

calls. By contrast, P5.js runs inside the browser’s JavaScript engine, incurring overhead from 

interpretation and memory management—effects that are modest in 2D but expand markedly in 3D 

rendering.  

 

These findings align with prior benchmarking literature showing superior rendering efficiency in 

compiled environments versus interpreted ones [30].  

4.   Conclusion 

This study benchmarked the rendering performance of Java Processing and P5.js across heterogeneous 

hardware for 2D and 3D tasks. Java Processing consistently outperformed P5.js—up to 313% higher 



0260104-09 

frame rates and 265% greater frame counts—especially in computationally demanding 3D scenarios. 

These outcomes reflect the advantages of compiled JVM execution and direct OpenGL integration, 

making Processing suitable for high-performance simulations, real-time visualizations, and complex 3D 

animations. By contrast, P5.js remains effective for lightweight, web-based 2D visualizations and 

educational applications where browser compatibility is paramount. Prior work in ASSET highlights 

the practicality of MDLC-driven, deployable interactive media for learning, which supports adopting 

P5.js for lightweight educational use cases while reserving Java Processing for performance-critical 3D 

tasks [30]. 
 

Future work.  

Subsequent studies should evaluate real-world applications and larger-scale scenes, compare against 

modern rendering stacks (e.g., Three.js, Unity WebGL), and consider additional factors such as energy 

use and perceptual quality 
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