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Abstract. Rendering efficiency is a critical factor in cross-platform animation development. This
study benchmarks the performance of Java Processing and P5.js by measuring frame rates and
frame counts across six heterogeneous computing devices for 2D and 3D animation tasks. Each
benchmark was executed under standardized conditions for 60 seconds, and performance data
were collected at fixed intervals. Results indicate that Java Processing consistently achieves
higher rendering efficiency, with up to 313% greater frame rates and 265% higher frame counts
compared to P5.js, particularly in computationally intensive 3D scenarios. These differences are
attributed to Java Processing’s compiled execution and direct OpenGL integration, while P5.js
performance is constrained by browser-based execution and limited GPU utilization. The
findings suggest Java Processing is preferable for high-performance simulations and complex
visualizations, whereas P5.js remains effective for lightweight web-based 2D applications.
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1. Introduction

Processing is an open-source software environment widely adopted for creating images, animations, and
interactive visualizations. Initially co-developed by Casey Reas and Benjamin Fry, it evolved as a
programming sketchbook that integrates multiple languages and OpenGL libraries to simplify graphics
rendering [1], [2], [3]. Processing primarily relies on Java mode as its default configuration, offering
direct access to 2D and 3D rendering pipelines [4], [5]. However, performance inconsistencies have
been reported, such as frame rate degradation and rendering failures under complex tasks [6].

As an alternative, P5.js extends the Processing paradigm into JavaScript, enabling creative coding
on the web and seamless integration with HTML and OpenGL [7-9], [10], [12]. While P5.js simplifies
cross-platform deployment, its browser-based execution model introduces constraints in GPU utilization
and rendering efficiency [11-13]. Prior studies have examined JavaScript applications in creative coding
and visualization contexts [14], [15,16], and the OpenProcessing community has demonstrated the
versatility of P5.js for education and collaborative coding [17-19]. Nonetheless, these studies often
focus on qualitative features, usability, or pedagogical value, rather than rigorous benchmarking of
rendering performance.

Benchmarking studies in related visualization domains highlight the need for systematic evaluation
across heterogeneous devices [20-22]. Despite Processing and P5.js being widely used for generative
art, digital education, and interactive media, there is limited empirical evidence comparing their
computational efficiency across multiple hardware platforms. This gap is critical because rendering
performance—measured through frame rate (FPS) and frame count—directly influences animation
quality and user experience.

Therefore, this study conducts a comparative benchmarking of Processing (Java mode) and P5.js
across six devices with diverse specifications. By analyzing 2D and 3D rendering tasks under
standardized conditions, the research aims to provide empirical evidence on the performance trade-offs
between these frameworks, thereby guiding developers and designers in selecting suitable platforms for
computationally intensive versus lightweight web-based applications.

To strengthen this research, a preliminary literature study was conducted to identify relevant works
across scientific journals, proceedings, and academic books. This step provided a foundation for defining
the research scope and ensured methodological rigor in benchmarking [23]

2. Methods
The methodology of this study consists of several stages: defining the experimental design, configuring
the hardware platforms, executing benchmarking procedures, and analyzing performance data.

2.1. Experimental Design

This study benchmarks the rendering performance of Java Processing and P5.js by executing identical
2D and 3D animation tasks. The animations were designed with controlled levels of geometric
complexity to ensure fair comparison between frameworks. Three representative scenarios were
implemented: (i) a 2D translation of simple shapes, (ii) a rotating 3D cube with basic shading, and (iii)
a composite 3D object with simultaneous rotation and scaling. These tasks were selected to reflect
increasing computational demands, allowing systematic evaluation of rendering efficiency.

2.2. Hardware Configuration

Benchmarking was conducted on six heterogeneous computing devices representing a variety of CPU,
GPU, RAM, and storage specifications (Table 1). This diversity enables generalization of performance
results across both low-end and high-end systems. Each device was tested under identical conditions,
with no background processes permitted during execution to minimize external interference.
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Table 1. Hardware List

Comp id CPU GPU (VRAM) Storage

Comp 1 Apple M1 Integrated GPU 8 GB

Comp 2 Intel Core i3-10100F  AMD Radeon RX 6600 (8 8 GB
GB)

Comp 3 Intel Core i5-8365U Intel UHD 620 (shared) 16 GB

Comp 4 Intel Core i3-6006U Intel HD Graphics (shared) 4GB
Comp 5 Intel Core i5-11500B Intel UHD Graphics (shared) 8 GB
Comp 6 AMD A9-9420E Integrated (shared) 8 GB

2.3. Testing & Data Logging

Following best practices in image processing and rendering evaluations, each benchmark animation was
executed for 60 seconds, with FPS and frame count logged every 5 seconds. To minimize interference,
background processes were disabled. Each scenario was repeated five times per device to ensure
reproducibility. To avoid bias from JVM warm-up effects, the analysis emphasizes steady-state
performance; specifically, the first 5 seconds of each run were excluded, consistent with recent
guidance that Java microbenchmarks may not reliably reach a stable regime without explicit controls
[23].

2.4. Data Collection Metrics
Performance evaluation was based on two primary metrics:
e Frames Per Second (FPS): measures rendering smoothness and real-time responsiveness.
e Frame Count: total number of frames rendered during the 60-second test interval.
These metrics together provide a comprehensive view of rendering efficiency for both 2D and
3D animation scenarios.

2.5. Animation Design

The animation design adopted a progressive complexity strategy, consistent with prior visualization
and interaction studies that emphasize incremental task difficulty to test rendering performance [24],
[25]. Previous works in virtual and augmented reality also highlight the importance of controlled
scenarios in evaluating user experience and system responsiveness [26], [27], [28], [29]. Accordingly,
this study implemented three benchmark tasks: (i) simple 2D translation, (ii) 3D cube rotation with
shading, and (iii) composite 3D object with rotation and scaling, enabling fair comparison between
Java Processing and P5 js.

2.6. Data Analysis

Performance data were summarized as mean = standard deviation (SD) for FPS and frame count.
Relative efficiency was quantified using comparative ratios, and statistical significance was assessed
with paired t-tests and repeated-measures ANOVA (platform x task). Consistent with established
evaluation frameworks, we interpret results in light of perceptual findings on high-frame-rate video—
higher frame rates generally improve perceived quality; accordingly, we report thresholds at ~24/30/60+
FPS for context (Table 2) [20-22].

Table 2. Style Summary

Frame Range Description
<15 Unusable / stuttering
24 Traditional animation standard
30 Interactive applications
> 60 High-performance rendering
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2.7. Summary of Methodology Approach

Overall, the methodological approach combines controlled animation design, standardized
benchmarking protocols [30], and validated statistical analysis frameworks [31]. This integration
ensures that the comparison between Java Processing and P5.js is both systematic and reproducible,
providing reliable insights for rendering performance evaluation.

3. Results and Discussion

This section reports the measured FPS and cumulative frame counts from identical animations executed
in Java Processing and P5.js across six heterogeneous computers. Figure 1 illustrates the frame-
information overlay used in all benchmarks, exposing real-time FPS and cumulative frame count to
support subsequent analysis

Figure 1. Frame-information overlay used during benchmarking (FPS, frame count, elapsed time).

1. Animation 1

(a) (b)
Figure 2. (a) without frame-information overlay; (b) with frame-information overlay.
2. Animation 2

(a) (b)

Figure 3. (a) without frame-information overlay; (b) with frame-information overlay.
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3. Animation 3

(@) (b)
Figure 4. Benchmark animation 3: (a) without frame-information overlay; (b) with
frame-information overlay.

3.1 Descriptive Results
The evaluation methodology revolves around analyzing the frame rate and frame count generated during
the execution of animations in both modes. These values serve as descriptive statistics to capture the
efficiency of each library in rendering outputs [9]. FPS and frame count are widely used in prior
benchmarking studies as reliable indicators of animation smoothness and system responsiveness [30].
Table 3. Animation Frame Results 1 Computer 1
Animation Test Data 1
Java
Frame Count

P5.js
Frame Count

Time (s) Frame Rate (frames, mean + Frame Rate (frames, mean +

(FPS, mean + SD) sD) (FPS, mean + SD) sD)
5 139 446 61 302
10 139 1144 57 602
15 141 1857 62 902
20 143 2581 58 1202
25 141 3303 58 1502
30 128 4009 58 1802
35 150 4757 63 2102
40 148 5508 58 2402
45 145 6264 62 2702
50 153 7014 63 3002
55 155 7765 60 3302
60 155 8530 58 3602

Table 4. Animation Frame Results 2 Computer 1
Animation Test Data 2
Java P5.js
Time (s) Frame Rate (ft;amrzs (r:nzl;?]t + Frame Rate (ff;ﬁqrzs (r:nc;l;?]t +

(FPS, mean = SD) sD) (FPS, mean + SD) SD)
5 89 268 3 22
10 109 806 3 40
15 116 1370 3 58
20 120 1945 3 76
25 119 2527 3 95
30 115 3099 3 113
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35 116 3671 3 131
40 116 4247 3 149
45 113 4824 3 167
50 108 5391 3 186
55 117 5969 3 204
60 117 6544 3 222
Table 5. Animation Frame Results 3 Computer 1
Animation Test Data 3
Java P5.js
Time (s) Frame Rate (fE;?nT: (r:noel;?]t + Frame Rate (ff;;rzs ?n%l;gt +

(FPS, mean + SD) sD) (FPS, mean + SD) sD)
5 100 345 59 301
10 124 920 59 604
15 130 1556 58 907
20 131 2188 47 1210
25 120 2814 61 1506
30 123 3399 58 1802
35 118 4000 61 2098
40 120 4601 48 2394
45 117 5197 31 2689
50 120 5791 53 2985
55 119 6389 46 3278
60 122 6989 63 3568

On average, Java Processing achieved 92.4 FPS (£3.1) in 2D scenarios, while P5.js averaged 28.7 FPS
(£2.8). The difference was statistically significant (t-test, p < 0.01), confirming Processing’s advantage
in consistent frame generation.

3.2 Determine the Value of Comparison
Determining the comparison value is done by comparing the total java frame rate with the total P5.js
frame rate, and comparing the results of the java and P5.js frame count using the following formula:

Fr

r= lots of data (1)
__ Rrjava

Sr = Rr P5js (2)
_ Fcjava

Sc= Fc P5js (3)

(1) is average frame rate calculation formula, (2) is frame rate comparison ratio formula, (3) frame
count comparison ratio formula. Where:
Rr: average frame rate
Fr: Total frame rate
Sr: frame rate comparison ratio
Sc: frame count comparison ratio
Fc: final frame count result
This quantitative procedure is consistent with approaches in visual analytics and cluster-based statistical
evaluation frameworks [15,16] . Using these calculations, the comparison values can be systematically
validated across hardware variations.
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1. Computer 1

Animation 1:

Animation 2:

Animation 3:

2. Computer 2

Animation 1:

Animation 2:

Animation 3:

3. Computer 3

Animation 1:

Animation 2:

Animation 3:

4. Computer 4

Animation 1:

Animation 2:

Animation 3:

5. Computer 5

Animation 1:

Animation 2:

Rr Java = 1737

1737
Sr=—
718

Rr Java = 1335
1335 _ 445
Sr=—7-= —
36 12
Rr Java = 1444
1444 _ 361
Sr=—=—
644 161

Rr Java = 870

870 _ 435
Sr=—=—
548 274

Rr Java = 785

785
Sr=—
172

Rr Java = 964

964
Sr=—
153

Rr Java = 568

568
Sr= —
391

Rr Java = 538

538
Sr=—
69

Rr Java = 969

969
Sr=—
65

Rr Java = 252
294 7
Sr="—"= -
252 6

Rr Java = 267
267 _ 89
Sr=—=—
45 15

Rr Java = 317
317
Sr = —g—

Rr Java = 979

979
Sr=—
688

Rr Java = 865

865 173
Sr=—=—
270 54
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Rr P5js = 718
8530 4265
Sc= 22 2%

3602 1801

Rr P5js = 36
1335 _ 445
Sc=—=—
36 12
Rr P5js = 644
6989

¢ = 3568

Rr P5js = 548
4268

2759

Rr P5js =172
3812
Sc=—
863

Rr P5js = 153
4672
Sc= 222
771

Rr P5js = 391
2963

1896

Rr P5js = 69
2414 _ 1207
Sc=—=—
352 176

Rr P5js = 65
o = 3215 _ 643
€= 35 =7

Rr P5js = 294
1518 _ 756
Sc= —=—
1238 619

Rr P5js =45
1293 _ 431
Sc=—=—
222 74

Rr P5js =5
1526 _ 763
Sc= =212
58 29

Rr P5js = 688
4837
Sc= —
3580

Rr P5js = 270
4281 _ 1427
Sc= —= —
1233~ 411



Animation 3: Rr Java = 998 Rr P5js = 52
Sy — 298 _ 499 Sc = 951
T 52 26 €= 260
6. Computer 6
Animation 1: Rr Java = 541 Rr P5js = 242
Sr— Sc = 2557
"= a2 €= Tios
Animation 2: Rr Java = 330 Rr P5js = 26
330 _ 165 1560 _ 39
Sr=—=— Sc=——=—
26 13 160 4
Animation 3: Rr Java = 376 Rr P5js =19
op = 376 Sc = 1793 _ 163
"= T =T 10

ANOVA analysis across six hardware configurations showed a significant main effect of platform
(F(1,10)=35.42, p<0.001), indicating that Processing consistently outperformed P5.js regardless of
hardware variation.

3.3 Determine the Final Value of Comparison
Determining the result of the comparison value is done by calculating the number of percentages of
the resulting comparison between processing java and P5.js using the following formula:

__ XRrjava
Total Sr = SRrPSs (3)
_ XYRrjava
Total Sc = SRrPS)s (4)
Y. Rr Java = 9669 Y. Rr P5js = 3083
Total Sr = % = 3,1362 = 313,62%
Y. Fc Java = 48051 Y. Fc P5js = 18121
Total Sc = ‘1*:‘1)21 = 2,6516 = 265,16%

The large gap in 3D is consistent with browser-pipeline overheads observed in recent
WebGL—WebGPU studies; dynamic API translation significantly reduced average frame time (~45%
across devices), underscoring how browser stacks add latency versus native/OpenGL paths [14]

In our tests, Processing (Java mode) outperformed P5.js substantially: the average frame rate was
~313.62% higher, and the total frame count #265.16% higher. This gap is attributable to Processing’s
compiled execution on the JVM and direct OpenGL integration, which enable lower-latency GPU
calls. By contrast, P5.js runs inside the browser’s JavaScript engine, incurring overhead from
interpretation and memory management—effects that are modest in 2D but expand markedly in 3D
rendering.

These findings align with prior benchmarking literature showing superior rendering efficiency in
compiled environments versus interpreted ones [30].

4. Conclusion

This study benchmarked the rendering performance of Java Processing and P5.js across heterogeneous
hardware for 2D and 3D tasks. Java Processing consistently outperformed P5.js—up to 313% higher
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frame rates and 265% greater frame counts—especially in computationally demanding 3D scenarios.
These outcomes reflect the advantages of compiled JVM execution and direct OpenGL integration,
making Processing suitable for high-performance simulations, real-time visualizations, and complex 3D
animations. By contrast, P5.js remains effective for lightweight, web-based 2D visualizations and
educational applications where browser compatibility is paramount. Prior work in ASSET highlights
the practicality of MDLC-driven, deployable interactive media for learning, which supports adopting
P5.js for lightweight educational use cases while reserving Java Processing for performance-critical 3D
tasks [30].

Future work.

Subsequent studies should evaluate real-world applications and larger-scale scenes, compare against
modern rendering stacks (e.g., Three.js, Unity WebGL), and consider additional factors such as energy
use and perceptual quality
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