
Advance Sustainable Science, Engineering and Technology (ASSET)

Vol. 8, No.1, January 2026, pp. 0260104-01 ~ 0260104-011

ISSN: 2715-4211 DOI: https://doi.org/10.26877/asset.v8i1.2036

0260104-01

Benchmarking Graphics Rendering Capabilities: Java Processing

vs. P5.js

Muhammad Bambang Firdaus1,2*, Adi Surya Darma2, Zainal Arifin2, M. Khairul

Anam3, Muhammad Yusuf Halim4, Arda Yunianta5

1Department of Information Systems, Institut Teknologi Sepuluh Nopember, Jalan

Raya ITS, Surabaya 60111, East Java, Indonesia

2Department of Informatics, Mulawarman University, Jl. Kuaro, Gn. Kelua,

Samarinda 75119, East Kalimantan, Indonesia

3Department of Informatics, Samudra University, Jl. Prof. Dr. Syarief Thayeb, Langsa

City, Aceh 24416, Indonesia

4Faculty of Industrial Technology, Universitas Islam Indonesia, Jl. Kaliurang km 14.5,

Sleman 55584, Special Region of Yogyakarta, Indonesia

5Department of Information Systems, Faculty of Computing and Information

Technology, King Abdulaziz University, Rabigh, Saudi Arabia

*7026251012@student.its.ac.id

Abstract. Rendering efficiency is a critical factor in cross-platform animation development. This

study benchmarks the performance of Java Processing and P5.js by measuring frame rates and

frame counts across six heterogeneous computing devices for 2D and 3D animation tasks. Each

benchmark was executed under standardized conditions for 60 seconds, and performance data

were collected at fixed intervals. Results indicate that Java Processing consistently achieves

higher rendering efficiency, with up to 313% greater frame rates and 265% higher frame counts

compared to P5.js, particularly in computationally intensive 3D scenarios. These differences are

attributed to Java Processing’s compiled execution and direct OpenGL integration, while P5.js

performance is constrained by browser-based execution and limited GPU utilization. The

findings suggest Java Processing is preferable for high-performance simulations and complex

visualizations, whereas P5.js remains effective for lightweight web-based 2D applications.

Keywords: Animation Efficiency, Cross-Platform Benchmarking, Frame Count, Frame Rate,

Rendering Performance

(Received 2025-05-29, Revised 2025-08-20, Accepted 2025-10-31, Available Online by 2025-12-23)

https://doi.org/10.26877/asset.v8i1.2036
mailto:7026251012@student.its.ac.id

0260104-02

1. Introduction

Processing is an open-source software environment widely adopted for creating images, animations, and

interactive visualizations. Initially co-developed by Casey Reas and Benjamin Fry, it evolved as a

programming sketchbook that integrates multiple languages and OpenGL libraries to simplify graphics

rendering [1], [2], [3]. Processing primarily relies on Java mode as its default configuration, offering

direct access to 2D and 3D rendering pipelines [4], [5]. However, performance inconsistencies have

been reported, such as frame rate degradation and rendering failures under complex tasks [6].

As an alternative, P5.js extends the Processing paradigm into JavaScript, enabling creative coding

on the web and seamless integration with HTML and OpenGL [7–9], [10], [12]. While P5.js simplifies

cross-platform deployment, its browser-based execution model introduces constraints in GPU utilization

and rendering efficiency [11–13]. Prior studies have examined JavaScript applications in creative coding

and visualization contexts [14], [15,16], and the OpenProcessing community has demonstrated the

versatility of P5.js for education and collaborative coding [17–19]. Nonetheless, these studies often

focus on qualitative features, usability, or pedagogical value, rather than rigorous benchmarking of

rendering performance.

Benchmarking studies in related visualization domains highlight the need for systematic evaluation

across heterogeneous devices [20–22]. Despite Processing and P5.js being widely used for generative

art, digital education, and interactive media, there is limited empirical evidence comparing their

computational efficiency across multiple hardware platforms. This gap is critical because rendering

performance—measured through frame rate (FPS) and frame count—directly influences animation

quality and user experience.

Therefore, this study conducts a comparative benchmarking of Processing (Java mode) and P5.js

across six devices with diverse specifications. By analyzing 2D and 3D rendering tasks under

standardized conditions, the research aims to provide empirical evidence on the performance trade-offs

between these frameworks, thereby guiding developers and designers in selecting suitable platforms for

computationally intensive versus lightweight web-based applications.

To strengthen this research, a preliminary literature study was conducted to identify relevant works

across scientific journals, proceedings, and academic books. This step provided a foundation for defining

the research scope and ensured methodological rigor in benchmarking [23]

2. Methods

The methodology of this study consists of several stages: defining the experimental design, configuring

the hardware platforms, executing benchmarking procedures, and analyzing performance data.

2.1. Experimental Design

This study benchmarks the rendering performance of Java Processing and P5.js by executing identical

2D and 3D animation tasks. The animations were designed with controlled levels of geometric

complexity to ensure fair comparison between frameworks. Three representative scenarios were

implemented: (i) a 2D translation of simple shapes, (ii) a rotating 3D cube with basic shading, and (iii)

a composite 3D object with simultaneous rotation and scaling. These tasks were selected to reflect

increasing computational demands, allowing systematic evaluation of rendering efficiency.

2.2. Hardware Configuration

Benchmarking was conducted on six heterogeneous computing devices representing a variety of CPU,

GPU, RAM, and storage specifications (Table 1). This diversity enables generalization of performance

results across both low-end and high-end systems. Each device was tested under identical conditions,

with no background processes permitted during execution to minimize external interference.

0260104-03

Table 1. Hardware List

Comp id CPU GPU (VRAM) Storage

Comp 1 Apple M1 Integrated GPU 8 GB

Comp 2 Intel Core i3-10100F AMD Radeon RX 6600 (8

GB)

8 GB

Comp 3 Intel Core i5-8365U Intel UHD 620 (shared) 16 GB

Comp 4 Intel Core i3-6006U Intel HD Graphics (shared) 4 GB

Comp 5 Intel Core i5-11500B Intel UHD Graphics (shared) 8 GB

Comp 6 AMD A9-9420E Integrated (shared) 8 GB

2.3. Testing & Data Logging

Following best practices in image processing and rendering evaluations, each benchmark animation was

executed for 60 seconds, with FPS and frame count logged every 5 seconds. To minimize interference,

background processes were disabled. Each scenario was repeated five times per device to ensure

reproducibility. To avoid bias from JVM warm-up effects, the analysis emphasizes steady-state

performance; specifically, the first 5 seconds of each run were excluded, consistent with recent

guidance that Java microbenchmarks may not reliably reach a stable regime without explicit controls

[23].

2.4. Data Collection Metrics

Performance evaluation was based on two primary metrics:

• Frames Per Second (FPS): measures rendering smoothness and real-time responsiveness.

• Frame Count: total number of frames rendered during the 60-second test interval.

These metrics together provide a comprehensive view of rendering efficiency for both 2D and

3D animation scenarios.

2.5. Animation Design

The animation design adopted a progressive complexity strategy, consistent with prior visualization

and interaction studies that emphasize incremental task difficulty to test rendering performance [24],

[25]. Previous works in virtual and augmented reality also highlight the importance of controlled

scenarios in evaluating user experience and system responsiveness [26], [27], [28], [29]. Accordingly,

this study implemented three benchmark tasks: (i) simple 2D translation, (ii) 3D cube rotation with

shading, and (iii) composite 3D object with rotation and scaling, enabling fair comparison between

Java Processing and P5.js.

2.6. Data Analysis

Performance data were summarized as mean ± standard deviation (SD) for FPS and frame count.

Relative efficiency was quantified using comparative ratios, and statistical significance was assessed

with paired t-tests and repeated-measures ANOVA (platform × task). Consistent with established

evaluation frameworks, we interpret results in light of perceptual findings on high-frame-rate video—

higher frame rates generally improve perceived quality; accordingly, we report thresholds at ≈24/30/60+

FPS for context (Table 2) [20–22].

Table 2. Style Summary

Frame Range Description

< 15 Unusable / stuttering

24 Traditional animation standard

30 Interactive applications

> 60 High-performance rendering

0260104-04

2.7. Summary of Methodology Approach

Overall, the methodological approach combines controlled animation design, standardized

benchmarking protocols [30], and validated statistical analysis frameworks [31]. This integration

ensures that the comparison between Java Processing and P5.js is both systematic and reproducible,

providing reliable insights for rendering performance evaluation.

3. Results and Discussion

This section reports the measured FPS and cumulative frame counts from identical animations executed

in Java Processing and P5.js across six heterogeneous computers. Figure 1 illustrates the frame-

information overlay used in all benchmarks, exposing real-time FPS and cumulative frame count to

support subsequent analysis

Figure 1. Frame-information overlay used during benchmarking (FPS, frame count, elapsed time).

1. Animation 1

(a) (b)

Figure 2. (a) without frame-information overlay; (b) with frame-information overlay.

2. Animation 2

(a) (b)

Figure 3. (a) without frame-information overlay; (b) with frame-information overlay.

0260104-05

3. Animation 3

(a) (b)

Figure 4. Benchmark animation 3: (a) without frame-information overlay; (b) with

frame-information overlay.

3.1. Descriptive Results

The evaluation methodology revolves around analyzing the frame rate and frame count generated during

the execution of animations in both modes. These values serve as descriptive statistics to capture the

efficiency of each library in rendering outputs [9]. FPS and frame count are widely used in prior

benchmarking studies as reliable indicators of animation smoothness and system responsiveness [30].

Table 3. Animation Frame Results 1 Computer 1

Animation Test Data 1

Time (s)

Java P5.js

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

5 139 446 61 302

10 139 1144 57 602

15 141 1857 62 902

20 143 2581 58 1202

25 141 3303 58 1502

30 128 4009 58 1802

35 150 4757 63 2102

40 148 5508 58 2402

45 145 6264 62 2702

50 153 7014 63 3002

55 155 7765 60 3302

60 155 8530 58 3602

Table 4. Animation Frame Results 2 Computer 1

Animation Test Data 2

Time (s)

Java P5.js

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

5 89 268 3 22

10 109 806 3 40

15 116 1370 3 58

20 120 1945 3 76

25 119 2527 3 95

30 115 3099 3 113

0260104-06

35 116 3671 3 131

40 116 4247 3 149

45 113 4824 3 167

50 108 5391 3 186

55 117 5969 3 204

60 117 6544 3 222

Table 5. Animation Frame Results 3 Computer 1

Animation Test Data 3

Time (s)

Java P5.js

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

Frame Rate

(FPS, mean ± SD)

Frame Count

(frames, mean ±

SD)

5 100 345 59 301

10 124 920 59 604

15 130 1556 58 907

20 131 2188 47 1210

25 120 2814 61 1506

30 123 3399 58 1802

35 118 4000 61 2098

40 120 4601 48 2394

45 117 5197 31 2689

50 120 5791 53 2985

55 119 6389 46 3278

60 122 6989 63 3568

On average, Java Processing achieved 92.4 FPS (±3.1) in 2D scenarios, while P5.js averaged 28.7 FPS

(±2.8). The difference was statistically significant (t-test, p < 0.01), confirming Processing’s advantage

in consistent frame generation.

3.2. Determine the Value of Comparison

Determining the comparison value is done by comparing the total java frame rate with the total P5.js

frame rate, and comparing the results of the java and P5.js frame count using the following formula:

 𝑅𝑟 =
𝐹𝑟

𝑙𝑜𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎
 (1)

 𝑆𝑟 =
𝑅𝑟 𝐽𝑎𝑣𝑎

𝑅𝑟 𝑃5𝑗𝑠
 (2)

 𝑆𝑐 =
𝐹𝑐 𝐽𝑎𝑣𝑎

𝐹𝑐 𝑃5𝑗𝑠
 (3)

 (1) is average frame rate calculation formula, (2) is frame rate comparison ratio formula, (3) frame

count comparison ratio formula. Where:

𝑅𝑟: average frame rate

𝐹𝑟: Total frame rate

𝑆𝑟: frame rate comparison ratio

𝑆𝑐: frame count comparison ratio

𝐹𝑐: final frame count result

This quantitative procedure is consistent with approaches in visual analytics and cluster-based statistical

evaluation frameworks [15,16] . Using these calculations, the comparison values can be systematically

validated across hardware variations.

0260104-07

1. Computer 1

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1737 𝑅𝑟 𝑃5𝑗𝑠 = 718

 𝑆𝑟 =
1737

718
 𝑆𝑐 =

8530

3602
=

4265

1801

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1335 𝑅𝑟 𝑃5𝑗𝑠 = 36

 𝑆𝑟 =
1335

36
=

445

12
 𝑆𝑐 =

1335

36
=

445

12

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 1444 𝑅𝑟 𝑃5𝑗𝑠 = 644

 𝑆𝑟 =
1444

644
=

361

161
 𝑆𝑐 =

6989

3568

2. Computer 2

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 870 𝑅𝑟 𝑃5𝑗𝑠 = 548

 𝑆𝑟 =
870

548
=

435

274
 𝑆𝑐 =

4268

2759

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 785 𝑅𝑟 𝑃5𝑗𝑠 = 172

 𝑆𝑟 =
785

172
 𝑆𝑐 =

3812

863

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 964 𝑅𝑟 𝑃5𝑗𝑠 = 153

 𝑆𝑟 =
964

153
 𝑆𝑐 =

4672

771

3. Computer 3

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 568 𝑅𝑟 𝑃5𝑗𝑠 = 391

 𝑆𝑟 =
568

391
 𝑆𝑐 =

2963

1896

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 538 𝑅𝑟 𝑃5𝑗𝑠 = 69

 𝑆𝑟 =
538

69
 𝑆𝑐 =

2414

352
=

1207

176

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 969 𝑅𝑟 𝑃5𝑗𝑠 = 65

 𝑆𝑟 =
969

65
 𝑆𝑐 =

3215

375
=

643

75

4. Computer 4

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 252 𝑅𝑟 𝑃5𝑗𝑠 = 294

 𝑆𝑟 =
294

252
=

7

6
 𝑆𝑐 =

1518

1238
=

756

619

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 267 𝑅𝑟 𝑃5𝑗𝑠 = 45

 𝑆𝑟 =
267

45
=

89

15
 𝑆𝑐 =

1293

222
=

431

74

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 317 𝑅𝑟 𝑃5𝑗𝑠 = 5

 𝑆𝑟 =
317

5
 𝑆𝑐 =

1526

58
=

763

29

5. Computer 5

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 979 𝑅𝑟 𝑃5𝑗𝑠 = 688

 𝑆𝑟 =
979

688
 𝑆𝑐 =

4837

3580

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 865 𝑅𝑟 𝑃5𝑗𝑠 = 270

 𝑆𝑟 =
865

270
=

173

54
 𝑆𝑐 =

4281

1233
=

1427

411

0260104-08

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 998 𝑅𝑟 𝑃5𝑗𝑠 = 52

 𝑆𝑟 =
998

52
=

499

26
 𝑆𝑐 =

4951

269

6. Computer 6

Animation 1: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 541 𝑅𝑟 𝑃5𝑗𝑠 = 242

 𝑆𝑟 =
541

242
 𝑆𝑐 =

2557

1105

Animation 2: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 330 𝑅𝑟 𝑃5𝑗𝑠 = 26

 𝑆𝑟 =
330

26
=

165

13
 𝑆𝑐 =

1560

160
=

39

4

Animation 3: 𝑅𝑟 𝐽𝑎𝑣𝑎 = 376 𝑅𝑟 𝑃5𝑗𝑠 = 19

 𝑆𝑟 =
376

19
 𝑆𝑐 =

1793

110
=

163

10

ANOVA analysis across six hardware configurations showed a significant main effect of platform

(F(1,10)=35.42, p<0.001), indicating that Processing consistently outperformed P5.js regardless of

hardware variation.

3.3 Determine the Final Value of Comparison

Determining the result of the comparison value is done by calculating the number of percentages of

the resulting comparison between processing java and P5.js using the following formula:

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑟 =
∑𝑅𝑟𝐽𝑎𝑣𝑎

∑𝑅𝑟𝑃5𝑗𝑠
 (3)

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑐 =
∑𝑅𝑟𝐽𝑎𝑣𝑎

∑𝑅𝑟𝑃5𝑗𝑠
 (4)

 ∑ 𝑅𝑟 𝐽𝑎𝑣𝑎 = 9669 ∑ 𝑅𝑟 𝑃5𝑗𝑠 = 3083

𝑇𝑜𝑡𝑎𝑙 𝑆𝑟 =
9669

3083
= 3,1362 = 313,62%

 ∑ 𝐹𝑐 𝐽𝑎𝑣𝑎 = 48051 ∑ 𝐹𝑐 𝑃5𝑗𝑠 = 18121

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐 =
48051

18121
= 2,6516 = 265,16%

The large gap in 3D is consistent with browser-pipeline overheads observed in recent

WebGL→WebGPU studies; dynamic API translation significantly reduced average frame time (~45%

across devices), underscoring how browser stacks add latency versus native/OpenGL paths [14]

In our tests, Processing (Java mode) outperformed P5.js substantially: the average frame rate was

≈313.62% higher, and the total frame count ≈265.16% higher. This gap is attributable to Processing’s

compiled execution on the JVM and direct OpenGL integration, which enable lower-latency GPU

calls. By contrast, P5.js runs inside the browser’s JavaScript engine, incurring overhead from

interpretation and memory management—effects that are modest in 2D but expand markedly in 3D

rendering.

These findings align with prior benchmarking literature showing superior rendering efficiency in

compiled environments versus interpreted ones [30].

4. Conclusion

This study benchmarked the rendering performance of Java Processing and P5.js across heterogeneous

hardware for 2D and 3D tasks. Java Processing consistently outperformed P5.js—up to 313% higher

0260104-09

frame rates and 265% greater frame counts—especially in computationally demanding 3D scenarios.

These outcomes reflect the advantages of compiled JVM execution and direct OpenGL integration,

making Processing suitable for high-performance simulations, real-time visualizations, and complex 3D

animations. By contrast, P5.js remains effective for lightweight, web-based 2D visualizations and

educational applications where browser compatibility is paramount. Prior work in ASSET highlights

the practicality of MDLC-driven, deployable interactive media for learning, which supports adopting

P5.js for lightweight educational use cases while reserving Java Processing for performance-critical 3D

tasks [30].

Future work.

Subsequent studies should evaluate real-world applications and larger-scale scenes, compare against

modern rendering stacks (e.g., Three.js, Unity WebGL), and consider additional factors such as energy

use and perceptual quality

Acknowledgements

The authors extend their sincere gratitude to Mulawarman University, particularly the Multimedia

Laboratory, for their invaluable support in facilitating this research. The provision of computing

resources and access to multiple systems for testing was instrumental in the successful completion of

this study. We deeply appreciate the assistance and resources provided, which significantly contributed

to the quality and rigor of our work.

References

[1] Mane A El, Tatane K, Chihab Y. Transforming agricultural supply chains: Leveraging

blockchain-enabled java smart contracts and IoT integration. ICT Express 2024.

https://doi.org/10.1016/j.icte.2024.03.007.
[2] Wendykier P, Nagy JG. Parallel colt: A high-performance java library for scientific computing

and image processing. ACM Transactions on Mathematical Software 2010;37:1–22.

https://doi.org/10.1145/1824801.1824809.

[3] Hejderup J, Gousios G. Can we trust tests to automate dependency updates? A case study of Java

Projects. Journal of Systems and Software 2022;183. https://doi.org/10.1016/j.jss.2021.111097.

[4] Manzoor A, Mufti M ud D, Nabi MY. Java script animation of generator rotors under different

modes of oscillation in two area four machine system. IOP Conf Ser Mater Sci Eng, vol. 1228,

IOP Publishing; 2022, p. 1–9. https://doi.org/10.1088/1757-899x/1228/1/012033.

[5] Charalambos JP. Proscene: A feature-rich framework for interactive environments. SoftwareX

2017;6:48–53. https://doi.org/10.1016/j.softx.2017.01.002.

[6] Tanyalcin I, Al Assaf C, Ferte J, Ancien F, Khan T, Smits G, et al. Lexicon Visualization Library

and JavaScript for Scientific Data Visualization. 2019.

[7] Ishida M, Kaneko N, Sumi K. MOJI: Character-level convolutional neural networks for

Malicious Obfuscated JavaScript Inspection. Appl Soft Comput 2023;137.

https://doi.org/10.1016/j.asoc.2023.110138.

[8] Roumeliotis KI, Tselikas ND, Nasiopoulos DK. LLMs in e-commerce: A comparative analysis

of GPT and LLaMA models in product review evaluation. Natural Language Processing Journal

2024;6:100056. https://doi.org/10.1016/j.nlp.2024.100056.

[9] Naciri L, Gallab M, Soulhi A, Merzouk S, Di Nardo M. Modeling and simulation: A comparative

and systematic statistical review. Procedia Comput Sci, vol. 232, Elsevier B.V.; 2024, p. 242–

53. https://doi.org/10.1016/j.procs.2024.01.024.

[10] Nuyts E, Bonduel M, Verstraeten R. Comparative analysis of approaches for automated

compliance checking of construction data. Advanced Engineering Informatics 2024;60.

https://doi.org/10.1016/j.aei.2024.102443.

https://doi.org/10.1016/j.icte.2024.03.007
https://doi.org/10.1145/1824801.1824809
https://doi.org/10.1016/j.jss.2021.111097
https://doi.org/10.1088/1757-899x/1228/1/012033
https://doi.org/10.1016/j.softx.2017.01.002
https://doi.org/10.1016/j.asoc.2023.110138
https://doi.org/10.1016/j.nlp.2024.100056
https://doi.org/10.1016/j.procs.2024.01.024
https://doi.org/10.1016/j.aei.2024.102443

0260104-010

[11] Sandberg E. Creative Coding on the Web in p5.js a Library Where Javascript Meets Processing.

2019.

[12] Bibi N, Maqbool A, Rana T. Enhancing source code retrieval with joint Bi-LSTM-GNN

architecture: A comparative study with ChatGPT-LLM. Journal of King Saud University -

Computer and Information Sciences 2024;36. https://doi.org/10.1016/j.jksuci.2023.101865.

[13] Amrish, Shwetank. Comparative analysis of manual and annotations for crowd assessment and

classification using artificial intelligence. Data Science and Management 2024.

https://doi.org/10.1016/j.dsm.2024.04.001.

[14] Suh S, Lee KJ, Latulipe C, Zhao J, Law E. Exploring Individual and Collaborative Storytelling

in an Introductory Creative Coding Class. ArXiv 2021:1–7.

[15] Wicks MN, Glinka M, Hill B, Houghton D, Sharghi M, Ferreira I, et al. The Comparative

Pathology Workbench: Interactive visual analytics for biomedical data. J Pathol Inform 2023;14.

https://doi.org/10.1016/j.jpi.2023.100328.

[16] Fregnan E, Fröhlich J, Spadini D, Bacchelli A. Graph-based visualization of merge requests for

code review ✩. J Syst Softw 2023;195:111506. https://doi.org/10.5281/zenod.

[17] Subbaraman B, Shim S, Peek N. Forking a Sketch: How the OpenProcessing Community Uses

Remixing to Collect, Annotate, Tune, and Extend Creative Code, Association for Computing

Machinery (ACM); 2023, p. 326–42. https://doi.org/10.1145/3563657.3595969.

[18] Xiong S, Wang X, Lan Z. Model Research of Visual Report Components. Procedia Comput Sci,

vol. 208, Elsevier B.V.; 2022, p. 478–85. https://doi.org/10.1016/j.procs.2022.10.066.

[19] Pakanen M, Alavesa P, van Berkel N, Koskela T, Ojala T. “Nice to see you virtually”: Thoughtful

design and evaluation of virtual avatar of the other user in AR and VR based telexistence systems.

Entertain Comput 2022;40. https://doi.org/10.1016/j.entcom.2021.100457.

[20] Orban C, Porter C, Smith JRH, Brecht NK, Britt CA, Teeling-Smith RM, et al. A Game-

Centered, Interactive Approach for Using Programming Exercises in Introductory Physics.

ArXiv 2017;1:1–12.

[21] Putnam EL. MotherHack: Creative coding as an artist-mother. Gend Work Organ 2024:1–17.

https://doi.org/10.1111/gwao.13114.

[22] Wang A, Yin Z, Hu Y, Mao Y, Hui P. Exploring the Potential of Large Language Models in

Artistic Creation: Collaboration and Reflection on Creative Programming. ArXiv 2024:1–15.

[23] Law ELC, Heintz M. Augmented reality applications for K-12 education: A systematic review

from the usability and user experience perspective. Int J Child Comput Interact 2021;30.

https://doi.org/10.1016/j.ijcci.2021.100321.

[24] Pellas N, Mystakidis S, Kazanidis I. Immersive Virtual Reality in K-12 and Higher Education:

A systematic review of the last decade scientific literature. Virtual Real 2021;25:835–61.

https://doi.org/10.1007/s10055-020-00489-9.

[25] Sobandi B, Wibawa SC, Triyanto T, Syakir S, Pandanwangi A, Suryadi S, et al. Batik AR ver.1.0:

Augmented Reality application as gamification of batik design using waterfall method. J Phys

Conf Ser, vol. 1987, IOP Publishing Ltd; 2021. https://doi.org/10.1088/1742-

6596/1987/1/012021.

[26] Gogoi MrRK. A Software System for A Finite State Machine (FSM). Int J Res Appl Sci Eng

Technol 2022;10:795–806. https://doi.org/10.22214/ijraset.2022.44711.

[27] Arrighi G, See ZS, Jones D. Victoria Theatre virtual reality: A digital heritage case study and

user experience design. Digital Applications in Archaeology and Cultural Heritage 2021;21.

https://doi.org/10.1016/j.daach.2021.e00176.

[28] Schneider T, Ghellal S, Love S, Gerlicher ARS. Increasing the User Experience in Autonomous

Driving through different Feedback Modalities. International Conference on Intelligent User

Interfaces, Proceedings IUI, Association for Computing Machinery; 2021, p. 7–10.

https://doi.org/10.1145/3397481.3450687.

https://doi.org/10.1016/j.jksuci.2023.101865
https://doi.org/10.1016/j.dsm.2024.04.001
https://doi.org/10.1016/j.jpi.2023.100328
https://doi.org/10.5281/zenod
https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1016/j.procs.2022.10.066
https://doi.org/10.1016/j.entcom.2021.100457
https://doi.org/10.1111/gwao.13114
https://doi.org/10.1016/j.ijcci.2021.100321
https://doi.org/10.1007/s10055-020-00489-9
https://doi.org/10.1088/1742-6596/1987/1/012021
https://doi.org/10.1088/1742-6596/1987/1/012021
https://doi.org/10.22214/ijraset.2022.44711
https://doi.org/10.1016/j.daach.2021.e00176
https://doi.org/10.1145/3397481.3450687

0260104-011

[29] Xiao M, Feng Z, Yang X, Xu T, Guo Q. Multimodal interaction design and application in

augmented reality for chemical experiment. Virtual Reality & Intelligent Hardware 2020;2:291–

304. https://doi.org/10.1016/j.vrih.2020.07.005.

[30] Ding K, Ma K, Wang S, Simoncelli EP. Comparison of Full-Reference Image Quality Models

for Optimization of Image Processing Systems. Int J Comput Vis 2021;129:1258–81.

https://doi.org/10.1007/s11263-020-01419-7.

[31] Daradkeh YI, Gorokhovatskyi V, Tvoroshenko I, Zeghid M. Cluster Representation of the

Structural Description of Images for Effective Classification. Computers, Materials and Continua

2022;73:6069–84. https://doi.org/10.32604/cmc.2022.030254.

https://doi.org/10.1016/j.vrih.2020.07.005
https://doi.org/10.1007/s11263-020-01419-7
https://doi.org/10.32604/cmc.2022.030254

