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Abstract. The study proposes a simulation-based optimization framework to surmount 

recreational facility operational inefficiencies via spatial design, guest flow, and staff allocation. 

Adopting Discrete Event Simulation (DES) and Machine Learning (ML), the research optimizes 

capacity planning and resource allocation in the face of dynamic seasonal demands. A year's 

worth of operations data was utilized for statistical distribution modeling of visitor interarrival 

times in RStudio, categorized into low, regular, and high seasons. The simulation model, 

developed in AnyLogic, uncovered service bottlenecks—particularly at ticketing counters and 

photo points. Validation results indicated close alignment with real-world operational metrics, 

ensuring model validity. Actionable suggestions are provided in terms of dynamic employee 

scheduling and spatial reconfiguration for improved efficiency and visitor experience. By 

integrating DES and ML, the study contributes to sustainable operations and provides a 

transferable method for the optimization of service systems in weather-dependent recreational 

environments. 
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1.   Introduction  

In recent years, operation optimization of seasonal recreational resorts became a focus as a solution to 

efficient services, sustainable resources, and satisfied customers. Those resorts, especially cold-climate 

replicas within warm-climate regions, are subject to unique operational issues derived from 

heterogeneous demand from travelers, restricted space, and poor labor adaptability. To address these 

issues, advanced analytical solutions with the ability to track dynamic relationships between visitor flow, 

service capacity, and resource allocation are required. 

One such complex is a cold-climate recreational facility in a tropical area of Indonesia that serves as 

a typical example. The location simulates a snow environment in a temperature city where outside 

temperatures may reach more than 36°C at peak times [5]. Although it is new and popular, there have 

been operational inefficiencies such as inefficient layout design, long queues, and inefficient 

deployment of the workforce. These inefficiencies result in service bottlenecks, uneven visitor 

dispersion, and decreased guest satisfaction—a outcome that detracts from the economic and 

experiential goals of such centers. 

From the operations research perspective, spatial configuration and manpower planning are two of 

the most significant yet underoptimized factors in high-density recreational systems. Research shows 

that tourist movement behavior is heavily determined by spatial configuration [6], while physical 

environment directly influences satisfaction and throughput [7]. Therefore, their resolution not only 

contributes towards enhancing operational resilience but also to larger goals of sustainable service 

delivery. 

In order to address these problems, this study adopts a hybrid modeling approach integrating Discrete 

Event Simulation (DES) and Machine Learning (ML) to enhance operational planning. DES allows 

simulation of complex time-dependent interactions in service systems so that various configurations of 

resources and layout alternatives may be experimented with [9]. In parallel, ML techniques such as 

Artificial Neural Networks (ANN) and Genetic Algorithms (GA) aid in forecasting modeling and 

adaptive optimization, particularly for uncertain and variable demand patterns [10]. AnyLogic as the 

simulation platform facilitates dynamic and graph-based depiction of system performance [11], e.g., 

layout configuration [12], queuing analysis [8], and labor scheduling [13]. 

Even though DES has been widely applied in healthcare [14], logistics [15], and manufacturing 

systems, it is not very much utilized in the planning of recreational facilities, particularly cold-climate 

ones in non-native locations. This research fills this knowledge gap by utilizing a simulation-based 

approach to support sustainable resource planning, capacity design, and spatial optimization for these 

facilities. The end goal is to develop evidence-based operation strategies that reduce inefficiencies, 

maximize visitor satisfaction, and align with the long-term agenda of sustainable tourism infrastructure. 

This research makes theoretical and practical contributions by integrating simulation and machine 

learning into a single optimization platform for service systems. The remainder of this paper is structured 

according to the following: Section 2 presents recent developments in DES and ML implementations in 

operations management. Section 3 outlines the methodology, sources of data, and model specification. 

Section 4 presents the findings from the simulation and optimization experiments. Finally, Section 5 

concludes with key findings, implications for sustainability, and future work directions. 

 

2. State of the Art 

Over the last few decades, theme parks have evolved as sophisticated systems with spatial experience, 

branding, and operational sophistication. All over the globe, theme parks are not only symbols of 

entertainment hubs but also local economic growth stimuli, urban identity markers, and world cultural 

exchange leaders [1,2]. Research has highlighted that positive theme park experiences heavily enhance 

brand loyalty, satisfaction, and repeat visitation [3,4]. However, sustaining high levels of satisfaction is 

heavily dependent on operational efficiency, more so in handling queues, layout movements, and staff 

allocation. 

In addressing such problems, Discrete Event Simulation (DES) has proved to be a suitable simulation 

and improvement tool for complex service systems. DES is able to model time-elapsed events and 
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system behavior, offering insights into the utilization of resources, the identification of bottlenecks, and 

predicting performance [14]. Its flexibility has found widespread application in healthcare systems—

such as patient flow optimisation [17], hospital decision support systems [14], and capacity planning—

and manufacturing processes such as port terminal operating maintenance [18] and warehouse 

management [19]. Muravev et al. [20] also demonstrated the application of DES, in its hybrid 

configurations, for aiding decisions through the simulation of scenarios in intermodal terminals. In 

theme park operations, DES has also been applied to investigate visitors' flow and queue optimization, 

which leads to improved efficiency in services and customer satisfaction [21,22]. Those studies 

collectively verify DES as an effective engine for operational strategy and sustainable system design, as 

further discussed in Table 1. 

Layout strategy is another important factor in service optimization that means the physical 

arrangement of facilities to mitigate congestion and increase throughput. Ineffective layout designs can 

add to operational vagueness, material handling cost, and visitor dissatisfaction. Slack and Jones. (2019) 

point out that layout design is a strategic long-term exercise, in which initial-stage inefficiencies have 

compounded operating impact. Kulkarni et al. (2005), define layout optimization as an issue of spatial 

organization with the objective of reconciling space utilization, flow efficiency, and task synchrony. 

From the implementation perspective, a number of simulation computer software platforms are 

compatible with DES modeling, each with its own strengths. Some of them include Arena (Ardiansyah 

et al., 2023),  ExtendSim [24], FlexSim [25], SimEvents [27], and AnyLogic, the first of which is applied 

within this study due to its ability for flexibility, versatility of visualization, and usage in hybrid 

simulation environments [31,32]. AnyLogic has performed effectively in replicating dynamic 

environments such as transit hubs and theme park atmospheres, where customer flow and staff 

deployment are both susceptible to spatial and temporal fluctuations. 

Machine Learning (ML) techniques have been increasingly incorporated into simulation tools to 

enhance predictive power, parameter calibration, and adaptive assistance in decision-making to support 

DES. ML is useful when dealing with vast volumes of operational data and detecting nonlinear patterns 

without assumptions [33]. When used together with DES, ML has the potential to render simulation 

models dynamically responsive to real-time data and demand fluctuations. Applications include 

predictive maintenance with algorithms for anomaly detection [35], process optimization of 

manufacturing [34], and smart resource planning in infrastructure systems. 

Verification and validation of the model are as critical in order to check for correctness and 

appropriateness of simulation results. Scenario analysis, benchmarking, sensitivity analysis, and 

conceptual validation to check conformity to actual system logic are common validation methods [36]. 

Cycles of data-driven review and parameter calibration are required to increase model fidelity and to 

improve confidence in simulation-based recommendations [38]. 

Work measurement is a fundamental operational simulation discipline in that it measures human task 

duration and allows realistic workforce schedules to be formulated. It is most important in manual 

material handling (MMH) work, where lifting, carrying, and moving operations must be measured to 

maximize physical performance and minimize fatigue [39]. Effective labor planning also provides 

organizational planning of staffing needs, operational costs, and skills development goals [40]. In the 

broader sustainability agenda, particularly the UN Sustainable Development Goals (SDG 8), tourism 

and recreational human resource planning must emphasize decent work conditions, flexibility, and 

sustainable capacity building [41]. 

Overall, the DES and ML integration offers a data-driven, adaptive, and scalable solution for real-

world issues in seasonal recreational systems. Existing research has dealt with either system modeling 

or customer satisfaction, but not simultaneously; this research addresses the gap by presenting an end-

to-end simulation framework improving the design, capacity planning, and sustainability of cold-climate 

recreational operations. 
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Table 1. Previous studies on DES, Operation Management, Theme Park, ML and Simulation   

No Author(s) and 

Year 

Method Research Results 

1 Cubukcuoglu 

et al., 2020 

The study employed Discrete Event 

Simulation (DES) to validate the 

Programme of Requirements (PoR) 

within the context of hospital space 

planning. 

Simulation variables such as patient arrival, 

hospitalization duration, and physician 

availability demonstrated that DES enhances 

operational efficiency, reduces patient waiting 

time, and improves overall satisfaction. 

2 Ordu et al., 

2023 

A combined approach of DES and 

forecasting techniques was applied to 

model patient flow, hospital 

operations, and capacity planning. 

The integration of DES with forecasting 

supports strategic resource allocation, 

enhances service quality, and increases the 

effectiveness of operational planning. 

3 Corrotea et 

al., 2023 

Implementation of DES in the 

maintenance procedures within the 

shipping industry. 

The simulation contributed to improving 

maintenance efficiency, notably reducing crane 

downtime by 13%, and facilitated spare parts 

provisioning and performance evaluation. 

4 Lopes et al., 

2017 

Utilized DES to model the soybean 

export logistics network in Mato 

Grosso, Brazil. 

The model allowed for the exploration of 

multiple scenarios without disrupting existing 

logistics systems, enabling the identification of 

optimal solutions. 

5 Morabito et 

al., 2021 

Developed a digital twin integrated 

with DES for manufacturing process 

optimization. 

The digital twin enabled accurate monitoring 

and forecasting, facilitating early detection of 

inefficiencies and supporting proactive 

decision-making. 

6 Nahmias et 

al., 2015 

A comprehensive analysis using 

theoretical models, simulations, case 

studies, and empirical data to examine 

production and operations systems. 

The study highlights the significance of 

managing uncertainty in operations through the 

use of analytical methods such as simulation, 

queuing theory, and optimization models. 

7 Saderova et 

al., 2021 

Constructed a simulation model using 

EXTENDSIM8 and conducted 

experiments to evaluate system 

behavior. 

The experiments provided critical insights into 

system performance under various conditions, 

guiding improvements in warehouse 

operations. 

8 Watters et al., 

2023 

Combined theoretical modeling, 

simulation, and empirical research to 

examine queue dynamics in theme 

parks. 

The research demonstrated that Queuing 

Theory models can effectively optimize queue 

management and reduce visitor wait times. 

9 Zhang et al., 

2022 

Employed AnyLogic software for the 

design, modification, and optimization 

of a subway station simulation model. 

Simulation results indicated improved 

passenger movement, minimizing congestion, 

delays, and crowding within the station 

environment. 

10 Milman et al., 

2020 

Conducted a cross-sectional survey to 

assess how crowd density and 

attraction popularity influence theme 

park visitor experiences. 

Findings revealed that perceptions of crowding 

significantly affect access, satisfaction, and 

visitor loyalty, impacting repeat visits and 

willingness to pay. 
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11 Li & Li, 2023 Developed a theme park queue 

simulation model incorporating a Fast 

Pass system at Shanghai Disneyland. 

The Fast Pass mechanism was found to 

effectively reduce queue times and enhance 

visitor satisfaction. 

12 Jin et al., 

2018 

Integrated Analytic Network Process 

(ANP) with One-Factor-at-a-Time 

(OAT) sensitivity analysis. 

Results showed that the ANP-based multi-

criteria framework is robust in determining 

optimal temporary facility layouts in 

construction planning. 

13 Alzubaidi et 

al., 2021 

Conducted a systematic literature 

review of over 300 studies related to 

deep learning applications. 

The review provided a structured overview of 

core deep learning models, such as CNNs, to 

guide future research in various application 

domains. 

14 Sarker, 2021 Performed a literature review 

examining the methodologies and 

applications of machine learning (ML). 

The study offered broad insights into the use of 

ML across fields such as healthcare, 

cybersecurity, e-commerce, and smart 

infrastructure. 

15 Muravev et 

al., 2020 

Applied Multi-Agent Optimization 

using AnyLogic, integrating DES, 

Agent-Based Modeling, and System 

Dynamics. 

The approach identified optimal configurations 

for intermodal terminal operations, leading to 

cost savings, improved handling capacity, and 

reduced delays. 

 

3. Methods 

3.1 Research Framework 

Methodological organization is into six stages (Figure 1), beginning with problem definition and 

concluding with simulation validation. The principal method employed is Discrete Event Simulation 

(DES), chosen for its capacity to model system dynamics as discrete and time-dependent events. DES 

in this research was applied to simulate the entire visitor experience at a recreational facility in a cold 

climate, from arrival and queuing, through service encounters to exit (Figure 2). This facilitated close 

observation of operation inefficiencies and allowed for simulation of layout and workforce deployment 

improvements' scope. 
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Figure 1. Research framework combining DES and ML for operation optimization 
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Figure 2. Visitor flow model developed in AnyLogic simulation environment 

 

3.2 Data Collection 

A one-year operational data set (January–December 2023) was formulated upon primary and secondary 

data sources. Primary data were gathered according to structured observations, interview meetings, and 

direct time recordings. Secondary data were gathered from internal operation records, public documents, 

and system records. A list of collected data types and sources is depicted in Table 2. 
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Table 2. Data Collection Overview 

No Data Type Categories Collection Method 

1 Counter and Event Data Primary Collected through direct 

observation and structured 

surveys 

2 Visitor Flow Primary Acquired via systematic 

direct observation and survey 

instruments 

3 Manpower Allocation Primary Obtained through on-site 

observation and personnel 

surveys 

4 Operating Hours and 

Peak Periods 

Secondary Sourced from official 

operational schedules 

5 Ticket Pricing and 

Additional Fees 

Secondary Extracted from official 

websites and informational 

brochures 

6 Registration and 

Payment Systems 

Secondary Retrieved from internal IT 

system databases 

 

3.3 Data Processing and Simulation Input 

Simulation input variables—interarrival times and service times particularly—were modeled using 

distribution fitting techniques. RStudio was used to identify each month's visitor data best-fit probability 

distribution by comparing Lognormal, Weibull, Gamma, and Exponential distributions. Evaluation 

metrics used included AIC, BIC, Kolmogorov-Smirnov, and Anderson-Darling tests for statistical 

strength. 

In order to capture seasonality, operational periods were divided into three segments: low, normal, 

and high seasons. Separate simulation scenarios were run for each segment, increasing the ecological 

validity of the model outputs. 

 

3.4 Simulation Model Design 

A conceptual representation of the system was constructed to capture key service nodes and visitor flow 

routes. The simulation was implemented in AnyLogic, enabling visualization of dynamic flows, 

utilization of resources, and bottlenecks in processes. Key model assumptions included queue capacities, 

average service times, and station capacities. The simulation was run in replication mode to capture 

stochastic variation and provide statistically significant output measures. 

 

3.5 Workforce Optimization Strategy 

Labour planning was addressed through a combination of Capacity Requirements Planning (CRP), 

Workload Analysis, and Bottleneck Identification—each modified to service systems with fluctuating 

demand patterns. 

 

3.5.1 Capacity Requirements Planning (CRP) 

Equation 1 is used for the calculation of total service time per hour at each counter: 

 

𝑇𝑗 = 𝑁 × 𝑊𝑝

 

(1) 

Equation 2 is used for the calculation of total working hours per day at each counter: 

 𝐻𝑗 =  (
𝑇𝑗 × 𝑂

60
) (2) 

Equation 3 is used for the calculation of number of each staff required per counter: 

𝑆 = ⌈
𝐻𝑗

𝑊𝑠
⌉                                                                     (3) 
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Where 𝑇𝑗 represents the total service time per hour (in minutes), 𝑁 is the average number of visitors 

per hour, 𝑊𝑝 means the service time per visitor at counter (in minutes), 𝐻𝑗 indicates the total working 

hours per day (in hours), 𝑂 stands for the operational hours per day (in hours), 𝑆 is the number of staff 

required, and 𝑊𝑠 represents the working hours per staff member per day (in hours). 

 

3.5.2. Workload Calculation  

Equation 4 is used for the calculation of total workload on each counter: 

 

𝑊𝑗 = 𝑃 × 𝑊𝑝

 

(4) 

Equation 5 is used for the calculation of total workload of all counters: 

       𝑊𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑊𝑗

𝑛

𝑗=1
 (5) 

Where 𝑊𝑗 represents the total workload on each counter 𝑗 (in minutes), 𝑃 is the number of visitors per 

day, 𝑊𝑝 means the service time per visitor at counter (in minutes), 𝑊_𝑡𝑜𝑡𝑎𝑙 is the total workload for 

all counters before and after the playground, and 𝑛 is the total number of counters. 

 

3.5.3 Bottleneck Analysis 
Equation 6 is used for the calculation of identifying bottlenecks based on capacity: 

  Cj =  
60

Wp
    (6) 

Equation 7 is used for the calculation of total workload level of all counters: 

  Uj =  
Pj

Cj
 (7) 

Where 𝐶𝑗 represents the capacity of visitors that can be served at counter 𝑗 (in hours), 𝑊𝑝 denotes 

the service time per visitor at counter 𝑗 (in minutes), 𝑈𝑗 is the utilization level at counter 𝑗, and 𝑃𝑗 is the 

number of visitors per hour at counter 𝑗 (in hours). 

 

3.6 Model Validation 

Results from simulations were validated against actual operating records using 30 replications for every 

season scenario. The output parameters such as queue size, waiting time, and throughput were validated 

against measured values in 2023 (Table 3). The validation process delivers both the structural credibility 

and predictive reliability of the model. 

 

3.3 Data Processing for Simulation Model Input 

Machine learning-based statistical analysis techniques have been used within this research to process 

the data collected and determine the most suitable statistical probability distribution for each month of 

the data set. The whole data processing pipeline was conducted within RStudio, which is a programming 

environment offering a wide range of libraries in favor of statistical analysis, e.g., distribution fitting 

and goodness-of-fit testing. The data, from January to December 2023, provides key data on visitor 

interarrival times at the ticket counter as well as activity average time spent in the snow area.  

Since there is a significant effect of seasonality on theme park operations, it is absolutely essential 

that simulation inputs properly reflect temporal dynamics to ensure model realism. In order to more 

accurately address this, monthly arrival numbers were divided into three seasonal segments: low season, 

regular season, and peak season. Three simulation runs were thereby developed reflecting these 

operating modes. In order to identify the most appropriate distribution for the interarrival times, several 

candidate distributions—Lognormal, Weibull, Gamma, and Exponential—were contrasted. The 

distributions were tested using a suite of goodness-of-fit tests that encompassed the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling tests to find by how much the greatest statistical fit deviates. 
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3.4 Design Model Simulation 

The initial step in the simulation modeling is the examination of various scenarios of operation (see 

Figure 2). This is begun by the development of a conceptual model describing the major components of 

the snow theme park system. The model captures visitor flow between points of service and the 

interaction at each counter. Key assumptions of the simulation are identified clearly, including 

maximum queue lengths at points of service and estimated average service time. Simulation model was 

implemented on AnyLogic software, enabling dynamic visualization of operation flows with the 

possibility to reveal bottlenecks and interrelations that can possibly impede the efficiency of service.  

 
Figure 2. Process model illustrating the flow of visitors within the simulation environment developed 

using AnyLogic. 

 

3.5 Manpower Planning 

To ensure a critical analysis of workforce requirements in the snow theme park, existing research 

integrates Capacity Requirements Planning (CRP), Workload Calculation, and Bottleneck Analysis 

methods. The integrated approach offers variation in arrival of visitors, variability in service time, 

seasonal pattern of demand, and restriction on operation, hence facilitating precise manpower planning 

in harmony with the actual needs of the park. 
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3.5.1 Capacity Requirements Planning (CRP) 

Equation 1 is used for the calculation of total service time per hour at each counter: 

 

𝑇𝑗 = 𝑁 × 𝑊𝑝

 

(1) 

Equation 2 is used for the calculation of total working hours per day at each counter: 

 𝐻𝑗 =  (
𝑇𝑗 × 𝑂

60
) (2) 

Equation 3 is used for the calculation of number of each staff required per counter: 

𝑆 = ⌈
𝐻𝑗

𝑊𝑠
⌉                                                                     (3) 

Where 𝑇𝑗 represents the total service time per hour (in minutes), 𝑁 is the average number of visitors 

per hour, 𝑊𝑝 means the service time per visitor at counter (in minutes), 𝐻𝑗 indicates the total working 

hours per day (in hours), 𝑂 stands for the operational hours per day (in hours), 𝑆 is the number of staff 

required, and 𝑊𝑠 represents the working hours per staff member per day (in hours). 

 

3.5.2. Workload Calculation  

Equation 4 is used for the calculation of total workload on each counter: 

 

𝑊𝑗 = 𝑃 × 𝑊𝑝

 

(4) 

Equation 5 is used for the calculation of total workload of all counters: 

       𝑊𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑊𝑗

𝑛

𝑗=1
 (5) 

Where 𝑊𝑗 represents the total workload on each counter 𝑗 (in minutes), 𝑃 is the number of visitors per 

day, 𝑊𝑝 means the service time per visitor at counter (in minutes), 𝑊_𝑡𝑜𝑡𝑎𝑙 is the total workload for 

all counters before and after the playground, and 𝑛 is the total number of counters. 

 

3.5.3 Bottleneck Analysis 
Equation 6 is used for the calculation of identifying bottlenecks based on capacity: 

  Cj =  
60

Wp
    (6) 

Equation 7 is used for the calculation of total workload level of all counters: 

  Uj =  
Pj

Cj
 (7) 

Where 𝐶𝑗 represents the capacity of visitors that can be served at counter 𝑗 (in hours), 𝑊𝑝 denotes 

the service time per visitor at counter 𝑗 (in minutes), 𝑈𝑗 is the utilization level at counter 𝑗, and 𝑃𝑗 is the 

number of visitors per hour at counter 𝑗 (in hours). 

 

3.6 Validation of Simulation Results 

Validation of the simulation results entails ensuring the model-calculated data against empirical 

observation. The two comprehensive data sources underpinning the exercise include the actual operating 

data assembled in Table 3 and simulated data calculated from 30 replications of the model for three 

various seasonal conditions within one year. Such a validation ensures the authenticity and reliability of 

the simulation in reflecting real theme park operations. 

 

4. Results and Discussion 

This section interprets the simulation and analytical results, framed around operational optimization, 

sustainability implications, and generalizability. 
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4.1 Interarrival Data Processing and Seasonal Segmentation 

Visitor interarrival data from 2023 was processed in RStudio using statistical distribution fitting and 

goodness-of-fit testing to inform accurate simulation inputs. Monthly data variations (Table 3) were 

aggregated into three operational seasons:  

- Low Season: Feb, Mar, May, Aug, Sep  

- Regular Season: Apr, Jun, Jul, Oct  

- Peak Season: Nov, Dec, Jan 

Table 3. Monthly Visitor Interarrival Data and Fitted Distributions 

 

For each season, lognormal distributions provided the best fit (based on AIC, BIC, and p-values), as 
detailed in Tables 4, 5, and 6, and visualized in Figures 3, 4, and 5. 

Table 4. Distribution Fit - Low Season 

Distribution Parameter 
Loglikeli

hood 
AIC BIC 

Chi-

square 

Statistic 

p-value 

Chi-square 

Lognormal 
meanlog = 5.435, sdlog 

= 1.293 
-49926.7 99857.44 99871.15 32.561 7.39E-05 

Exponential rate = 0.0021 -50265.8 100533.6 100540.5 - - 

Normal 
mean = 473.6037, sd = 

681.437 
-55760.9 111525.7 111539.4 - - 

Weibull 
shape = 0.844, scale = 

428.37 
-50061.9 100127.9 100141.6 - - 

 

 

 
 

Figure 3. Distribution Fit Visual - Low Season 
 

Year 2023 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Number of Visitors 13223 7157 7117 12227 7117 12908 11939 4103 7327 9924 20839 23820 

Statistic 

Probabilities 

Lognor
mal 

Lognor
mal 

Lognor
mal 

Lognor
mal 

Weibull Weibull 
Lognor

mal 
Weibull 

Lognor
mal 

Logno
rmal 

 Lognor
mal 

P
a

ra
m

e
te

r 

Meanlog (μ): 4.772 6.283 5.346 4.654   4.856  5.540 5.701  4.651 

Sdlog (σ): 1.291 1.165 1.250 1.287   1.256  1.317 1.153  1.252 
Min 

(Threshold): 
1 4 1 1 1 1 1 3 1 2  1 

Alpha (α):     380.92 232.21  740.79     

Beta (β):     0.950 0.953  0.853     
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Table 5. Distribution Fit - Regular Season 

Distribution Parameter 
Loglikeliho

od 
AIC BIC 

Chi-square 

Statistic 

p-value 

Chi-

square 

Lognormal 

meanlog= 

4.946, sdlog = 

1.271 

-64417.2 128838.5 128852.8 12.988 0.1123 

Exponential rate = 0.003043 -65172.2 130346.3 130353.5 - - 

Normal 
mean= 293.816, 

sd = 504.657 
-74532.8 149069.5 149083.9 - - 

Gamma 
shape = 0.797, 

rate = 0.002663 
-65010 130023.9 130038.3 - - 

Weibull 
shape = 0.829, 

scale = 260.021 
-64787.5 129579 129593.4 - - 

 

 

 

Figure 4. Distribution Fit Visual - Regular Season 

Table 6. Distribution Fit - Peak Season 

Distribution Parameter 
Loglikeli

hood 
AIC BIC 

Chi-square 

Statistic 

p-value 

Chi-square 

Lognormal 

meanlog = 

4.700, sdlog = 

1.268 

-45515.9 91035.81 91049.56 8.6016 0.377 

Exponential 
rate= 

0.00439479 
-46021.9 92045.72 92052.59   

Normal 

mean 

=227.6101, sd = 

380.9034 

-52708.2 105420.5 105434.2   

Gamma 
shape = 0.7901, 

rate = 0.003479 
-45916.2 91836.44 91850.19   

Weibull 

shape = 0.8349, 

scale = 

202.7685 

-45763.1 91530.2 91543.95   
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Figure 5. Distribution Fit Visual - Peak Season 

Table 7. Summary of Seasonal Interarrival Parameters 

Season Low Season Ave/day 
Regular 

Season 
Ave/day Peak Season Ave/day 

Statistic Probabilities  Lognormal 

219 

Lognormal 

392 

Lognormal 

643 

P
a

r
a

m
e
te

r
 

Meanlog (μ): 5.435 4.946 4.700 

Sdlog (σ): 1.293 1.271 1.268 

Min 

(Threshold): 
1 1 1 

Max 

(Triangular) 
6951 6392 7870 

Mode 

(Triangular) 
51 31 46 

 

This seasonal modeling ensures that simulation inputs align with operational variability, forming a 
robust base for capacity planning. 

4.2 Visitor Duration Analysis 

Figure 6 presents the histogram of visitor durations in the snow area. The majority (1,990 visitors) 

spent approximately 119 minutes, aligning with the intended 2-hour session model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Histogram of Visitor Time in Snow Play Area 
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Outliers (e.g., 283 minutes) were attributed to wristband errors. These findings support time allocation 
efficiency and facility throughput assumptions. 

4.3 Simulation Execution and Resource Monitoring 

The simulation, executed in AnyLogic over 30 replications per season, included 11 key service 

counters. Resource pools and usage time graphs (Figures 7 and 8) confirmed real-time load dynamics 

and system responsiveness. 

 

 

 
Figure 7. Average Usage Time Graph 

 
Figure 8. Resource Pool Graph 

Table 8 summarizes average waiting time, service time, throughput, and visitor playtime. 
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Table 8. Simulation Output Summary by Counter 

No 
Counters and events with 

visitors 

Average 

Waiting Time 

(minutes) 

Average 

Service Time 

(minutes) 

Average 

visitors per 

hour 

Average 

Playtime 

(minutes) 

1 CashierTicketCounter 15.2 5.9 21 

146.8 

2 CheckInGateStaff 0.0 0.5 21 

3 SizingShoesStaff 0.7 1.9 21 

4 
Snow shoes, Wristband & 

Socks Counter 
0.0 3.3 21 

5 WristbandActStaff 0.0 1.0 21 

6 ShoesStorageStaff 0.5 1.8 20 

7 CashierTopUpStaff 0.0 1.5 5 

8 CashierRentStaff 0.0 3.0 16 

9 Photografer 33.3 2.8 18 

10 
Returning Snow Shoes, & 

Wristband Counter 
0.0 0.1 14 

11 PhotocounterStaff 1.2 10.0 12 

 

Peak delays at the ticket counter and photographer station suggest opportunities for dynamic staffing 
or self-service integration. 

4.4 Manpower Planning Scenarios 

4.4.1 Capacity Requirements Planning (CRP) 

CRP results indicate substantial differences in staffing needs across seasons (Tables 9-11). Peak seasons 

demand more than twice the labor of low seasons. 

Table 9. CRP - Low Season 

No 
Counters and events with 

visitors 

Average 

Service 

Time 

(minutes) 

Average 

visitors per 

hour 

Total Service 

Time per Hour 

(minutes) 

Total 

Working 

Hours per 

Day 

Number of 

Staff 

Required 

1 CashierTicketCounter 5 28 140 18.67 2.33 3 

2 CheckInGateStaff 0.30 28 8.40 1.12 0.14 1 

3 SizingShoesStaff 1.30 28 36.40 4.85 0.61 1 

4 
Snow shoes, Wristband 

& Socks Counter 
3 28 84 11.20 1.40 2 

5 WristbandActStaff 3 28 84 11.20 1.40 2 

6 ShoesStorageStaff 3 28 84 11.20 1.40 2 

7 CashierTopUpStaff 5 28 140 18.67 2.33 3 

8 CashierRentStaff 1 28 28 3.73 0.47 1 

9 Photografer 1 28 28 3.73 0.47 1 

10 
Returning Snow Shoes, 

& Wristband Counter 
3 28 84 11.20 1.40 2 

11 PhotocounterStaff 10 28 280 37.33 4.67 5 

Total manpower requirement 23 

 

Table 10. CRP - Regular Season 
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No 
Counters and events 

with visitors 

Average 

Service 

Time 

(minutes) 

Average 

visitors per 

hour 

Total Service 

Time per Hour 

(minutes) 

Total 

Working 

Hours per 

Day 

Number of 

Staff 

Required 

1 CashierTicketCounter 5 49 245 32.67 4.08 5 

2 CheckInGateStaff 0.30 49 14.70 1.96 0.25 1 

3 SizingShoesStaff 1.30 49 63.70 8.49 1.06 2 

4 

Snow shoes, 

Wristband & Socks 

Counter 

3 

49 

147 19.60 2.45 3 

5 WristbandActStaff 3 49 147 19.60 2.45 3 

6 ShoesStorageStaff 3 49 147 19.60 2.45 3 

7 CashierTopUpStaff 5 49 245 32.67 4.08 5 

8 CashierRentStaff 1 49 49 6.53 0.82 1 

9 Photografer 1 49 49 6.53 0.82 1 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

3 

49 

147 19.60 2.45 3 

11 PhotocounterStaff 10 49 490 65.33 8.17 9 

Total manpower requirement 36 

 

Table 11. CRP - Peak Season 

No 
Counters and events 

with visitors 

Average 

Service 

Time 

(minutes) 

Average 

visitors per 

hour 

Total Service 

Time per Hour 

(minutes) 

Total 

Working 

Hours per 

Day 

Number of 

Staff 

Required 

1 CashierTicketCounter 5 80.38 401.9 53.59 6.70 7 

2 CheckInGateStaff 0.30 80.38 24.11 3.22 0.40 1 

3 SizingShoesStaff 1.30 80.38 104.49 13.93 1.74 2 

4 

Snow shoes, 

Wristband & Socks 

Counter 

3 80.38 241.14 32.15 4.02 5 

5 WristbandActStaff 3 80.38 241.14 32.15 4.02 5 

6 ShoesStorageStaff 3 80.38 241.14 32.15 4.02 5 

7 CashierTopUpStaff 5 80.38 401.9 53.59 6.70 7 

8 CashierRentStaff 1 80.38 80.38 10.72 1.34 2 

9 Photografer 1 80.38 80.38 10.72 1.34 2 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

3 80.38 241.14 32.15 4.02 5 

11 PhotocounterStaff 10 80.38 803.8 107.17 13.40 14 

Total manpower requirement 55 

 

4.4.2 Workload Analysis 

Workload assessment revealed cumulative demand across all counters. Table 12 to Table 14 show 

seasonal variations in minute-level workloads. 
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Table 12. Workload - Low Season 

No 
Counters and events 

with visitors 

Average Service 

Time (minutes) 

Average 

visitors per day 

Total workload per 

minute per day 

1 CashierTicketCounter 5 219 1095 

2 CheckInGateStaff 0.30 219 65.70 

3 SizingShoesStaff 1.30 219 284.70 

4 
Snow shoes, Wristband 

& Socks Counter 
3 219 657 

5 WristbandActStaff 3 219 657 

6 ShoesStorageStaff 3 219 657 

7 CashierTopUpStaff 5 219 1095 

8 CashierRentStaff 1 219 219 

9 Photografer 1 219 219 

10 
Returning Snow Shoes, 

& Wristband Counter 
3 219 657 

11 PhotocounterStaff 10 219 2190 

Total Workload (Wtotal) 7796.4 

 

Table 13. Workload - Regular Season 

No 
Counters and events 

with visitors 

Average Service 

Time (minutes) 

Average 

visitors per day 

Total workload per 

minute per day 

1 CashierTicketCounter 5 392 1960 

2 CheckInGateStaff 0.30 392 117.60 

3 SizingShoesStaff 1.30 392 509.60 

4 
Snow shoes, Wristband 

& Socks Counter 
3 392 1176 

5 WristbandActStaff 3 392 1176 

6 ShoesStorageStaff 3 392 1176 

7 CashierTopUpStaff 5 392 1960 

8 CashierRentStaff 1 392 392 

9 Photografer 1 392 392 

10 
Returning Snow Shoes, 

& Wristband Counter 
3 392 1176 

11 PhotocounterStaff 10 392 3920 

Total Workload (Wtotal) 13955.2 

 

Table 14. Workload - Peak Season 

No 
Counters and events 

with visitors 

Average Service 

Time (minutes) 

Average 

visitors per day 

Total workload per 

minute per day 

1 CashierTicketCounter 5 643 3215 

2 CheckInGateStaff 0.30 643 192.90 

3 SizingShoesStaff 1.30 643 835.90 

4 
Snow shoes, Wristband 

& Socks Counter 
3 643 1929 

5 WristbandActStaff 3 643 1929 

6 ShoesStorageStaff 3 643 1929 

7 CashierTopUpStaff 5 643 3215 

8 CashierRentStaff 1 643 643 

9 Photografer 1 643 643 

10 
Returning Snow Shoes, 

& Wristband Counter 
3 643 1929 

11 PhotocounterStaff 10 643 6430 

Total Workload (Wtotal) 22890.8 
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4.4.3 Bottleneck Identification 

Utilization levels (Uj ≥ 1) identified recurring bottlenecks in counters like Cashier, Snow Gear, and 

Photo stations. 

Table 15. Bottleneck - Low Season 

No 
Counters and events 

with visitors 

Average 

Service 

Time 

(minutes) 

Capacity per 

visitor (hour) 

Average 

visitors per 

hour 

Utilisati

on Level 

Bottleneck 

(Yes/No) 

1 
CashierTicketCounte

r 
5 12 28 2.33 Yes 

2 CheckInGateStaff 0.30 200 28 0.14 No 

3 SizingShoesStaff 1.30 46.15 28 0.61 No 

4 

Snow shoes, 

Wristband & Socks 

Counter 

3 20 28 1.40 Yes 

5 WristbandActStaff 3 20 28 1.40 Yes 

6 ShoesStorageStaff 3 20 28 1.40 Yes 

7 CashierTopUpStaff 5 12 28 2.33 Yes 

8 CashierRentStaff 1 60 28 0.47 No 

9 Photografer 1 60 28 0.47 No 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

3 20 28 1.40 Yes 

11 PhotocounterStaff 10 6 28 4.67 Yes 

 

Table 16. Bottleneck - Regular Season 

No 
Counters and events 

with visitors 

Average 

Service 

Time 

(minutes) 

Capacity per 

visitor (hour) 

Average 

visitors per 

hour 

Utilisati

on Level 

Bottleneck 

(Ya/No) 

1 
CashierTicketCounte

r 
5 12 49 4.08 Yes 

2 CheckInGateStaff 0.30 200 49 0.25 No 

3 SizingShoesStaff 1.30 46.15 49 1.06 Yes 

4 

Snow shoes, 

Wristband & Socks 

Counter 

3 20 49 2.45 

Yes 

5 WristbandActStaff 3 20 49 2.45 Yes 

6 ShoesStorageStaff 3 20 49 2.45 Yes 

7 CashierTopUpStaff 5 12 49 4.08 Yes 

8 CashierRentStaff 1 60 49 0.82 No 

9 Photografer 1 60 49 0.82 No 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

3 20 49 2.45 

Yes 

11 PhotocounterStaff 10 6 49 8.17 Yes 

 

Table 17. Bottleneck - Peak Season 

No 
Counters and events 

with visitors 

Average 

Service 

Time 

(minutes) 

Capacity per 

visitor (hour) 

Average 

visitors per 

hour 

Utilisati

on Level 

Bottlen

eck 

(Ya/No) 

1 CashierTicketCounter 5 12 81 6.75 Yes 
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2 CheckInGateStaff 0.30 200 81 0.41 No 

3 SizingShoesStaff 1.30 46.15 81 1.76 Yes 

4 

Snow shoes, 

Wristband & Socks 

Counter 

3 20 81 4.05 

Yes 

5 WristbandActStaff 3 20 81 4.05 Yes 

6 ShoesStorageStaff 3 20 81 4.05 Yes 

7 CashierTopUpStaff 5 12 81 6.75 Yes 

8 CashierRentStaff 1 60 81 1.35 Yes 

9 Photografer 1 60 81 1.35 Yes 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

3 20 81 4.05 

Yes 

11 PhotocounterStaff 10 6 81 13.50 Yes 

 

These findings justify predictive staffing and resource allocation based on seasonal patterns. 

 

4.5 Model Validation 

The simulation was validated using historical data to compute percentage absolute errors (Tables 18–

20). Most counters show acceptable deviations (±5%), confirming high model fidelity. 

Table 18. Validation - Low Season 

 

 

 

No 
Counters and events 

with visitors 

Actual Data Simulation Result Data 
Percentage of Actual vs 

Simulation Comparison 

Ave 
Waiting 

Time 

(mins) 

Ave 
Service 

Time 

(mins) 

Provided 

Playtime 
(mins) 

Ave 

visitors 
per hour 

Ave 
Waiting 

Time 

(mins) 

Ave 
Service 

Time 

(mins) 

Ave 

Playtime 
(mins) 

Ave 

visitors 
per hour 

Perc of 
Waiting 

Time 

(%) 

Perc of 
Service 

Time 

(%) 

Perc of 

Playtime 
(%) 

1 CashierTicketCounter 10 5 

120 

28 14.1 6.0 

122 

21.0 -0.4 -0.2 

0.0 

2 CheckInGateStaff 0.5 0.3 28 0.0 0.5 21.0 1.0 -0.7 

3 SizingShoesStaff 2 1.3 28 0.8 1.9 21.0 0.6 -0.5 

4 

Snowshoes, 

Wristband&Socks 
Counter 

0.5 3 28 0.0 3.3 21.0 1.0 -0.1 

5 WristbandActStaff 0.5 3 28 0.0 1.0 21.0 1.0 0.7 

6 ShoesStorageStaff 1 3 28 0.0 1.8 19.9 1.0 0.4 

7 CashierTopUpStaff 2 2 28 0.0 1.5 5.9 1.0 0.2 

8 CashierRentStaff 10 1 28 12.3 3.0 15.3 -0.2 -2.0 

9 Photografer 5 1 28 22.0 2.8 17.4 -3.4 -1.8 

10 
Returning SnowShoes, 
& Wristband Counter 

0.5 3 28 0.0 0.1 13.3 1.0 1.0 

11 PhotocounterStaff 0.5 10 28 0.1 10.0 11.8 0.7 0.0 
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Table 19. Validation - Regular Season 

 

 

Table 20. Validation - Peak Season 

 

No 
Counters and events 

with visitors 

Actual Data Simulation Result Data 
Percentage of Actual vs 

Simulation Comparison 

Average 
Waiting 

Time 

(minutes) 

Average 
Service 

Time 

(minutes) 

Provided 

Playtime 
(minutes) 

Average 
Service 

Time 

(minutes) 

Average 

visitors per 
hour 

Average 

Playtime 
(minutes) 

Percentage 

of Service 
Time (%) 

Percentage 

of Playtime 
(%) 

1 CashierTicketCounter 10 5 

120 

6.0 26.7 

124.0 

-0.2 

0.0 

2 CheckInGateStaff 0.5 0.3 0.5 26.7 -0.7 

3 SizingShoesStaff 2 1.3 1.9 26.7 -0.5 

4 
Snowshoes, Wristband 

& Socks Counter 
0.5 3 3.3 26.7 -0.1 

5 WristbandActStaff 0.5 3 1.0 26.7 0.7 

6 ShoesStorageStaff 1 3 1.8 25.2 0.4 

7 CashierTopUpStaff 2 2 1.5 7.6 0.2 

8 CashierRentStaff 10 1 3.0 17.5 -2.0 

9 Photografer 5 1 2.8 19.0 -1.8 

10 
Returning Snow Shoes, 

& Wristband Counter 
0.5 3 0.1 14.0 1.0 

11 PhotocounterStaff 0.5 10 10.0 12.5 0.0 

No 
Counters and events 

with visitors 

Actual Data Simulation Result Data 

Percentage of Actual 

vs Simulation 

Comparison 

Average 

Waiting 

Time 

(minutes) 

Average 

Service 

Time 

(minutes) 

Provided 

Playtime 

(minutes) 

Average 

Service 

Time 

(minutes) 

Average 

visitors 

per hour 

Average 

Playtime 

(minutes) 

Percentage 

of Service 

Time (%) 

Percentage 

of 

Playtime 

(%) 

1 CashierTicketCounter 10 5 

120 

6.0 43.4 

138.0 

-0.2 

-0.2 

2 CheckInGateStaff 0.5 0.3 0.5 43.3 -0.7 

3 SizingShoesStaff 2 1.3 1.9 43.3 -0.5 

4 

Snowshoes, 

Wristband & Socks 

Counter 

0.5 3 3.3 43.2 -0.1 

5 WristbandActStaff 0.5 3 1.0 43.2 0.7 

6 ShoesStorageStaff 1 3 1.8 41.3 0.4 

7 CashierTopUpStaff 2 2 1.5 12.1 0.3 

8 CashierRentStaff 10 1 3.0 31.4 -2.0 

9 Photografer 5 1 2.8 36.2 -1.8 

10 

Returning Snow 

Shoes, & Wristband 

Counter 

0.5 3 0.1 26.9 1.0 

11 PhotocounterStaff 0.5 10 10.0 23.4 0.0 
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Observed gaps (e.g., underestimating photo booth queues) can inform future iterations with more 
granular behavioral data. 

4.6 Discussion and Sustainability Implications 

Key takeaways include: - Dynamic Staffing: Simulation-driven staffing minimizes idle labor and 

overloads, improving cost-efficiency. - Sustainable Operations: Reducing queue time improves energy 

use per guest served, aligning with SDG 12. - Scalable Framework: The DES-ML hybrid can be 

adapted to other seasonally impacted leisure facilities (e.g., ski resorts, water parks). 
These results reinforce the strategic value of simulation not only in optimization but in long-term 

sustainability planning. 

5.      Conclusions 

Through this research, it was the intention to evaluate the appropriateness of current service counter 

layout and staffing methodology in a cold-climate leisure facility by utilizing Discrete Event Simulation 

(DES). By simulating the entire operation process across seasons of visits, the research identified 

inefficiencies—in terms of unnecessary waiting times at the Photographer and Ticket Counter—that 

compromise service quality under peak demand times. Simulation outputs, fueled by machine learning-

inspired input handling, provided detailed insight into resource utilization, service time variability, and 

seasonal bottle points. 

The integration of DES with Capacity Requirements Planning (CRP), Workload Analysis, and 

Bottleneck Identification allowed for systematic reallocation of manpower usage. Not only does this 

approach improve throughput in operations, but it also supports sustainable facility management, 

ensuring effective utilization of resources without labor or spatial redundancy. The findings highlight 

the centrality of data-driven decision-making in optimizing performance in visitor-intensive 

environments, where satisfactory levels are a critical indicator of sustainability. 

Specifically, the research introduces an extendable simulation model for other seasonal or visit-based 

facilities beyond the snow theme park context investigated. Others include ski resorts, indoor 

complexes, or public transportation terminals under peak season demands. The synergy in methodology 

between DES and machine learning techniques (e.g., distribution fitting with RStudio) also offers a 

reproducible method for integrating empirical data with simulation procedures, increasing the precision 

and transferability of operations research in practice. 

Subsequent research is encouraged to incorporate visitor segmentation (i.e., age, group type, visit 

purpose) into behavior modeling to further enhance decision-support systems. Additionally, the 

potential integration of DES with Agent-Based Modeling (ABM) could yield greater insights into visitor 

interactions, spatial behavior, and emergent crowd dynamics. Exploration of external uncertainties—

such as promotional events, weather variability, or energy use patterns—would also improve the 

alignment of simulation models with higher-level objectives in sustainable and resilient operations 

planning. 
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