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Abstract. Sustainable development and climate change are central agendas in global policy and 

research. This study examines and compares three ensemble learning models using Gradient 

Boosting Machine, Categorical Boosting, and Extreme Gradient Boosting for forecasting vehicle 

carbon dioxide (CO2) emissions. Data preprocessing with Interquartile Range (IQR) and median 

imputation is among the methods used to address missing values in CO₂ rating and smog rating 

variables. SHAP and PDP were employed for feature importance analysis and model 

interpretability. The findings from the third experiment demonstrate that Extreme Gradient 

Boosting (XGBoost) outperformed other models achieving a Coefficient Determination of 

0.9988, Root-Mean-Square Error of 2.1696, Mean-Absolute Error of 0.4977, and Mean-

Absolute-Percentage Error of 0.0019. The primary predictive features included combined fuel 

consumption (liters/100 km), city and highway fuel consumption, ethanol fuel consumption, 

model year, engine size and diesel consumption. The findings suggest the potential of boosting-

based models for supporting sustainable transport planning, policy for emission reduction, and 

evidence-based policy making. 
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1.   Introduction  

The issue of global warming has become a prominent subject of discussion, particularly concerning the 

alignment of net zero targets with Sustainable Development Goals (SDGs) [1]. It is driven by the 

cumulative release of greenhouse gases emissions—more particularly carbon dioxide (CO₂)—into the 

atmosphere that continues to increase the global temperature for as long as the net emissions exceed 

zero. Increased energy consumption and unconstrained consumption of fossil fuels has aggravated 

climate change, exhaustion of resources, and environmental pollution [2]. Net-zero emissions, a 

situation of equilibrium between the amount of greenhouse gases produced and the amount extracted 

from the atmosphere, are thus essential in mitigating global warming [3] . The objective of sustainable 
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development established in 2015 through the Paris Climate Agreement is to set an ambitious target to 

limit global temperature below 1.5°C compared to pre-industrial levels, highlighting the urgency of 

addressing climate change by achieving net zero emissions between 2045 and 2060 [4]. Current 

emission trends exceed this threshold underscoring the necessity to attain net-zero by the latter half of 

the century. The massive scale of consumption generated from human intervention including excessive 

use of vehicles, industrial development, the combustion of fossil fuels, agricultural practices and forestry 

which capture greenhouse gases especially CO2 [5]. 

The expansion of the transportation sector in urban regions is a critical factor that substantially 

contributes to the rise in CO2 emission, which is increasingly under pressure due to the need for greater 

mobility and more stringent environmental regulations [6]. Taking into account a range of emission-

specific characteristics such as CO, CO₂, hydrocarbons (HC), and nitrogen oxides (NOx) are key factors 

in the rise of particulate air pollution. With transport demand set to increase, it is essential to evaluate 

and reduce its environmental impact. This initiative corresponds with the sustainable development 

pillars associated with goal 7 regarding Affordable and Clean Energy, goal 11 focused on Sustainable 

Cities and Communities, goal 13 emphasizing Climate Action, and goal 15 concerning Life on Land 

[7,8]. In this context, machine learning methods have increasingly been utilized in the implementation 

of data-driven environmental policy [9] where machine learning-based regression models were 

employed to model urban transport emissions. 

Globally, carbon emissions from transportation are increasing, driven by motorization and 

demographic trends. From 2018 to 2023 several countries including China, the United States, India, 

Canada, and Indonesia experienced steady increases in CO2 emission. For instance, China's emission 

rose by 15.19% from 10.333 to 11.903 MtCO₂, while that of the United States declined by 8.68% from 

5.378 to 4.911 MtCO₂. India's emissions grew by 18.09% from 2.593 to 3.062 MtCO₂, and Indonesia's 

grew by 23.40% from 594 to 733 MtCO₂ [10]. In the midst of this global trend, Canada also experienced 

a 5.18% reduction from 579 to 549 MtCO₂. However, the emission continuously improves in alignment 

with road transport growth based on fossil fuels and making it a suitable region of study for predictive 

work on emissions with national vehicle datasets [11]. 

Several implementations of the Machine learning algorithms have been utilized to address the issue 

of CO2 emission with enhanced prediction. Among these, boosting algorithms including the Extreme 

Gradient Boosting mode, followed by Categorical Boosting and Gradient Boosting Machine 

demonstrate superior predictive capability by effectively learning from complex nonlinear relationships 

and high dimensional datasets [12–14]. Low error values have been recorded in the literature for these 

models, with XGBoost recording an RMSE of 2.6554 [12], CatBoost 1.9 [13], and GBM 3.3633 [14]. 

However, there remains room for improvement, particularly with more optimized hyperparameter 

tuning and more sophisticated feature interpretation. To fill these gaps, this study makes the following 

contributions including comparative model assessment with XGBoost, CatBoost, and GBM are 

contrasted in predictive performance founded on grid search technique and fivefold cross-validation to 

ensure robustness. The second contribution is using feature importance analysis to enhance feature 

transparency in decision making involves the use of SHapley Additive exPlanations (SHAP) values to 

rank and identify the most influential features in predicting CO2 emission and Partial Dependence Plot 

(PDP) to examine the relationship between each feature and the expected outcome [15]. 

2.   Material and Method 

The work adopts a systematic methodological process with four major phases: (i) data collection, (ii) 

SHAP value and Partial Dependence Plot-based feature selection, (iii) model development and 

hyperparameter tuning, and (iv) measurement of performance. 

 

2.1. Data collection 

The data employed in the present work is drawn from publicly published data submitted by the 

Government of Canada and accessed from the Kaggle repository [16]. The data set is widely used in 
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emission modeling research and contains 26.076 light-duty vehicles recorded between 1995 and 2022. 

Missing values were removed to ensure the accuracy and consistency of data. 

The dataset comprises both numerical and categorical variables. The attributes that can be classified 

into distinct categories include make (vehicle brand), model, vehicle class, transmission, and fuel type. 

The model year, engine size, number of cylinders, city and highway fuel consumption (liters/100 km), 

combined fuel consumption in both liters/100 km and miles per gallon (mpg), CO2 emission (g/km), 

CO2 rating, and smog rating are all numerical features to consider. Units of measurement adhere to 

transportation standards: liters/100 km indicates liters consumed per 100 kilometers, while mpg signifies 

miles per gallon. Fuel types include Ethanol (E), Diesel (D), Natural Gas (N), Regular Gasoline (X), 

and Premium Gasoline (Z). Table 1 and Table 2 give a few sample records from the dataset, detailing 

technical specifications along with corresponding CO₂ emission and ratings. 

Table 1. Sample of CO2 Vehicle Emission Data 

Model Year Vehicle 

Brand 

Vehicle 

Class 

Engine 

Size 

Cylinders Transmission Fuel 

Type 

2001 Chevrolet Pickup 

Truck- 

Small Size 

2.2 4 A4 E 

2004 Chevrolet Van-Cargo 6 8 A4 N 

2008 Mercedez Mid-Size 3 6 A7 D 

2020 Ford Pickup 

Truck: 

Standard 

2.7 6 S10 X 

2022 Bugatti Two-Seater 8 16 AM7 Z 

 

Table 2. Sample of CO2 Vehicle Emission Data (Continue) 

Fuel 

Consumption 

City  

(liters/100 km) 

Fuel 

Consumption 

Highway 

(liters/100 km) 

Comb 

(liters/100 

km) 

Comb 

(miles per 

gallon) 

CO2 

Emission 

CO2 

Rating 

Smog 

Rating 

17.7 12.2 15.2 19 243 0 0 

20.2 13.8 17.3 16 327 0 0 

9 6.1 7.7 37 208 0 0 

12 8.9 10.6 27 249 4 5 

30.3 20.9 26.1 11 608 1 1 

 

2.2. Feature importance using SHAP and PDP 

This work employed two parametric analyses utilizing SHAP and PDP technique for each of three 

models to improve model transparency (i.e., model-specific utilization). SHAP is an eXplainable AI 

(XAI) unifying framework used to explain machine learning predictions by representing the marginal 

contribution of separate input features [17] . 

Global interpretability encompasses Partial Dependence technique used to investigate the join effect 

of predictors, offering deeper insights into feature interactions [18]. These techniques provide a 

comprehensive insight into the model’s operational mechanism and facilitate a precise evaluation of 

each feature’s actual contribution to the output [19]. In order to ensure unit consistency, fuel 

consumption (mpg) was not included even though it is significant. Smog rating and CO₂ rating were left 

out because the features are imputed and may bias. 
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2.3. Experimental setup and hyperparameter tuning 

Tree-based boosting methods offer a more adaptable and robust approach for addressing complex 

nonlinear relationships. This study, thus, did not apply normalization or standardization techniques, as 

recommended by previous research [20]. In experimental setting, One-hot encoding was applied in this 

work to convert the categorical variable of fuel type into numerical features for Extreme Gradient 

Boosting and Gradient Boosting Machine Model. 

The data were split at random into 80% train (n = 20.860) and 20% test (n = 5.215) sets. The same 

fixed random seed (random_state = 42) was used in all to ensure reproducibility of the results. 

Hyperparameters were optimized by applying grid search methodology, an exhaustive approach that 

tests pre-defined sets of parameter values to identify the most suitable model specification. This 

procedure enables comparison on equal terms for all three algorithms under the same evaluation 

conditions. The experimental framework was segmented into three distinct experiments focused on 

feature selection. In the initial experiment, five variables were examined: variable Comb (liters / 100 

km), vehicle fuel usage in the city (liters/100 km), Fuel consumption on the highway (liters / 100 km), 

Ethanol (E), and Model year. The second experiment employed the same set of variables, with the 

addition of engine size as a new variable. The third experiment involved the same variables as the second 

experiment with the addition of Diesel, resulting in a total of seven variables. 

Table 3 compiles the hyperparameter range and literature sources used to inform tuning for each 

boosting model. These ranges were chosen based on both empirical experimentation and existing 

literature [21–23]. Three models were configurated with important hyperparameter and determined with 

upper and lower boundaries. The range value of GBM model is established from optimal values derived 

according to previous literature, thereafter, refined through fine-tuning around the baseline as the final 

phase of optimization. The hyperparameter range of three models was evaluated based on training time 

efficiency, dataset size, and the number of features utilized. From these search ranges, there are 324 

combinations for Extreme Gradient Boosting (XGBoost), 16 combinations for Categorical Boosting 

(CatBoost), and 72 combinations for Gradient Boosting Machine (GBM) utilizing 5-fold cross-

validation. 

Table 3. Hyperparameter Range for Model Tuning 

Model Parameter Range Value Reference 

 

 

Extreme Gradient 

Boosting (XGBoost) 

N_estimators 100,300,500,700  

 

[21] 
Max_depth 6, 7, 9 

Subsample 0.5, 0.7, 1.0 

Gamma 0, 0.1, 0.2 

Learning rate 0.1, 0.01, 0.001 

 

Categorical Boosting 

(CatBoost) 

Iterations 40, 200  

 

[22] 
Learning rate 0.01, 0.5 

Depth  2, 10 

L2 leaf reg 0.01, 1 

 

 

Gradient Boosting 

Machine (GBM) 

N_estimators 190, 200, 210  

 

 

[23] 

Learning_rate 0.08, 0.1, 0.12 

Max_depth 5 

Min_samples_split 2, 3 

Min_samples_leaf 1, 2 

Subsample 0.9, 1.0 

Both the models were trained in a fivefold cross-validation setup to minimize overfitting and identify 

the grid through the sampling of value combinations to achieve optimal parameters. The best parameters 

were selected based on validation fold performance. Several factors in the implementation of boosting 

technique as evidenced by prior studies [24]. 
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1. Parallelization and Scalability 

Boosting algorithms are engineered for parallel execution and scalability. Models originating 

from the boosting category can leverage many processor cores or distributed computing systems 

to accelerate the data training process and effectively manage large-scale datasets. 

2. Improving model performance 

Ensemble approach significantly enhances prediction accuracy relative to conventional machine 

learning algorithms. Boosting operates by combining numerous weak learner models into a 

singular robust ensemble model, hence facilitating the capture of intricate patterns within the 

data. By persistently concentrating on challenging-to-predict data, boosting incrementally 

enhances the model’s overall accuracy. 

3. Robust against overfitting 

Boosting techniques are effective in mitigating the risk of overfitting. Boosting employs 

techniques such as regularization to inhibit the model from acquiring excessive detail from the 

training data. Consequently, boosting models can excel on previously unseen data and deliver 

consistent outcomes across various datasets. 

 

2.4. Evaluation metrics 

This section outlines four standard performance metrics used to evaluate regression models, including: 

• R² (Coefficient Determination): Proportion of variance in the target variable explained by the 

model. 

• RMSE (Root-Mean-Square Error): Refers to a penalty for larger errors and provides an estimate 

of model accuracy that is in the same units as the target. 

• MAE (Mean-Absolute Error): Estimates average absolute prediction errors. 

• MAPE (Mean-Absolute-Percentage Error): Calculates the mean percentage error, providing a 

normalized measure of accuracy. 

These were selected to quantify absolute and relative prediction quality across models according to best 

practice in Machine learning-based regression analysis [25]. 

 

3.   Results and Discussion 

This section outlines the findings from three regression models—XGBoost, CatBoost, and GBM—for 

forecasting vehicle CO₂ emission. The process entails Exploratory Data Analysis (EDA), feature 

selection through SHAP and PDP, hyperparameter adjustment through grid search, and model 

performance measurement through standard regression metrics. 

 

3.1 Exploratory data analysis 

This section defines the preliminary exploratory examination of the data, which was employed to assess 

the distribution, central tendency, dispersion, and integrity of the data. Table 4 presents the summary of 

the descriptive statistics for this study, highlighting the key numeric variables. 

The data set contained missing data for CO₂ rating (n=18.905) and Smog rating (n=20.015). These 

were imputed using median imputation. Outliers in numeric attributes including engine size, fuel usage 

in city and highway, Comb (liters/100 km) and mpg, CO2 emission, and CO2 rating were removed to 

prevent bias in model training. 

 

Table 4. Exploratory Data Analysis 

 Mean Min Standard 

Deviation 

Median Max Skewness Kurtosis 

Model year 2009.576 1995.0 7.726 2010.0 2022.0 -0.200 -1.026 

Engine size 3.355 0.8 1.342 3.0 8.4 0.629 -0.416 

Cylinders 5.844 2.0 1.797 6.0 16.0 0.891 1.154 
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Fuel consumption 

city  

13.036 3.5 3.560 12.6 30.6 0.694 0.841 

Fuel consumption 

highway  

 

9.163 

 

3.2 

 

2.398 

 

8.7 

 

20.9 

 

0.887 

 

0.803 

Comb (l/100 km) 11.294 3.6 2.997 10.8 26.1 0.753 0.748 

Comb (mpg) 26.784 11.0 7.307 26.0 78.0 1.171 3.569 

CO2 emission 256.679 83.0 63.062 248.0 608.0 0.606 0.616 

CO2 rating 4.660 1.0 1.638 5.0 10.0 0.388 0.323 

Smog rating 4.674 1.0 1.791 5.0 8.0 -0.378 -0.682 

 

3.2 Interpretability model-based feature importance 

SHapley Additive exPlanations (SHAP) examination was utilized to provide predictions of every 

variable's contribution towards CO₂ emission in table 5 presents SHAP values-based feature ranking 

allows for greater transparency and is consistent with explainable AI (XAI) principles [26].  SHAP 

values not only allow model-specific interpretability but also were found to be more stable and global 

explainability than other feature attribution methods, as pointed out by Sahraei et al. [27]. 

This study utilizes SHAP interpretability to describe model decisions and identify important features 

from most to least influential that were ranked quantitatively by the average SHAP value. Those that 

were contributing little were the focus for exclusion in subsequent iterations to help reduce 

dimensionality and improve model generalization. The model results indicate that the primary factors 

influencing CO2 emission in the regression analysis are combined liters and miles per gallon, fuel 

consumption in city and highway conditions, and ethanol while the elements regular and premium 

gasoline have minimal impact on the outcome. The use of SHAP is consistent with increasingly required 

interpretable AI in environmentally impactful decision-making. 

 

Table 5. Importance Feature based on SHAP Values 

Variable Variable Importance based SHAP 

Comb (liters / 100 km) 22.582797 

Comb (mpg) 11.855192 

Fuel consumption city (liters / 100 km) 9.389006 

Fuel consumption highway (liters /100 km) 6.658591 

Ethanol (E) 4.801257 

Model year 1.463873 

Engine size (L) 1.127038 

Diesel (D) 0.937435 

CO2 rating 0.650921 

Natural gas 0.178506 

Cylinders 0.097256 

Regular gasoline (X) 0.060661 

Premium gasoline (Z) 0.018739 

Smog rating 0.012613 

 

The specified value weighting using SHAP was examined through one-way partial dependence plots 

to assess the average relationship between each input variables and the output. Figure 1 presents Partial 

Dependence Plot (PDP) for seven input variables used in experimental conditions highlighting the effect 

of each feature to be examined on the predicted target variable and maintaining all other features 

constant as indicated by the original PDP (represented by the blue diagonal line) and smoothed PDP 

(represented by the red diagonal line) more distincly illustrates this pattern and emphasizing the global 

trend by identifying upward and downard movement. First, Fuel consumption highway (liters/100 km), 

fuel consumption city (liters/100 km) and comb (liters/100 km) increases with higher values, indicating 
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a correlation with elevated forecasts. The range of highway fuel consumption spans from 6 liters/100 

km where a vehicle consumes 6 liters of fuel per 100 km resulting in CO2 emission of 245 g/km and 14 

liters/100 km which indicates higher fuel consumption for the same distance and a notable increase in 

CO2 emission to 268 g/km. This contrasts with the trend noted in fuel consumption city where the value 

exhibits a gradual and consistent increase within the range of 11 to 15 liters/100 km. Second, The next 

analysis to fuel type where the prediction for diesel grows with rising values indicating a positive 

correlation with CO2 emission. Conversely, Ethanol exhibit a decline as the value increases, signifying 

an inverse relationship with CO2 emission. Lastly, the analysis of engine size reveals a stable target 

value of approaximately 256-257 suggesting that variations in engine size have minimal impact on 

emissions. The significant rise on the blue diagonal line at approximately 261 contrasts with the value 

indicated on the red diagonal line suggesting the smoothed increase pattern between the feature and 

predicted outcome. 

 

  



  

02504019-08 

 

 
Figure 1. PDP analysis results for input 

3.3 Model performance and hyperparameter tuning 

Three experiments were performed based on different subsets of the features selected. Grid search-based 

tuning was performed with each model. Summary of best parameters is provided in Table 6 and model 

performance metrics—RMSE, MAE, R², and MAPE—are presented in Table 7. 

 

Table 6. Optimal Hyperparameters Selected 

No.Experiment Optimal Parameter Optimal Value 

 

 

XGBoost (Experiment 1)  

N Estimators 300 

Max Depth 6 

Subsample 0.5 

Gamma 0 

Learning Rate 0.1 

 

 

XGBoost (Experiment 2) 

N Estimators 500 

Max Depth 6 

Subsample 0.7 

Gamma 0 

Learning Rate 0.1 

 

 

XGBoost (Experiment 3) 

N Estimators 700 

Max Depth 6 

Subsample 0.5 

Gamma 0.1 

Learning Rate 0.1 
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No.Experiment Optimal Parameter Optimal Value 

 

 

CatBoost (Experiment 1) 

Depth 10 

Iterations 200 

L2 leaf reg 1 

Learning rate 0.5 

 

CatBoost (Experiment 2) 

Depth 10 

Iterations 200 

L2 leaf reg 1 

Learning rate 0.5 

 

CatBoost (Experiment 3) 

Learning rate 0.5 

Iterations 200 

L2 leaf reg 1 

Depth 10 

 

 

GBM (Experiment1) 

Learning rate 0.12 

Max Depth 5 

Min Samples Leaf 0.12 

Min samples split 3 

N estimators 210 

Subsample 0.9 

 

 

 

GBM (Experiment 2) 

Learning rate 0.12 

Max Depth 5 

Min Samples Leaf 1 

Min samples split 2 

N estimators 210 

Subsample 0.9 

 

 

 

GBM (Experiment 3) 

Learning rate 0.1 

Max Depth 5 

Min Samples Leaf 1 

Min samples split 2 

N estimators 210 

Subsample 0.9 

 

Table 7. Model Performance Metrics 

Algorithm Experiment RMSE R-Squared MAE MAPE 

Train 

data 

Test 

data 

Train 

data 

Test 

data  

Train 

data 

Test 

data 

Train 

data 

Test 

data 

 

CatBoost 

1 2.3568 4.2476 0.9986 0.9954 0.8897 1.3669 0.3628 0.5452 

2 1.3104 3.2876 0.9996 0.9973 0.6061 1.0009 0.0025 0.0040 

3 0.6888 2.2072 0.9999 0.9988 0.3664 0.6155 0.0015 0.0024 

 

XGBoost 

1 2.9763 4.4567 0.9977 0.9949 1.0339 1.3992 0.0041 0.0055 

2 1.4342 3.2471 0.9994 0.9973 0.5457 0.8794 0.0022 0.0034 

3 0.6657 2.1696 0.9998 0.9988 0.2866 0.4977 0.0011 0.0019 

 

GBM 

1 3.4231 4.5991 0.9970 0.9946 1.1268 1.4209 0.0045 0.0055 

2 2.4244 3.5438 0.9985 0.9968 0.8979 1.1108 0.0036 0.0044 

3 1.2445 2.2519 0.9996 0.9987 0.5438 0.6586 0.0021 0.0025 
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The optimum model was XGBoost (Experiment 3), with the most minimal RMSE and MAPE, 

reflecting high accuracy and minimal bias. Table 8 presents ANOVA test results for CO2 emission and 

according to the ANOVA test, Fstat = 622, 141 in XGBoost, 601,105 in CatBoost, and 577,419 in GBM. 

While Fcritical = 2.0113 in the same three model. Indicating Fstat > Fcritical. This finding indicates that null 

hypothesis should be rejected despite being true (H0: No significant difference between the models) and 

accepts the alternative hypothesis (H1: Significant differences exist between the models) as indicated 

by a probability value (P-value) of less than 0.05 which provides significant differences among the 

models [28]. 

Table 8. ANOVA Test with Feature Selection 

Source of 

Variance 

Sum of 

Squares 

Degree of 

Freedom  

Mean 

Square 

F- Statistic P-Value F-Critical 

XGBoost       

Between 

Groups 

(Regression) 

20,531 7 2,933 622, 141 1.110e-16 

 

2.0113 

Within 

Groups 

(Residual) 

 

24,548 

 

5207 

 

4.7146 

 

– 

 

– 

 

– 

Total 20,556 5214 – – – – 

CatBoost       

Between 

Groups 

(Regression) 

20,531 7 2,933 601,105 1.110e-16 

 

2.0113 

Within 

Groups 

(Residual) 

 

25,406 

 

5207 

 

4.8793 

 

– 

 

– 

 

– 

Total 20,556 5214 – – – – 

GBM       

Between 

Groups 

(Regression) 

 

20,529 

 

7 

 

2,932 

 

577,419 

 

1.110e-16 

 

 

2.0113 

Within 

Groups 

(Residual) 

 

26,447 

 

5207 

 

5.0792 

 

– 

 

– 

 

– 

Total 20,556 5214 – – – – 

 

3.4 Overfitting assessment and avoidance 

The model’s behaviour can be assessed through the range of values produced during both testing and 

training, which can be classified as either overfitting or underfitting. Overfitting arises from extended 

computation time, leading the model to concentrate excessively on the training data [26]. This results 

from inadequate regularization contributions or the application of an unsuitable and irrelevant learning 

rate for the data variables. Figure 2 illustrates possible overfitting identified in the third experiment of 

XGBoost, evidenced by the RMSE test value exceeding the RMSE train value. 

To avoid this: 

• Early stopping parameters were recommended to prevent overfitting or excessive training by 

diminishing the period of iterative training while maintaining prediction accuracy. 

• Including additional heterogeneous training samples and drop-out mechanisms were 

recommended to reduce variance. 



  

02504019-011 

 
Figure 2. RMSE graph to detect overfitting using XGBoost 

 
 

Figure 3. Actual and predicted CO2 emission of XGBoost model 

Figure 3 presents the actual CO2 versus the predicted values using scatter plot graphs (a) and Bland-

Altman analysis (b) generated by XGBoost that was identified as the optimal model. The principle of a 

scatter plot visualizes the alignment of the model’s prediction to fit the actual data. A set of data points 

are nearly aligned with the diagonal line represents the optimal relationship between the difference of 

actual and predicted values to CO2 emission. In direct comparison, bland-Altman analysis was divided 

into four categories such as differences (data points), bias (= mean difference) was found as -0.01 with 

the minimum and maximum 95% limits of agreement between 2 methods at -4.27 and 4.24. Most data 

points within the baseline area of [−95% LoA, +95% LoA] or ± 1.96 standard deviations indicating with 

no significant difference between the reliability [29] [30]. Bland-Altman plot is good to use to validate 

machine learning-based regression [31]. 

 

3.5 Cross-validation for robustness 

To check generalizability validity, fivefold cross-validation was performed on the optimal XGBoost 

model. Mean values suggest consistent performance across all folds (Table 9). 
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Table 9. Fivefold Cross-Validation Results (XGBoost, Third Experiment) 

Folds R2 RMSE MAE MAPE 

Fold-1 0.9985 2.4844 0.5623 0.21 

Fold-2 0.9994 1.5264 0.5050 0.19 

Fold-3 0.9977 3.0185 0.5881 0.22 

Fold-4 0.9990 2.0093 0.5517 0.20 

Fold-5 0.9988 2.2120 0.5392 0.21 

Mean 2.2501 0.9987 0.5493 0.21 

 

Model robustness refers to a model’s capacity to sustain accurate performance throughout diverse 

situations, particularly when evaluated with new data. It is essential to illustrate that the model is 

genuinely stable and useful. This study’s measurements can discover the optimal model that ensures 

both predictive accuracy and robustness to varying experimental settings. A key metric employed R2, 

MAE, MAPE and RMSE where a high r-squared indicating that the model effectively captures the 

significant factors affecting performance on carbon dioxide prediction. XGBoost performed consistently 

and showed high R2 values of around 0.998 and 0.999 for most folds. A value of R-squared near 1 

suggest a robust correlation between independent and dependent variables, indicating that the model 

demonstrates a strong fit. Meanwhile RMSE and MAE have a similar purpose, the closer these error 

metric are to 0, the greater the alignment between predicted outcomes and actual data, thereby providing 

a consistent error metric relative to the target variable and enhancing understanding when assesing 

predictive accuracy.  

 

3.6 Model comparison to the previous literature 

To make the results of this study valid and put them into perspective alongside other research, a 

comparison was drawn with other research that had utilized similar boosting-based machine learning 

approaches to predict CO₂ emissions. Table 10 consolidates model performance data from various 

sources including recent literature benchmark values for XGBoost, CatBoost, and GBM. Mądziel [32] 

performed an extensive benchmarking of the boosting algorithms with different dataset and experiment 

on environmental prediction issues and concluded that XGBoost performs better in general compared 

to other ensemble models regarding predictive accuracy, stability, and computational expense. The 

findings of their work justify the conclusions of this work, where XGBoost not only yielded the better 

MSE and R2 result, but also had superior generalization capability across diverse feature sets. This 

study's grid search-tuned and fivefold cross-validation-tested XGBoost model recorded an RMSE of 

2.1696, R² of 0.9988, and MAPE of 0.0019, outperforming the cited literature's best-performing results. 

This study demonstrates a significantly improved MAPE of 0.0019, indicating a high level of forecasting 

accuracy compared to previous studies [33]. 

 

Table 10. Model Benchmark Comparison with Previous Studies (Same Dataset) 
Reference Best Model RMSE MAE R-Squared MAPE 

[12] XGBoost 2.6554 Not Available 0.9973 24.3 

[13] CatBoost 1.9 2.41 99.6 Not Available 

[14] GBM 3.3633 2.2706 0.9973 0.8854 

This study XGBoost 2.1696 0.4977 0.9988 0.0019 

 

In addition to addressing technical issues, data-driven management is essential for decision-making 

in creating operational excellence. Key managerial insight highlights the importance of integrating AI-

prediction methods with large-scale datasets specifically recommending the use of XGBoost model for 

CO2 emission forecasting. This study identifies three performance indicators for light-duty vehicles 

including economic indicator which encompass vehicle maintenance and fuel usage costs. Secondly, 

environmental indicator encompass the volume of CO2 emissions generated by each vehicle, quantified 
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in liters per 100 kilometers. Lastly, vehicle indicator encompass the number of trips quantified by 

distance (measured on a daily basis), the type of fuel, and the vehicle engine classified in Euro emission 

standards. In Indonesia context, ethanol serves a viable alternative fuel potentially leading to a reduction 

in carbon dioxide emission by 30-70 percent relative to gasoline, as supported by existing literature [34]. 

Potential alternative fuel options for implementation in Indonesia encompass fuel blends such as B15, 

B20, and B30 which consist of 15 percent, 20 percent, and 30 percent biofuel, respectively [35]. This 

study proposes policy recommendation aimed at enhancing the environmental system in the 

transportation sector, which are categorized into three spesific area. The initial policy implementation 

encourages light-duty vehicle users to consider environmentally friendly characteristics when 

purchasing a vehicle such as certified emission reductions, carbon offsets, or renewable energy 

certificates in accordance with regional regulations. This approach assists users in estimating the mileage 

utilized by the vehicle while also considering financial factors associated with fuel consumption. The 

second policy implementation for the vehicle manufacturing sector is to emphasize the importance of 

developing vehicle type that prioritize fuel economy and to adopt Artificial Intelligence of Things - 

powered predictive systems with a visualization dashboard for real-time emissions monitoring. The third 

policy implementation for fuel producers should identify other options for increasing the production of 

environmentally friendly fuels through cross-industry collaboration to produce biodiesel, ethanol, and 

hydrogen fuel in supporting the implementation of road transport emission reduction strategies and 

providing robust guidance for decision-makers to achieve sustainability outcomes. 

 

4.   Conclusion 

The study demonstrates the efficacy of boosting-based machine learning algorithms specifically using 

Extreme Gradient Boosting-XGBoost, Categorical Boosting-CatBoost, and Gradient Boosting 

Machine-GBM in predicting vehicle carbon dioxide emission (CO₂) from actual Canadian vehicle data. 

Through systematic SHAP and PDP-based feature selection, the model interpretation was reduced from 

19 to 7 predictor variables, significantly enhancing interpretability without any loss in predictive 

accuracy. Among the three algorithms, the third XGBoost configuration did best with R² = 0.9988, 

RMSE = 2.1696, MAE = 0.4977, and MAPE = 0.0019, with its best performance in CO₂ emission 

prediction. The highest value feature variables were combined fuel consumption (liters/100 km), fuel 

consumption city and highway, engine size, model year, ethanol, and diesel use. The findings confirm 

that model interpretability and hyperparameter tuning method such as SHAP and PDP can significantly 

help model transparency, simplicity, and daily applications in emission prediction. However, overfitting 

risk, especially in small or imbalanced regression of data sets, remains a threat and requires the use of 

regularization methods and longer validation. 
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