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Abstract. Sustainable development and climate change are central agendas in global policy and
research. This study examines and compares three ensemble learning models using Gradient
Boosting Machine, Categorical Boosting, and Extreme Gradient Boosting for forecasting vehicle
carbon dioxide (CO>) emission. Data preprocessing with Interquartile Range (IQR) and median
imputation is among the methods used to address missing values in CO- rating and smog rating
variables. SHAP and PDP were employed for feature importance analysis and model
interpretability. The findings from the third experiment demonstrate that Extreme Gradient
Boosting (XGBoost) outperformed other models achieving a Coefficient Determination of
0.9988, Root-Mean-Square Error of 2.1696, Mean-Absolute Error of 0.4977, and Mean-
Absolute-Percentage Error of 0.0019. The primary predictive features included combined fuel
consumption (liters/100 km), city and highway fuel consumption, ethanol fuel consumption,
model year, engine size and diesel consumption. The findings suggest the potential of boosting-
based models for supporting sustainable transport planning, policy for emission reduction, and
evidence-based policy making.
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1. Introduction

The issue of global warming has become a prominent subject of discussion, particularly concerning the
alignment of net zero targets with Sustainable Development Goals (SDGs) [1]. It is driven by the
cumulative release of greenhouse gases emissions—more particularly carbon dioxide (COz)—into the
atmosphere that continues to increase the global temperature for as long as the net emissions exceed
zero. Increased energy consumption and unconstrained consumption of fossil fuels has aggravated
climate change, exhaustion of resources, and environmental pollution [2]. Net-zero emissions, a
situation of equilibrium between the amount of greenhouse gases produced and the amount extracted
from the atmosphere, are thus essential in mitigating global warming [3] . The objective of sustainable
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development established in 2015 through the Paris Climate Agreement is to set an ambitious target to
limit global temperature below 1.5°C compared to pre-industrial levels, highlighting the urgency of
addressing climate change by achieving net zero emissions between 2045 and 2060 [4]. Current
emission trends exceed this threshold underscoring the necessity to attain net-zero by the latter half of
the century. The massive scale of consumption generated from human intervention including excessive
use of vehicles, industrial development, the combustion of fossil fuels, agricultural practices and forestry
which capture greenhouse gases especially CO; [5].

The expansion of the transportation sector in urban regions is a critical factor that substantially
contributes to the rise in CO, emission, which is increasingly under pressure due to the need for greater
mobility and more stringent environmental regulations [6]. Taking into account a range of emission-
specific characteristics such as CO, CO., hydrocarbons (HC), nitrogen oxides (NOx), and particulate
matter (PM) are key factors in the rise of particulate air pollution. With transport demand set to increase,
it is essential to evaluate and reduce its environmental impact. This initiative corresponds with the
sustainable development pillars associated with goal 7 regarding Affordable and Clean Energy, goal 11
focused on Sustainable Cities and Communities, goal 13 emphasizing Climate Action, and goal 15
concerning Life on Land [7,8]. In this context, machine learning methods have increasingly been utilized
in the implementation of data-driven environmental policy [9] where machine learning-based regression
models were employed to model urban transport emissions.

Globally, carbon emissions from transportation are increasing, driven by motorization and
demographic trends. From 2018 to 2023 several countries including China, the United States, India,
Canada, and Indonesia reflected both increases and decreases in CO, emission. For instance, China's
emission rose by 15.19% from 10.333 to 11.903 MtCO., while that of the United States declined by
8.68% from 5.378 t0 4.911 MtCO:.. India's emissions grew by 18.09% from 2.593 to 3.062 MtCO-, and
Indonesia’s grew by 23.40% from 594 to 733 MtCO: [10]. In the midst of this global trend, Canada also
experienced a 5.18% reduction from 579 to 549 MtCO.. However, the emission continuously improves
in alignment with road transport growth based on fossil fuels and making it a suitable region of study
for predictive work on emissions with national vehicle datasets [11].

Several implementations of the Machine learning algorithms have been utilized to address the issue
of CO, emission with enhanced prediction. Among these, boosting algorithms including the Extreme
Gradient Boosting mode, followed by Categorical Boosting and Gradient Boosting Machine
demonstrate superior predictive capability by effectively learning from complex nonlinear relationships
and high dimensional datasets [12—14]. Low error values have been recorded in the literature for these
models, with XGBoost recording an RMSE of 2.6554 [12], CatBoost 1.9 [13], and GBM 3.3633 [14].
However, there remains room for improvement in the model’s performance, particularly with more
optimized hyperparameter tuning and more sophisticated feature interpretation. To fill these gaps, this
study makes the following contributions including comparative model assessment with XGBoost,
CatBoost, and GBM are contrasted in predictive performance founded on grid search technique and
fivefold cross-validation to ensure robustness. The second contribution is using feature importance
analysis to enhance feature transparency in decision making involves the use of SHapley Additive
exPlanations (SHAP) values to rank and identify the most influential features in predicting CO, emission
and Partial Dependence Plot (PDP) to examine the relationship between each feature and the expected
outcome [15].

2. Material and Method

The work adopts a systematic methodological process with four major phases: (i) data collection, (ii)
SHAP value and Partial Dependence Plot-based feature selection, (iii) model development and
hyperparameter tuning, and (iv) measurement of performance.

2.1. Data collection

The data employed in the present work is drawn from publicly published data submitted by the
Government of Canada and accessed from the Kaggle repository [16]. The data set is widely used in
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emission modeling research and contains 26.076 light-duty vehicles recorded between 1995 and 2022.
Missing values were removed to ensure the accuracy and consistency of data.

The dataset comprises both numerical and categorical variables. The attributes that can be classified
into distinct categories include make (vehicle brand), model, vehicle class, transmission, and fuel type.
The model year, engine size, number of cylinders, city and highway fuel consumption (liters/100 km),
combined fuel consumption in both liters/200 km and miles per gallon (mpg), CO, emission (g/km),
CO; rating, and smog rating are all numerical features to consider. Units of measurement adhere to
transportation standards: liters/100 km indicates liters consumed per 100 kilometers, while mpg signifies
miles per gallon. Fuel types include Ethanol (E), Diesel (D), Natural Gas (N), Regular Gasoline (X),
and Premium Gasoline (Z). Table 1 and Table 2 give a few sample records from the dataset, detailing
technical specifications along with corresponding CO: emission and ratings.

Table 1. Sample of CO, Vehicle Emission Data

Model Year Vehicle Vehicle Engine Cylinders Transmission Fuel
Brand Class Size Type
2001 Chevrolet Pickup 2.2 4 A4 E
Truck-
Small Size
2004 Chevrolet Van-Cargo 6 8 A4 N
2008 Mercedez Mid-Size 3 6 A7 D
2020 Ford Pickup 2.7 6 S10 X
Truck:
Standard
2022 Bugatti Two-Seater 8 16 AM7 Z
Table 2. Sample of CO, Vehicle Emission Data (Continue)
Fuel Fuel Comb Comb CO; CO; Smog
Consumption Consumption  (liters/100  (miles per Emission  Rating Rating
City Highway km) gallon)
(liters/100 km)  (liters/100 km)
17.7 12.2 15.2 19 243 0 0
20.2 13.8 17.3 16 327 0 0
9 6.1 7.7 37 208 0 0
12 8.9 10.6 27 249 4 5
30.3 20.9 26.1 11 608 1 1

2.2. Feature importance using SHAP and PDP
This work employed two parametric analyses utilizing SHAP and PDP technique for each of three
models to improve model transparency (i.e., model-specific utilization). SHAP is an eXplainable Al
(XAIl) unifying framework used to explain machine learning predictions by representing the marginal
contribution of separate input features [17] .

Global interpretability encompasses Partial Dependence technique used to investigate the join effect
of predictors, offering deeper insights into feature interactions [18]. These techniques provide a
comprehensive insight into the model’s operational mechanism and facilitate a precise evaluation of
each feature’s actual contribution to the output [19]. In order to ensure unit consistency, fuel
consumption (mpg) was not included even though it is significant. Smog rating and CO- rating were left
out because the features are imputed and may bias.
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2.3. Experimental setup and hyperparameter tuning

Tree-based boosting methods offer a more adaptable and robust approach for addressing complex
nonlinear relationships. This study, thus, did not apply normalization or standardization techniques, as
recommended by previous research [20]. In experimental setting, One-hot encoding was applied in this
work to convert the categorical variable of fuel type into numerical features for Extreme Gradient
Boosting and Gradient Boosting Machine Model.

The data were split at random into 80% train (n = 20.860) and 20% test (n = 5.215) sets. The same
fixed random seed (random_state = 42) was used in all to ensure reproducibility of the results.
Hyperparameters were optimized by applying grid search methodology, an exhaustive approach that
tests pre-defined sets of parameter values to identify the most suitable model specification. This
procedure enables comparison on equal terms for all three algorithms under the same evaluation
conditions. The experimental framework was segmented into three distinct experiments focused on
feature selection. In the initial experiment, five variables were examined: variable Comb (liters / 100
km), vehicle fuel usage in the city (liters/100 km), Fuel consumption on the highway (liters / 100 km),
Ethanol (E), and Model year. The second experiment employed the same set of variables, with the
addition of engine size as a new variable. The third experiment involved the same variables as the second
experiment with the addition of Diesel, resulting in a total of seven variables.

Table 3 compiles the hyperparameter range and literature sources used to inform tuning for each
boosting model. These ranges were chosen based on both empirical experimentation and existing
literature [21-23]. Three models were configurated with important hyperparameter and determined with
upper and lower boundaries. The range value of GBM model is established from optimal values derived
according to previous literature, thereafter, refined through fine-tuning around the baseline as the final
phase of optimization. The hyperparameter range of three models was evaluated based on training time
efficiency, dataset size, and the number of features utilized. From these search ranges, there are 324
combinations for Extreme Gradient Boosting (XGBoost), 16 combinations for Categorical Boosting
(CatBoost), and 72 combinations for Gradient Boosting Machine (GBM) utilizing 5-fold cross-
validation.

Table 3. Hyperparameter Range for Model Tuning

Model Parameter Range Value Reference
N estimators 100,300,500,700
Max_depth 6,7,9
Extreme  Gradient = Boosting Subsample 0.5,0.7,1.0 [21]
(XGBoost) Gamma 0,0.1,0.2
Learning rate 0.1, 0.01, 0.001
Iterations 40, 200
Categorical Boosting Learning rate 0.01,0.5
(CatBoost) Depth 2,10 [22]
L2 leaf reg 0.01,1
N estimators 190, 200, 210
Learning rate 0.08,0.1,0.12
Gradient ~ Boosting ~ Machine Max depth 5
(GBM) Min_samples_split 2,3 [23]
Min_samples leaf 1,2
Subsample 0.9,1.0

Both the models were trained in a fivefold cross-validation setup to minimize overfitting and identify
the grid through the sampling of value combinations to achieve optimal parameters. The best parameters
were selected based on validation fold performance. Several factors in the implementation of boosting
technique as evidenced by prior studies [24].
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1. Parallelization and Scalability
Boosting algorithms are engineered for parallel execution and scalability. Models originating
from the boosting category can leverage many processor cores or distributed computing systems
to accelerate the data training process and effectively manage large-scale datasets.

2. Improving model performance
Ensemble learning approach significantly enhances prediction accuracy relative to conventional
machine learning algorithms. Boosting operates by combining numerous weak learner models
into a singular robust ensemble model, hence facilitating the capture of intricate patterns within
the data. By persistently concentrating on challenging-to-predict data, boosting incrementally
enhances the model’s overall accuracy.

3. Robust against overfitting
Boosting techniques are effective in mitigating the risk of overfitting. Boosting employs
techniques such as regularization to inhibit the model from acquiring excessive detail from the
training data. Consequently, boosting models can excel on previously unseen data and deliver
consistent outcomes across various datasets.

2.4. Evaluation metrics
This section outlines four standard performance metrics used to evaluate regression models, including:
e R? (Coefficient Determination): Proportion of variance in the target variable explained by the
model.
e  RMSE (Root-Mean-Square Error): Refers to a penalty for larger errors and provides an estimate
of model accuracy that is in the same units as the target.
e MAE (Mean-Absolute Error): Estimates average absolute prediction errors.
e  MAPE (Mean-Absolute-Percentage Error): Calculates the mean percentage error, providing a
normalized measure of accuracy.
These were selected to quantify absolute and relative prediction quality across models according to best
practice in Machine learning-based regression analysis [25].

3. Results and Discussion

This section outlines the findings from three regression models—XGBoost, CatBoost, and GBM—for
forecasting vehicle CO: emission. The process entails Exploratory Data Analysis (EDA), feature
selection through SHAP and PDP, hyperparameter adjustment through grid search, and model
performance measurement through standard regression metrics.

3.1 Exploratory data analysis

This section defines the preliminary exploratory examination of the data, which was employed to assess
the distribution, central tendency, dispersion, and integrity of the data. Table 4 presents the summary of
the descriptive statistics for this study, highlighting the key numeric variables.

The data set contained missing data for CO: rating (n=18.905) and Smog rating (n=20.015). These
were imputed using median imputation. Outliers in numeric attributes including engine size, fuel usage
in city and highway, Comb (liters/100 km) and mpg, CO, emission, and CO- rating were removed to
prevent bias in model training.

Table 4. Exploratory Data Analysis

Mean Min Standard Median Max Skewness Kurtosis
Deviation
Model year 2009.576 1995.0 7.726 2010.0 2022.0 -0.200 -1.026
Engine size 3.355 0.8 1.342 3.0 8.4 0.629 -0.416
Cylinders 5.844 2.0 1.797 6.0 16.0 0.891 1.154
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Mean Min Standard Median Max Skewness Kurtosis

Deviation
Fuel consumption 13.036 3.5 3.560 12.6 30.6 0.694 0.841
city
Fuel consumption
highway 9.163 3.2 2.398 8.7 20.9 0.887 0.803
Comb (1/100 km) 11.294 3.6 2.997 10.8 26.1 0.753 0.748
Comb (mpg) 26.784 11.0 7.307 26.0 78.0 1.171 3.569
CO; emission 256.679  83.0 63.062 248.0 608.0  0.606 0.616
CO; rating 4.660 1.0 1.638 5.0 10.0 0.388 0.323
Smog rating 4.674 1.0 1.791 5.0 8.0 -0.378 -0.682

3.2 Interpretability model-based feature importance

SHapley Additive exPlanations (SHAP) examination was utilized to provide predictions of every
variable's contribution towards CO: emission in table 5 presents SHAP values-based feature ranking
allows for greater transparency and is consistent with explainable Al (XAl) principles [26]. SHAP
values not only allow model-specific interpretability but also were found to be more stable and global
explainability than other feature attribution methods, as pointed out by Sahraei et al. [27].

This study utilizes SHAP interpretability to describe model decisions and identify important features
from most to least influential that were ranked quantitatively by the average SHAP value. Those that
were contributing little were the focus for exclusion in subsequent iterations to help reduce
dimensionality and improve model generalization. The model results indicate that the primary factors
influencing CO, emission in the regression analysis are combined liters and miles per gallon, fuel
consumption in city and highway conditions, and ethanol while the elements regular and premium
gasoline have minimal impact on the outcome. The use of SHAP is consistent with increasingly required
interpretable Al in environmentally impactful decision-making.

Table 5. Importance Feature based on SHAP Values

Variable Variable Importance based SHAP
Comb (liters / 100 km) 22.582797
Comb (mpg) 11.855192
Fuel consumption city (liters / 100 km) 9.389006
Fuel consumption highway (liters /100 km)  6.658591
Ethanol (E) 4.801257
Model year 1.463873
Engine size (L) 1.127038
Diesel (D) 0.937435
CO; rating 0.650921
Natural gas 0.178506
Cylinders 0.097256
Regular gasoline (X) 0.060661
Premium gasoline (Z) 0.018739
Smog rating 0.012613

The specified value weighting using SHAP was examined through one-way partial dependence plots
to assess the average relationship between each input variables and the output. Figure 1 presents Partial
Dependence Plot (PDP) for seven input variables used in experimental conditions highlighting the effect
of each feature to be examined on the predicted target variable and maintaining all other features
constant as indicated by the original PDP (represented by the blue diagonal line) and smoothed PDP
(represented by the red diagonal line) more distincly illustrates this pattern and emphasizing the global
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trend by identifying upward and downard movement. First, Fuel consumption highway (liters/100 km),
fuel consumption city (liters/100 km) and comb (liters/100 km) increases with higher values, indicating
a correlation with elevated forecasts. The range of highway fuel consumption spans from 6 liters/100
km where a vehicle consumes 6 liters of fuel per 100 km resulting in CO, emission of 245 g/km and 14
liters/100 km which indicates higher fuel consumption for the same distance and a notable increase in
CO; emission to 268 g/km. This contrasts with the trend noted in fuel consumption city where the value
exhibits a gradual and consistent increase within the range of 11 to 15 liters/100 km. Second, The next
analysis to fuel type where the prediction for diesel grows with rising values indicating a positive
correlation with CO, emission. Conversely, Ethanol exhibit a decline as the value increases, signifying
an inverse relationship with CO- emission. Lastly, the analysis of engine size reveals a stable target
value of approaximately 256-257 suggesting that variations in engine size have minimal impact on
emissions. The significant rise on the blue diagonal line at approximately 261 contrasts with the value
indicated on the red diagonal line suggesting the smoothed increase pattern between the feature and
predicted outcome.

Fuel Consumption Highway (L/100 km) Combined Fuel Consumption (L/100 km)
265 300
260 280
255 260
250 240
245 220
6 8 10 12 14 10 15
Fuel Consumption City (L/100 km) Ethanol
260
270
240
260
220
250
200
240
10 15 20 false true
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Model Year Diesel

259 290
258 280
257 270
256 260
N
2000 2010 2020 false true

Engine Size (L)
261

260
258
258

257

Figure 1. PDP analysis results for input

3.3 Model performance and hyperparameter tuning

Three experiments were performed based on different subsets of the features selected. Grid search-based
tuning was performed with each model. Summary of best parameters is provided in Table 6 and model
performance metrics—RMSE, MAE, R?, and MAPE—are presented in Table 7.

Table 6. Optimal Hyperparameters Selected

No.Experiment Optimal Parameter Optimal Value
N Estimators 300
Max Depth 6
XGBoost (Experiment 1) Subsample 0.5
Gamma 0
Learning Rate 0.1
N Estimators 500
Max Depth 6
XGBoost (Experiment 2) Subsample 0.7
Gamma 0
Learning Rate 0.1
N Estimators 700
Max Depth 6
XGBoost (Experiment 3) Subsample 0.5
Gamma 0.1
Learning Rate 0.1
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No.Experiment Optimal Parameter Optimal Value
Depth 10
Iterations 200
CatBoost (Experiment 1) L2 leaf reg 1
Learning rate 0.5
Depth 10
CatBoost (Experiment 2) Iterations 200
L2 leaf reg 1
Learning rate 0.5
Learning rate 0.5
CatBoost (Experiment 3) Iterations 200
L2 leaf reg 1
Depth 10
Learning rate 0.12
Max Depth 5
GBM (Experimentl) Min Samples Leaf 0.12
Min samples split 3
N estimators 210
Subsample 0.9
Learning rate 0.12
Max Depth 5
) Min Samples Leaf 1
GBM (Experiment 2) Min samples split 2
N estimators 210
Subsample 0.9
Learning rate 0.1
Max Depth 5
) Min Samples Leaf 1
GBM (Experiment 3) Min samples split 2
N estimators 210
Subsample 0.9
Table 7. Model Performance Metrics
Algorithm Experiment RMSE R-Squared MAE MAPE
Train Test Train Test Train Test Train Test
data data data data data data data data
1 2.3568  4.2476 0.9986 0.9954 0.8897 13669 0.3628  0.5452
CatBoost 2 1.3104  3.2876 0.9996 0.9973  0.6061 1.0009 0.0025 0.0040
3 0.6888  2.2072 0.9999 0.9988 0.3664 0.6155 0.0015 0.0024
1 2.9763  4.4567 0.9977 09949 1.0339 1.3992 0.0041  0.0055
XGBoost 2 1.4342  3.2471 0.9994 0.9973 0.5457 0.8794 0.0022  0.0034
3 0.6657  2.1696 0.9998 0.9988 0.2866 0.4977 0.0011  0.0019
1 3.4231  4.5991 0.9970 0.9946 1.1268 1.4209 0.0045 0.0055
GBM 2 24244  3.5438 0.9985 0.9968 0.8979 1.1108 0.0036  0.0044
3 1.2445  2.2519 0.9996 0.9987 0.5438 0.6586 0.0021  0.0025
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The optimum model was XGBoost (Experiment 3), with the most minimal RMSE and MAPE,
reflecting high accuracy and minimal bias. Table 8 presents ANOVA test results for CO, emission and
according to the ANOVA test, Fsar = 622, 141 in XGBoost, 601,105 in CatBoost, and 577,419 in GBM.
While Feitica = 2.0113 in the same three model. Indicating Fstat > Feriticar. This finding indicates that null
hypothesis should be rejected despite being true (HO: No significant difference between the models) and
accepts the alternative hypothesis (H1: Significant differences exist between the models) as indicated
by a probability value (P-value) of less than 0.05 which provides significant differences among the
models [28].

Table 8. ANOVA Test with Feature Selection

Source of Sum of Degree of Mean F- Statistic ~ P-Value F-Critical
Variance Squares Freedom Square

XGBoost

Between 20,531 7 2,933 622, 141 1.110e-16  2.0113
Groups

(Regression)

Within

Groups 24,548 5207 4.7146 - - -
(Residual)

Total 20,556 5214 - - - -
CatBoost

Between 20,531 7 2,933 601,105 1.110e-16  2.0113
Groups

(Regression)

Within

Groups 25,406 5207 4.8793 - - -
(Residual)

Total 20,556 5214 - - - -

GBM

Between

Groups 20,529 7 2,932 577,419
(Regression)

Within

Groups 26,447 5207 5.0792 - - -
(Residual)

Total 20,556 5214 - - — —

—_

.110e-16  2.0113

3.4 Overfitting assessment and avoidance
The model’s behaviour can be assessed through the range of values produced during both testing and
training, which can be classified as either overfitting or underfitting. Overfitting arises from extended
computation time, leading the model to concentrate excessively on the training data [26]. This results
from inadequate regularization contributions or the application of an unsuitable and irrelevant learning
rate for the data variables. Figure 2 illustrates possible overfitting identified in the third experiment of
XGBoost, evidenced by the RMSE test value exceeding the RMSE train value.
To avoid this:
e Early stopping parameters were recommended to prevent overfitting or excessive training by
diminishing the period of iterative training while maintaining prediction accuracy.
e Including additional heterogeneous training samples and drop-out mechanisms were
recommended to reduce variance.
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Train-Test RMSE Gap XGBoost (Detect Overfitting)
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Test RMSE
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Figure 2. RMSE graph to detect overfitting using XGBoost

Scatter Plot: Actual vs Predicted Bland-Altman Plot
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Figure 3. Actual and predicted CO; emission of XGBoost model

Figure 3 presents the actual CO, versus the predicted values using scatter plot graphs (a) and Bland-
Altman analysis (b) generated by XGBoost that was identified as the optimal model. The principle of a
scatter plot visualizes the alignment of the model’s prediction to fit the actual data. A set of data points
are nearly aligned with the diagonal line represents the optimal relationship between the difference of
actual and predicted values to CO, emission. In direct comparison, bland-Altman analysis was divided
into four categories such as differences (data points), bias (= mean difference) was found as -0.01 with
the minimum and maximum 95% limits of agreement between 2 methods at -4.27 and 4.24. Most data
points within the baseline area of [-95% LoA, +95% LoA] or + 1.96 standard deviations indicating with
no significant difference between the reliability [29] [30]. Bland-Altman plot is good to use to validate
machine learning-based regression [31].

3.5 Cross-validation for robustness

To check generalizability validity, fivefold cross-validation was performed on the optimal XGBoost
model. Mean values suggest consistent performance across all folds (Table 9).
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Table 9. Fivefold Cross-Validation Results (XGBoost, Third Experiment)

Folds R? RMSE MAE MAPE
Fold-1 0.9985 2.4844 0.5623 0.21
Fold-2 0.9994 1.5264 0.5050 0.19
Fold-3 0.9977 3.0185 0.5881 0.22
Fold-4 0.9990 2.0093 0.5517 0.20
Fold-5 0.9988 2.2120 0.5392 0.21
Mean 2.2501 0.9987 0.5493 0.21

Model robustness refers to a model’s capacity to sustain accurate performance throughout diverse
situations, particularly when evaluated with new data. It is essential to illustrate that the model is
genuinely stable and useful. This study’s measurements can discover the optimal model that ensures
both predictive accuracy and robustness to varying experimental settings. A key metric employed R?,
MAE, MAPE and RMSE where a high r-squared indicating that the model effectively captures the
significant factors affecting performance on carbon dioxide prediction. XGBoost performed consistently
and showed high R? values of around 0.998 and 0.999 for most folds. A value of R-squared near 1
suggest a robust correlation between independent and dependent variables, indicating that the model
demonstrates a strong fit. Meanwhile RMSE and MAE have a similar purpose, the closer these error
metric are to 0, the greater the alignment between predicted outcomes and actual data, thereby providing
a consistent error metric relative to the target variable and enhancing understanding when assesing
predictive accuracy.

3.6 Model comparison to the previous literature

To make the results of this study valid and put them into perspective alongside other research, a
comparison was drawn with other research that had utilized similar boosting-based machine learning
approaches to predict CO. emissions. Table 10 consolidates model performance data from various
sources including recent literature benchmark values for XGBoost, CatBoost, and GBM. Madziel [32]
performed an extensive benchmarking of the boosting algorithms with different dataset and experiment
on environmental prediction issues and concluded that XGBoost performs better in general compared
to other ensemble models regarding predictive accuracy, stability, and computational expense. The
findings of their work justify the conclusions of this work, where XGBoost not only yielded the better
MSE and R? result, but also had superior generalization capability across diverse feature sets. This
study's grid search-tuned and fivefold cross-validation-tested XGBoost model recorded an RMSE of
2.1696, R2 0f 0.9988, and MAPE of 0.0019, outperforming the cited literature's best-performing results.
This study demonstrates a significantly improved MAPE of 0.0019, indicating a high level of forecasting
accuracy compared to previous studies [33].

Table 10. Model Benchmark Comparison with Previous Studies

Reference Best Model RMSE = MAE R-Squared MAPE

[12] XGBoost 2.6554 Not Available  0.9973 243

[13] CatBoost 1.9 2.41 99.6 Not Available
[14] GBM 3.3633  2.2706 0.9973 0.8854

This study XGBoost 2.1696  0.4977 0.9988 0.0019

In addition to addressing technical issues, data-driven management is essential for decision-making
in creating operational excellence. Key managerial insight highlights the importance of integrating Al-
prediction methods with large-scale datasets specifically recommending the use of XGBoost model for
CO; emission forecasting. This study identifies three performance indicators for light-duty vehicles
including economic indicator which encompass vehicle maintenance and fuel usage costs. Secondly,
environmental indicator encompass the volume of CO; emission generated by each vehicle, quantified
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in liters per 100 kilometers. Lastly, vehicle indicator encompass the number of trips quantified by
distance (measured on a daily basis), the type of fuel, and the vehicle engine classified in Euro emission
standards. In Indonesia context, ethanol serves a viable alternative fuel potentially leading to a reduction
in carbon dioxide emission by 30-70 percent relative to gasoline, as supported by existing literature [34].
Potential alternative fuel options for implementation in Indonesia encompass fuel blends such as B15,
B20, and B30 which consist of 15 percent, 20 percent, and 30 percent biofuel, respectively [35]. This
study proposes policy recommendation aimed at enhancing the environmental system in the
transportation sector, which are categorized into three spesific area. The initial policy implementation
encourages light-duty wvehicle users to consider environmentally friendly characteristics when
purchasing a vehicle such as certified emission reductions, carbon offsets, or renewable energy
certificates in accordance with regional regulations. This approach assists users in estimating the mileage
utilized by the vehicle while also considering cost associated with fuel consumption. The second policy
implementation for automotive manufacturing is to emphasize the importance of developing vehicle
type that prioritize fuel economy and to adopt Artificial Intelligence of Things - powered predictive
systems with a visualization dashboard for real-time emissions monitoring. The third policy
implementation for fuel producers should identify other options for increasing the production of
environmentally friendly fuels through cross-industry collaboration to produce biodiesel, ethanol, and
hydrogen fuel in supporting the implementation of road transport emission reduction strategies and
providing robust guidance for decision-makers to achieve sustainability outcomes.

4. Conclusion

The study demonstrates the efficacy of boosting-based machine learning algorithms specifically using
Extreme Gradient Boosting-XGBoost, Categorical Boosting-CatBoost, and Gradient Boosting
Machine-GBM in predicting vehicle carbon dioxide emission from actual Canadian vehicle data.
Through systematic SHAP and PDP-based feature selection, the model interpretation was reduced from
19 to 7 predictor variables, significantly enhancing interpretability without any loss in predictive
accuracy. Among the three algorithms, the third XGBoost configuration did best with R2 = 0.9988,
RMSE = 2.1696, MAE = 0.4977, and MAPE = 0.0019, with its best performance in CO. emission
prediction. The highest value feature variables were combined fuel consumption (liters/100 km), fuel
consumption city and highway, engine size, model year, ethanol, and diesel use. The findings confirm
that model interpretability and hyperparameter tuning method such as SHAP and PDP can significantly
help model transparency, simplicity, and daily applications in emission prediction. However, overfitting
risk, especially in small or imbalanced regression of data sets, requires the use of regularization methods.
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