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Abstract. The Surface Distress Index (SDI) is a key parameter for assessing urban road 

conditions that is effective in sustainable infrastructure management. The current research gap 

focuses on high-quality roads and the absence of predictive models applicable to lower-quality 

infrastructure, while complex maintenance is often overlooked, especially on urban roads with 

diverse types of surface damage. The objective of this study is to develop a predictive model of 

the Surface Distress Index (SDI) based on Artificial Neural Networks (ANN) to enhance road 

maintenance planning in urban areas. This model was trained using five years of urban road 

damage data from 42 city road segments. The coefficient of determination from the research 

results indicates a very high prediction accuracy, with an R value of 0.99, the MAE of 0.01, and 

the RMSE of 0.03. This model offers a more dynamic plan to enhance the sustainable 

maintenance of urban infrastructure. The resulting predictive model provides adaptive solutions 

to existing problems, environmental changes, and supports more sustainable urban infrastructure 

management.   
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1.   Introduction  

Road infrastructure is one of the most important factors in the development of mobility and the 

modernization of urban connectivity. Optimal road maintenance not only improves the safety and 

comfort of the transportation system but also influences investment and the efficiency of the transport 

system [1–3]. Technologically integrated road infrastructure conditions are important to meet regional 

needs and can promote sustainability goals, such as sustainable urban mobility [4–6]. Sustainable road 

maintenance must be carried out adaptively, where actual conditions, the latest knowledge, and 

technologies are integrated into road condition management [7–10]. 
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With the current evolution of technology, Machine Learning (ML)-based predictive models such as 

Artificial Neural Networks (ANN) are increasingly used and have become the primary solution for 

evaluating road conditions and other industrial sectors [11–13]. In the context of road maintenance 

management, there are several methods for assessing road conditions, such as the Pavement Condition 

Index (PCI), the International Roughness Index (IRI), and the Surface Distress Index (SDI), which is 

specifically used for urban road maintenance. Artificial Intelligence (AI), such as Artificial Neural 

Networks (ANN), is now becoming a global trend and is increasingly popular in the field of civil 

engineering and infrastructure. This technology has demonstrated effectiveness in predicting Pavement 

Condition Index (PCI) values, with higher accuracy and precision compared to conventional methods 

[14–18]. In addition, Artificial Neural Networks (ANN) are also used to predict the International 

Roughness Index (IRI) with more reliable and accurate results for assessing road conditions [19–22]. 

The integration of Artificial Neural Networks (ANN) with road condition parameters in this predictive 

model contributes to more sustainable infrastructure management to support more accurate decision-

making in road maintenance management [23,24]. 

The Surface Distress Index (SDI) is a primary metric for evaluating road conditions, particularly in 

urban areas with asphalt pavement. Although the use of Artificial Neural Networks (ANN) to predict 

road damage has been applied to most well-designed road patterns, this study aims to develop a 

predictive model of road conditions based on the Surface Distress Index (SDI) for urban roads that have 

not been fully explored previously. The International Roughness Index (IRI) and drainage conditions 

are also included in the development of this model. Integrating these two inputs will not only provide 

more accurate predictions but also enhance the model’s relevance to emerging issues related to dynamic 

environmental changes.  

Most existing models focus on high-quality national road networks. Urban road conditions with 

lower-quality infrastructure, climate challenges, and complex maintenance are often overlooked. 

Moreover, although the Surface Distress Index (SDI) has been used in certain studies, no research has 

specifically adopted Artificial Neural Networks (ANN) to evaluate road conditions by considering urban 

road infrastructure due to the combination of diverse damage levels and the integration of rapidly 

changing environmental conditions. Therefore, it is important to adapt and develop Artificial Neural 

Network (ANN) models for road conditions with varying levels of damage and to integrate other 

supporting technologies to enhance the effectiveness of maintenance and the overall sustainability of 

urban road infrastructure.  

By considering the limitations of previous research variables, this study will precisely address 

existing gaps by developing a predictive model of the Surface Distress Index (SDI) based on Artificial 

Neural Networks (ANN) for urban roads that more accurately represent road conditions often 

overlooked in earlier studies. This research will provide an integration between road condition variables, 

the International Roughness Index, drainage conditions, and their effects on the prediction of urban road 

damage. This modeling approach aims to improve the efficiency and sustainability of road maintenance 

that is adaptive to environmental change challenges, which have not been extensively studied in previous 

research on urban road networks. 

Thus, this study not only proposes a more comprehensive model for evaluating urban road conditions 

but also plays a significant role in the advancement of intelligent infrastructure technologies, which are 

increasingly becoming a global trend in sustainable civil engineering. Moreover, this research aligns 

with the goals of the Sustainable Development Goals (SDGs), particularly SDG 9 which focuses on 

sustainable infrastructure development and innovation, and SDG 11, which aims to create inclusive and 

sustainable cities and human settlements, an urgent challenge today, by providing more inclusive 

solutions for urban road maintenance [25–28].  

The main objective of this study is to develop a predictive model for assessing the Surface Distress 

Index (SDI) on urban roads using Artificial Neural Networks (ANN). This model integrates surface 

distress parameters including crack length and width, crack gap, pothole, and rutting, along with the 

International Roughness Index (IRI) and drainage conditions to address the challenges posed by current 

environmental changes. The study is designed to seek solutions for improving road maintenance 
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strategies through a more adaptive, efficient, and comprehensive planning approach to encourage a safer 

and more sustainable transportation system. 

2.   Methods 

2.1.   Data collection 

The data used in this study include the results of field inspections on road conditions, which cover the 

measurement of various types of surface distress, such as crack length, crack width, crack gap, potholes, 

and rutting. All of these data were calculated using the Surface Distress Index (SDI), which reflects the 

condition value and the level of road damage. The integration of additional variables, including drainage 

conditions and the International Roughness Index (IRI), was also applied to improve this model, as part 

of the effort to address the limitations of traditional models that focus only on physical road damage 

parameters. Damage data were collected through visual inspection and measurement of the International 

Roughness Index (IRI) using the Hawkeye measurement instrument. This model was trained with 

primary and secondary road damage data collected over a five-year period, obtained from 42 road 

segments managed by the Road Maintenance Division, Public Works and Spatial Planning Office of 

Tegal City, Indonesia. The total damage dataset consisted of 2,467 road damage observation records. 

2.2.   Data Pre-processing 

Data pre-processing was intended to ensure the quality and consistency of the data before it was used in 

model development. Accordingly, all numerical variables were normalized using min-max scaling to 

the [0, 1] range to achieve a consistent scale, prevent variables with large magnitudes from dominating 

the training process, and enable faster model convergence. In addition, missing or invalid data were 

imputed to ensure dataset integrity. Finally, the dataset was randomly split into three subsets: 60 percent 

for training, 20 percent for validation, and 20 percent for testing. This ensured that the model learned 

from historical data, validated it on unseen data, and evaluated its ability to generalize. 

2.3.   Model Development 

The development of the predictive model for the Surface Distress Index (SDI) was based on key 

parameters of road damage by integrating surface unevenness as represented by the International 

Roughness Index (IRI) and drainage conditions from roadside channels. The predictive model developed 

in this study was divided into three main layers: the input layer, the hidden layer, and the output layer. 

In the input layer, data on road condition values and other related information about road damage were 

received. In the hidden layer, this information was processed to identify damage patterns. The output 

layer predicted the road condition based on the various types of data provided. The training process of 

the model used the backpropagation algorithm, which functioned to adjust the weights and biases in the 

neural network to make more accurate predictions [16]. The model learned from the training data and 

aimed to minimize the error between the predictions and the actual values.  

The number of neurons in each layer was referred to in previous models using the formula Nh = 

Nindependent – 1, Nindependent, where N independent represents the number of independent variables [29]. All 

hidden layers and combinations of the resulting neuron numbers were tested, and the configuration that 

achieved the highest R² coefficient of determination on the validation data was selected as the optimal 

structure and best model. Overfitting was prevented by tuning hyperparameters and validating the model 

using cross-validation to ensure optimal generalization performance [30]. Dataset limitations were 

addressed by applying a proper composition to avoid creating a model that depends on limited data. 

Model interpretability was maintained to ensure that the results could be clearly understood and 

evaluated. Figure 1 illustrates the framework for developing the Surface Distress Index (SDI) predictive 

model based on Artificial Neural Networks (ANN). 
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Figure 1. Network Diagram Illustration 

 

2.4.   Model Evaluation 

The test data were used to measure the accuracy of the model in predicting road conditions based on the 

given Surface Distress Index (SDI). The model evaluation used three main metrics, namely Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and the coefficient of determination (R²). 

The performance of the Artificial Neural Networks (ANN) model was assessed based on training data, 

testing data, validation data, and the overall dataset. This evaluation determines how well the model 

performs in predicting road conditions and allows comparison of the model’s performance with other 

methods, such as linear regression, as well as with existing predictive models for road condition 

assessment. The evaluation was conducted in three main steps: first, on the training data to assess how 

well the model had learned from historical data; second, on the validation data to evaluate how well the 

model generalized to unseen data during training; and third, on the testing data to assess the model’s 

performance in actual or real-world scenarios.  

3.   Results and Discussion 

The road segment damage parameters used in the model development during the five-year maintenance 

period consisted of seven predictor variables, including crack length (X1), crack width (X2), crack gap 

(X3), pothole (X4), rutting (X5), drainage condition (X6), and IRI (X7), with the target variable being 

SDI (Y). The Surface Distress Index (SDI) predictive model was created and trained using a dataset of 

2,989 road damage observations, which was divided into 1,795 for training, 597 for testing, and 597 for 

validation.  

3.1.   Descriptive Statistics and Correlogram 

The correlations between variables were visualized in the form of a correlogram. A more in-depth 

correlation test was conducted to examine whether there were relationships between road surface 
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damage and the influence of those values on the Surface Distress Index (SDI). The results of the 

correlation coefficient analysis in Figure 2 showed a strong dependency among the predictor variables. 

The strongest relationship was observed between the International Roughness Index (IRI) and the 

Surface Distress Index (SDI), with a correlation value of 0.889. The correlation between the number of 

potholes and the International Roughness Index (IRI) was the highest among variable pairs, with a value 

of 0.855. This correlation indicates that the International Roughness Index (IRI) and the number of 

potholes are the main factors that influence the value of the Surface Distress Index (SDI). This finding 

is consistent with previous studies that suggest a strong link between pavement condition and cumulative 

damage. The statistical significance of this relationship highlights the importance of regularly 

monitoring the International Roughness Index (IRI) and timely repairing pothole damage as part of an 

effective maintenance strategy.  

 

 
Figure 2. Correlation Coefficients between Variables 

This finding aligns with the broader literature on road condition monitoring, which indicates that the 

International Roughness Index (IRI) and potholes are reliable indicators of surface distress. A high 

number of potholes is directly associated with an increase in the International Roughness Index (IRI), 

making it an important parameter in road condition assessment [31–33]. The number of potholes 

contributes significantly to the rise in the International Roughness Index (IRI)  [34–37]. However, it is 

essential to clearly note that the strength of this correlation may vary depending on geographical location 

or road type. Future research should explore these adaptations to improve the model’s generalizability 

across a wider range of road networks. 

One of the concepts that can be applied from these findings to help authorities establish a more 

effective road maintenance strategy is using the relationship between variables such as surface 

unevenness measured by the International Roughness Index (IRI), potholes, and road conditions. From 

this, one of the practical implications of the findings is that regular monitoring and timely handling of 

potholes when the condition becomes too severe from the perspective of the International Roughness 

Index (IRI) should be a top priority when developing road maintenance strategies. Repair and 

monitoring of drainage conditions should be a top priority in response to dynamic climate challenges. 
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This concept can prevent more severe road damage from occurring and can help reduce long-term road 

maintenance costs.  

3.2.   Artificial Neural Networks Model Development 

This study investigated various configurations of Artificial Neural Network (ANN) architecture in an 

effort to obtain the best results. The predictive model for the Surface Distress Index (SDI) was achieved 

by testing different neural network configurations to produce accurate prediction outcomes. The number 

of neurons in each hidden layer was calculated using the formula Nh = Nindependent – 1, resulting in 20 

artificial neural network configurations. The process of selecting the model configuration involved 

testing several configurations by evaluating the model's predictive performance using the R2 value as 

the primary indicator. From the 20 configurations, the five with the highest R2 values were selected for 

further analysis. Table 1 presents the five best ANN structure configurations from the analysis. 

 

Table 1. Performance of Artificial Neural Network (ANN) Models 

ANN Structure Data MAE RMSE R2 

 4-3 

Train 0.02 0.04 0.96 

Validate 0.03 0.06 0.94 

Test 0.03 0.06 0.92 

All 0.02 0.05 0.95 

6 

Train 0.03 0.06 0.94 

Validate 0.04 0.07 0.90 

Test 0.04 0.07 0.89 

All 0.03 0.06 0.92 

6-5 

Train 0.02 0.03 0.98 

Validate 0.01 0.03 0.99 

Test 0.01 0.02 0.99 

All 0.02 0.03 0.98 

5-6 

Train 0.02 0.03 0.98 

Validate 0.03 0.07 0.91 

Test 0.03 0.06 0.92 

All 0.02 0.05 0.96 

5-5 

Train 0.02 0.03 0.98 

Validate 0.02 0.05 0.95 

Test 0.02 0.05 0.95 

All 0.02 0.04 0.97 

 

The selection and analysis of the five models allowed for a systematic approach to network model 

configuration. This comparison aimed to find an adequate balance between predictive capability and 

generalization. In the testing data, it was observed that the model with the 6-5 structure configuration 

was the best, achieving a coefficient of determination (R2) of 0.99, indicating that the model had 

excellent capability in predicting unseen data. In the training, validation, and testing stages, the Artificial 

Neural Networks (ANN) model with the 6-5 neuron configuration showed consistently stable 

performance across all values, with very small differences in its evaluation metrics. Figure 3 presents 

the topology of the Artificial Neural Networks (ANN) with a 6-5 neuron configuration developed to 

predict road surface condition values based on the Surface Distress Index (SDI). The Artificial Neural 

Network architecture with the 6-5 configuration represents the most optimal structure and serves as the 

best model for predicting the Surface Distress Index (SDI).   
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Figure 3. Topology of the Artificial Neural Networks (ANN) Model 

 

The evaluation of the Artificial Neural Networks (ANN) topology with a 6-5 neuron configuration 

was conducted extensively to minimize the probability of overfitting while maintaining prediction 

reliability. This model demonstrated highly stable performance in all stages: Train, Validate, and Test, 

with very small differences in the evaluation matrices. The Surface Distress Index (SDI) predictive 

model showed excellent generalization capability on data that had never been seen during the training 

stage, with an R-squared value of 0.99 on the validation data. During the validation stage, the model's 

performance was evaluated using MAE, which resulted in a value of 0.01. This indicates a very small 

average deviation between the predictions and actual values, meaning that the accuracy and precision 

are very high. Additionally, the RMSE value of 0.03 also indicates a very low average error. 

This predictive model provides competitive prediction accuracy, particularly when compared to 

previous Pavement Condition Index (PCI) and International Roughness Index (IRI) models, which 

reported R-squared values ranging from 0.93 to 0.99 [17,38–42]. These results prove the effectiveness 

of Artificial Neural Networks (ANN) in modeling nonlinear relationships between input variables and 

in delivering higher correlation ratios compared to linear regression models [43–45]. The Artificial 

Neural Networks (ANN) model is superior to existing conventional models because it is capable of 

delivering higher prediction accuracy when dealing with complex relationships among predictor 

variables [45–48].  

As in previous studies, the integration of external factors such as significant environmental changes 

has been noted as an important consideration affecting model accuracy. The Artificial Neural Networks 

(ANN) model with a 6-5 configuration achieved an R-squared value of 0.99. Compared to decision tree 

and linear regression models that have been widely explored, this model is significantly superior, as the 

previously developed models tend to show weaker predictive performance on unseen data. The 

performance metrics in Figure 4 indicate that the model successfully explains most of the variability in 

the target data, and the prediction accuracy is reflected in the MSE and RMSE values. 
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Figure 4. Performance of the Artificial Neural Networks Model  

 

This finding reinforces that the Artificial Neural Networks (ANN) model is far better at adapting to 

complex, high-dimensional, and intricate data compared to traditional methods. However, although this 

model demonstrates more accurate and precise performance in terms of prediction accuracy, it also 

presents its own challenges. The model’s performance may be limited when applied to road networks 

in other regions or countries, where road conditions, environmental factors, and maintenance practices 

may differ. This finding reinforces that the Artificial Neural Networks (ANN) model is far better at 

adapting to complex, high-dimensional, and intricate data compared to traditional methods. However, 

although this model demonstrates more accurate and precise performance in terms of prediction 

accuracy, it also presents its own challenges. The model’s performance may be limited when applied to 

road networks in other regions or countries, where road conditions, environmental factors, and 

maintenance practices may differ.   

The model has the ability to accurately predict road conditions, making maintenance strategies more 

adaptive. By prioritizing repairs based on the prediction of the Surface Distress Index (SDI), road 

maintenance departments can allocate resources more efficiently and in a more targeted manner, which 

can reduce long-term maintenance costs and extend the lifespan of roads. This approach supports the 

goals of sustainable urban infrastructure by providing a data-based method for managing road networks, 

which is in line with the Sustainable Development Goals (SDGs), particularly SDG 9 which focuses on 

sustainable infrastructure development and innovation, and SDG 11 in creating inclusive and sustainable 

cities and settlements, which is a major challenge today, by offering more inclusive solutions for urban 

road maintenance.  

  

4.   Conclusion 

The development of a predictive model based on Artificial Neural Networks (ANN) was successfully 

carried out in the field of civil engineering through a road condition assessment model using the Surface 

Distress Index (SDI). This model, with a 6-5 neuron configuration, is capable of capturing nonlinear 

relationships across various types and levels of road surface distress, with a model reliability accuracy 

of R-squared equal to 0.99. With a very high level of model accuracy, it can be used as an alternative 

decision-making process in determining road repair priorities. The findings of this study indicate that 
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integrating data-based models into road maintenance practices can help improve the quality of 

sustainable urban infrastructure. This strategy aligns with the goals of the Sustainable Development 

Goals (SDGs), which aim to facilitate the development of resilient, sustainable infrastructure and 

innovation in creating inclusive and sustainable cities and settlements. From a policy perspective, 

governments and infrastructure agencies can utilize this model to enhance long-term road maintenance 

planning.  

By integrating this model into a prediction-based maintenance program within the policy framework, 

authorities and governments can ensure better resource allocation, especially in areas with limited road 

maintenance budgets. Meanwhile, integrating road damage data with International Roughness Index 

values and drainage conditions was found to be an important factor in the overall evaluation of road 

conditions in response to the challenges of significant climate change. As a note, innovative research on 

artificial intelligence (AI) based models should focus more on strategies for expanding model 

applications by integrating additional factors such as weather conditions, different vehicle types, traffic 

volume, and regional differences in road infrastructure. By integrating all factors, it will provide a more 

comprehensive and adaptive framework for road infrastructure management. Further studies that 

explore models for various types of road networks globally will have a highly effective and sustainable 

contribution to road maintenance in different locations. 
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