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Abstract. Soil nutrients, such as nitrogen, phosphorus, and potassium, are essential for plant 

growth and agricultural productivity. Conventional laboratory methods for measuring these 

nutrients are accurate, but often time-consuming, expensive, and harmful to the environment. 

This study explores the potential of portable visible-near infrared (Vis-NIR) spectrometers 

combined with machine learning algorithms as a fast, cost-effective, and environmentally 

friendly alternative for soil nutrient analysis. The soil samples used consisted of clay, sandy clay, 

and loamy clay. The machine learning model used was artificial neural network (ANN). The 

ANN model was developed using the H2O library with the AutoML feature as a hyperparameter 

tuner to improve accuracy and cross-validation to reduce overfitting. A total of 81 reflectance 

spectrum data from each soil type were obtained using the AS7265x sensor and processed to 

develop a predictive model of nutrient content. The ANN model demonstrated high accuracy, 

with R² values exceeding 0.8 for each soil texture type. This study highlights the potential of 

integrating portable Vis-NIR spectrometers and machine learning to revolutionize soil nutrient 

analysis, offering significant improvements in agricultural efficiency and sustainability. 

Keywords: artificial neural network, machine learning, portable vis-nir spectrometer, soil 

nutrient prediction, spectral analysis 
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1.   Introduction  

The availability of soil nutrients such as nitrogen (AN), phosphorus (AP), and potassium (AK) is crucial 

for supporting plant growth and directly impacts agricultural productivity [1].A deficiency in one or 

more of these essential nutrients can hinder plant growth, cause nutrient deficiencies, and ultimately 
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reduce crop yields [2]. Therefore, monitoring and measuring soil nutrient levels is vital to ensure 

agricultural sustainability and optimize harvest outcomes. 

Amid the growing global food demand and food security issues, precision fertilizer management is 

becoming increasingly urgent. Excessive fertilizer use not only leads to resource wastage but also 

negatively impacts the environment, such as water pollution, eutrophication, and increased greenhouse 

gas emissions. In this context, accurate soil nutrient assessment is essential to optimize fertilizer usage 

and minimize ecological impacts [3]. Conventional methods such as Kjeldahl testing for nitrogen, Bray 

testing for phosphorus, and HCl extraction for potassium are still widely used [4]. However, these 

methods have several limitations, including long processing times, high costs, potential environmental 

harm from chemical use, and heavy reliance on personnel expertise. Variability in procedures often 

affects the consistency of results, ultimately limiting efficiency and sustainability. 

As a more efficient and environmentally friendly alternative, visible-near infrared spectroscopy (Vis-

NIR) has gained attention in soil nutrient analysis. This method utilizes light spectra and mathematical 

models to estimate nutrient content. The main advantages of Vis-NIR lie in its non-destructive, rapid, 

and chemical-free nature, allowing large-scale monitoring with low costs and providing timely 

information in agricultural contexts. 

To improve the accuracy of Vis-NIR measurements, machine learning-based prediction models, such 

as Artificial Neural Networks (ANN), have been adopted. ANN is selected for its ability to handle both 

linear and non-linear complex data, as well as high variability in soil samples [5]. Compared to other 

machine learning algorithms, ANN offers the advantage of creating more robust predictive models, 

thereby enhancing prediction accuracy [6]. A key advantage of portable spectrometers is their ability to 

deliver immediate results in the field, unlike conventional methods, which tend to be more expensive 

and require larger equipment. Portable spectrometers enable farmers to easily access soil nutrient 

analysis data, leading to faster, data-driven decision-making. 

Several studies have demonstrated the potential of Vis-NIR spectroscopy for this purpose. Jiang et 

al. [7] successfully used NIR spectroscopy to predict various soil parameters, including TN, TP2O5, and 

TK2O, with improved accuracy through the application of machine learning. Similarly, Saidi et al. [8] 

demonstrated the reliability of this method in predicting phosphorus adsorption at the watershed scale. 

Furthermore, Metzger et al. [9] confirmed its effectiveness in detecting organic carbon soil and nitrogen 

content. Meanwhile, Devianti et al. [10] demonstrated its accuracy in tropical agricultural land with the 

help of machine learning, highlighting the great potential of Vis-NIR to support precision agriculture. 

In this study, three types of soil texture were selected, namely clay, sandy clay, and loamy clay. The 

selection of these three soil textures was based on the types of soil commonly used in agriculture. These 

three types of soil represent the characteristics of soil commonly found in various agricultural areas, 

with significant differences in terms of structure, texture, and water retention capacity. Therefore, this 

study has great potential to provide practical and applicable solutions that can be used by farmers on 

various types of land. Vis-NIR spectroscopy is a promising approach for measuring soil nutrients, 

offering several advantages over conventional methods. Its application can help farmers optimize 

fertilization, improve agricultural production efficiency, and minimize negative environmental impacts. 

However, this technology still requires further research to enhance accuracy and field application, as 

well as address challenges related to calibration and soil sample variability. The use of Vis-NIR for soil 

nutrient measurement could be a strategic step toward more sustainable and environmentally friendly 

agriculture. 

2.   Methods 

2.1.   Sample preparation 

Soil samples were collected from three areas: clay soil from UB Forest, clay loam soil from UB 

experimental land (Jatimulyo, Malang), and sandy clay soil from Sirah Kencong tea plantation (Blitar). 

Soil samples were taken from a 2 x 2 m area at a depth of 0–30 cm, amounting to 50 kg. Furthermore, 

these samples were analyzed in a laboratory to determine pH, organic carbon content (C-Organic, %), 

available nitrogen (%), available phosphorus (mg/kg), and available potassium (me/100g). Soil samples 



0260103-03 

were mixed with distilled water and a 1 N KCl solution at a 1:1 ratio to measure pH. Organic carbon 

content was measured using the Walkey and Black method, nitrogen was measured using the Kjeldahl 

method, phosphorus was measured using the Bray I method, and potassium was measured using the 

ammonium acetate (NH4OAc) extraction method. The laboratory results are presented in Table 1. 

 

Table 1. Research on weather/rain prediction 

Soil texture 

Result  

pH 1:1 
C-Organic 

(%) 

Nitrogen 

(%) 

C/N 

ratio 

Phosphorus 

(mg/Kg) 

Potassium 

(me/100g) H2O 
KCl 1 

N 

Clay  5.6 5.5 3.53 0.23 15 19.91 1.10 

Loam clay 6.4 5.7 1,25 0,13 10 23,51 0,51 

Sandy clay 5,6 4,8 2,79 0,32 9 22,71 0,21 

 

Next, nitrogen, phosphorus, and potassium levels were varied by adding single fertilizers, namely 

Urea (46%), TSP (46%), and KCl (60%). Calculations were made for the addition of each single 

fertilizer to determine the increase in nitrogen (%), phosphorus (mg/100g), and potassium (mg/100g). 

Furthermore, nutrient levels were categorized into three groups: low (<20 mg/100g), medium (20–40 

mg/100g), and high (>40 mg/100g) [11]. Based on these categories, 27 combinations of nitrogen, 

phosphorus, and potassium levels were obtained. Three values were selected for each category of each 

nutrient, resulting in 81 samples. The pre-calculated mass of fertilizer was dissolved in distilled water 

and homogenized with 300g of soil sample, then dried without heat treatment. The dried samples were 

then ground to a fine powder and sieved with a 2 mm sieve.  

2.2.   Reflectance Spectrum Measurement and Data Acquisition 

The reflectance spectrum measurement system consists of two parts: The sensor casing with dimensions 

of 60.2 x 60.2 x 34 mm and the sample casing with dimensions of 60.2 x 60.2 x 19.5 mm (Figure 1). 

The AS7265X sensor (SparkFun) covers the Vis-NIR wavelength range of 410-940 nm with 18 

channels. This sensor is integrated with a Wemos Lolin ESP32 microcontroller and programmed in C++ 

language to transmit data via Bluetooth. In addition, a 3.7V Li-Po battery serves as the power source. A 

sample cage was used to house the sample container during spectral data acquisition. Data was collected 

from three points per sample, each point was scanned five times and averaged per point, resulting in 81 

sets of spectrum data. After collecting spectrum data from each soil sample, the soil samples were 

analyzed in the laboratory to determine the content of nitrogen, phosphorus, and potassium. 

 

 

 

(a) (b) 

 

Figure 1. Research Methodology 

 

Before acquisition the spectral data, reference data from a white card and dark spectrum (non-active 

LED sensor) were collected. These reference values were used to normalize the sample spectrum data. 

The white card reference is defined as Iwhite, the dark spectrum reference is defined as Idark, and the 

reflectance spectrum of the sample is defined as Isample. The sample spectrum values were normalized 

using the following formula (1): 
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 𝐼𝑠𝑎𝑚𝑝𝑙𝑒 =
𝐼𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐼𝑑𝑎𝑟𝑘

𝐼𝑤ℎ𝑖𝑡𝑒 − 𝐼𝑑𝑎𝑟𝑘
 (1) 

2.3.   Classification and Prediction Model Development 

The classification and prediction model for soil nitrogen, phosphorus, and potassium levels was 

developed using ANN algorithm on the Google Colab platform with python programming language. A 

total of 81 datasets were used, split into 90% for model development (with an internal 90:10 split for 

training and validation) and 10% for testing. The data preprocessing technique of normalization is used 

to reduce data noise, thereby improving the sensitivity of the built model. Additionally, feature selection 

is performed using Principal Component Analysis (PCA) to extract the most important information. 

Feature selection is based on loading scores, with the highest correlated scores being selected. Spectral 

data served as predictors, while nutrient levels were the targets. Artificial neural networks (ANN) were 

implemented using the H2O library with AutoML. This approach uses machine learning to automatically 

build the optimal model by selecting parameters such as the number of hidden layers and neurons. Cross-

validation techniques were used to reduce overfitting [10]. During the AutoML process, several ANN 

configurations were trained and evaluated based on validation metrics to identify the model with the 

best performance. The final model selection is based on achieving the highest coefficient of 

determination (R²) and the lowest root mean square error (RMSE). With this approach, ANN AutoML 

helps reduce the time and effort required to build effective ANN models, as well as making machine 

learning technology more accessible to users without in-depth experience in the field. 

3.   Results and Discussion 

3.1.   Nitrogen, Phosphorus, and Potassium Levels 

Figure 2 presents violin plots of soil nutrient data, nitrogen, phosphorus, and potassium, showing data 

distribution through median, interquartile range, outliers, and density estimation. Phosphorus and 

potassium display a relatively normal distribution, indicated by their balanced density curves. In 

contrast, nitrogen exhibits a narrower distribution due to differing measurement units. Despite this, 

nitrogen values remain representative across low, medium, and high categories. 

Nitrogen, phosphorus, and potassium are critical macronutrients for plant growth. Nitrogen supports 

protein, enzyme, and chlorophyll synthesis, essential for photosynthesis. Deficiency may cause stunted 

growth, chlorosis, and yield loss, while excess can lead to excessive vegetative growth at the expense 

of reproductive parts [12]. Phosphorus promotes root development, flowering, and seed production, with 

deficiency symptoms including stunted roots and leaf purpling [13]. Potassium strengthens stress 

resistance to drought, disease, and temperature extremes, where deficiency results in necrotic leaf edges, 

weak stems, and reduced quality of fruits and seeds [14]. 

 

  
(a) (b) 

 
(c) 

Figure 2. Violin plots of nutrients of soil (a) clay, (b) sandy loam, and (c) loam clay 
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3.2.   Characteristics of the soil spectrum 

Figure 3 displays the reflectance spectra of clay, loam clay, and sandy clay soils in the 410–940 nm 

range, showing distinct patterns influenced by texture, mineral composition, and moisture content [15]. 

Absorption in the 400–1000 nm range is mainly due to iron oxides like hematite and goethite, along 

with organic matter [16], while absorption beyond 1000 nm relates to overtone and combination 

vibrations of organic and inorganic functional groups [17]. Clay soils exhibit low reflectance in the 

visible range (410–700 nm) with a sharp increase after 700 nm, influenced by kaolinite and 

montmorillonite minerals that absorb visible light and reflect more in the NIR region [18]. Loam clay 

soils follow a similar pattern but with slightly higher visible reflectance due to enhanced light scattering 

from higher clay content. This indicates that clay plays a key role in modulating light absorption by soil 

minerals [16]. Sandy clay soils show the highest reflectance, particularly in the NIR range, attributed to 

larger sand particles that scatter light more effectively and retain less water. This aligns with Rossel & 

Webster [16], who found that sand content increases reflectance in the NIR spectrum. 

Overall, reflectance spectra reveal distinct optical behaviors: clay exhibits stronger absorption, loam 

clay combines absorption and scattering, while sandy clay emphasizes scattering. These observations 

support the application of Vis-NIR spectroscopy in distinguishing soil properties, as demonstrated by 

Barman & Choudhury [19]. 

 

  
(a) (b) 

 
(c) 

 

Figure 3. Spectrum of (a) Clay soil, (b) Loam clay soil, and (c) Sandy clay soil 

3.3.   Classification model based on soil texture and soil nutrient categories 

The classification model for soil texture was developed using ANN with both full and selected 

reflectance spectral features. Based on Table 2, the model using all spectral features yielded the highest 

performance, with 100% training accuracy and 96% testing accuracy. This model used three hidden 

layers with ten nodes each. These results affirm that Vis-NIR reflectance can effectively distinguish soil 

texture types by capturing spectral differences associated with soil profile characteristics [17,20]. Each 

soil type exhibits distinct spectral patterns due to differences in particle composition: clay soil contains 

balanced sand, silt, and clay; loam clay has a higher clay fraction, while sandy clay has dominant sand 

content [19]. 

 

 

 



0260103-06 

Table 2. Categories classification model of soil texture 

Dataset ANN structure Accuracy training Accuracy testing 

All feature 10-10-10 100% 96% 

Selected feature 100-100 99% 95% 

 

Figure 4 shows the confusion matrix results of the training and testing data. The training model was 

performed with 100% accuracy (Figure 4a), where all samples were classified correctly. The 66 clay 

soil samples, 66 loam clay soil samples, and 64 sandy clay soil samples are all on the main diagonal, 

indicating no misclassification. This result indicates that the model has learned the patterns from the 

training data very well. Then, regarding the testing data, the model still performed very well, with an 

accuracy of about 96% (Figure 4b), although there were a few misclassifications. 15 of 16 Clay soil 

samples were correctly classified, while one was incorrectly classified as Sandy clay soil. For the Loam 

clay soil category, 14 out of 15 samples were correctly classified, with 1 sample incorrectly classified 

as Clay soil. As for Sandy clay soil, 16 of 17 samples were correctly classified, with 1 sample incorrectly 

classified as Clay soil. This misclassification occurred between Clay soil and Sandy clay soil, most 

likely due to the similarity in physical characteristics between the two soil types, such as higher sand 

content than Loam clay soil. 

 

  
(a) (b) 

Figure 4. Confusion matrix for soil texture classification (a) Training, (b) Testing 

 

In addition to the classification model based on soil texture, a classification model based on the 

categories of nitrogen, phosphorus, and potassium nutrients from each type of soil texture was also 

produced. The dataset used includes all and selected features from the reflectance spectrum. The 

classification model based on nutrient categories is presented in Table 3. 

 

Table 3. Categories classification model of nitrogen, phosphorus, and potassium of each soil type 

 

Soil texture Soil nutrients Dataset ANN structure 
Accuracy 

training 
MSE 

Clay soil 

Nitrogen (%)  

All feature 100 0.97 0.015 

Selected 

feature 
100-100 0.80 0.168 

P2O5 

(mg/100g) 

All feature 100-100-100 1.00 0.013 

Selected 
feature 

100-100 0.91 0.072 

K2O All feature 20-20 0.97 0.016 
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(mg/100g) Selected 

feature 
10-10-10 0.44 0.412 

Loam clay 

soil 

Nitrogen (%)  

All feature 100-100-100 0.98 0.018 

Selected 

feature 
100-100 0.96 0.013 

P2O5 

(mg/100g) 

All feature 100 0.95 0.052 

Selected 

feature 
100 0.96 0.033 

K2O 

(mg/100g) 

All feature 20-20 1.00 0.001 

Selected 

feature 
100 0.93 0.072 

Sandy lay 

soil 

Nitrogen (%)  

All feature 100-100-100 0.90 0.084 

Selected 

feature 
100-100-100 0.88 0.084 

P2O5 

(mg/100g) 

All feature 100-100 1.00 0.007 

Selected 

feature 
100-100 069 0.238 

K2O 

(mg/100g) 

All feature 100 1.00 0.031 

Selected 

feature 
100-100 0.74 0.197 

 
3.4.   Prediction model for nitrogen, phosphorus, and potassium 

In this study, the best prediction models were selected based on the coefficient of determination (R²), 

where values closer to 1 indicate a higher proportion of variability in nutrient content explained by the 

soil reflectance spectra [10]. As shown in Table 4, the optimal models were developed using the full set 

of spectral features. The highest R² value for nitrogen prediction (R² = 0.88) was achieved in clay soil 

using a three-layer ANN with 20 nodes per layer (20-20-20). For loam clay soil, the best phosphorus 

(P₂O₅) prediction model yielded an R² of 0.81 using a two-layer ANN with 50 nodes per layer. The most 

accurate potassium prediction (R² = 0.97) was also obtained in loam clay soil using a three-layer ANN 

with 20 nodes per layer. ANNs demonstrated strong performance for both linear and non-linear 

relationships. These findings are consistent with Daniel et al. [21], who achieved an R² of 0.8 for 

macronutrient estimation using Vis-NIR spectra (400–1100 nm). In contrast, Devianti et al. [10] 

reported overfitting when using a broader spectral range (400–2500 nm) due to noise in spectral 

acquisition. In this study, consistent spectral trends contributed to reliable and implementable models. 

Other studies employing partial least squares regression (PLSR) reported R² values of 0.82 for soil 

organic carbon and 0.71 for phosphorus [22]. 

 The application of portable Vis-NIR spectrometer combined with a machine learning model (ANN) 

enables faster, more economical, and environmentally friendly measurement of soil nutrient content. In 

addition, these portable spectrometers can be used directly in the field, providing instant results and 

facilitating faster decision-making for farmers. With lower costs and ease of operation, this method 

offers better scalability, allowing its application to various types of land with higher cos efficiency [23]. 

However, it is important to note that the accuracy of the model can be affected by varying soil conditions. 

Factors such as moisture content, temperature, and soil pH can be affects spectral response, which in 

turn affects the model’s prediction of nutrient content. Soils with high moisture content tend to exhibit 

different spectral behavior compared to dry soils, which can affect light absorption and reflection in the 

Vis-NIR spectrum [24]. In addition, differences in soil pH can alter the interaction between light and 

soil particles, which may impact the model's accuracy in measuring nutrient levels. Therefore, further 

research is needed to evaluate the robustness of this model under various soil conditions and to optimize 

the calibration process in order to handle these variations more effectively. 
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Table 4. Prediction models of nitrogen, phosphorus, and potassium from each soil type 

 

Soil 

texture 

Soil 

nutrients 
Dataset 

ANN 

structure 
R2 Training 

R2 

Testing 

RMSE 

Training 

RMSE 

Testing 

Clay soil 

Nitrogen 

(%) 

All feature 20-20-20 0.88 0.95 0.38 0.25 

Selected 

feature 
20-20 0.82 0.91 0.46 0.32 

P2O5 

(mg/100g) 

All feature 100 0.67 0.93 11.88 5.73 

Selected 

feature 
100 0.37 0.65 15.91 12.75 

K2O 

(mg/100g) 

All feature 100-100 0.85 0.83 9.72 11.10 

Selected 

feature 
100-100 0.85 0.71 9.46 14.35 

Loam 

clay soil 

Nitrogen 

(%) 

All feature 50-50 0.79 0.53 0.27 0.35 

Selected 

feature 
50-50 0.71 0.78 0.30 0.23 

P2O5 

(mg/100g) 

All feature 50-50 0.82 0.84 8.64 5.14 

Selected 

feature 
100 0.50 0.35 14.72 10.21 

K2O 

(mg/100g) 

All feature 20-20-20 0.97 0.96 4.46 4.01 

Selected 

feature 
50-50 0.76 0.67 12.69 12.38 

Sandy 

clay soil 

Nitrogen 

(%) 

All feature 
100-100-

100 
0.83 0.72 0.31 0.37 

Selected 

feature 
20-20 0.72 0.77 0.40 0.33 

P2O5 

(mg/100g) 

All feature 50-50-50 0.72 0.64 10.58 11.82 

Selected 

feature 

100-100-

100 
0.46 0.05 14.82 20.37 

K2O 

(mg/100g) 

All feature 100-100 0.85 0.91 8.83 4.24 

Selected 

feature 
50-50-50 0.54 0.24 16.36 12.32 

 

A more complex network structure is required to improve the phosphorus prediction model, 

especially for soil types that exhibit low performance. This can involve increasing the number of layers 

or neurons in the model [6]. The scatter plot of training data can be seen in Figure 5. The scatter plot 

shows that the predicted results closely align with a linear line, indicating minimal error values. Based 

on the prediction model generated, it has great potential to be used as an approach for measuring soil 

nutrient content, replacing laboratory testing. By understanding the availability of soil nutrients through 

this model, farmers can determine the precise fertilizer dosage according to crop needs, thereby avoiding 

over-fertilization or under-fertilization [25]. Moreover, it can assist in determining the optimal timing 

for fertilization based on plant growth stages and the availability of soil nutrients, ensuring optimal 

nutrient uptake by plants and reducing nutrient losses due to leaching. This approach minimizes negative 

environmental impacts, such as groundwater contamination by nitrates or phosphates caused by over-

fertilization, making agricultural systems more sustainable [26].  
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(a) Clay soil (b) Loam clay soil (c) Sandy clay soil 

 

Figure 5. Plot scatter of training data from each soil texture 

 

4.   Conclusion 

This study confirms that the integration of Vis-NIR spectroscopy and ANN algorithms is a viable and 

efficient method for soil nutrient analysis. By leveraging spectral data and advanced machine learning 

techniques, the proposed approach delivers accurate predictions for nitrogen, phosphorus, and potassium 

content across different soil textures. ANN models, with their capability to handle non-linear and 

complex relationships, enhanced the predictive accuracy, achieving R² values above 0.8 in each type 

soil texture. The results demonstrate that this method can effectively replace traditional laboratory 

methods, reducing costs, environmental impact, and time requirements. Furthermore, the application of 

these models in agricultural practices has the potential to optimize fertilizer application, minimize 

environmental harm, and support sustainable farming systems. Further research needs to focus on 

improving the ANN model architecture to increase accuracy and robustness in the field, as well as 

addressing soil sample variability so that the model is more robust in diverse conditions. The integration 

of this model into real-time agricultural practices also needs to be considered in order to increase its 

applicability and reliability on a large scale, thereby realizing more efficient, environmentally friendly, 

and sustainable agricultural solutions. 
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