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Abstract. Soil nutrients, such as nitrogen, phosphorus, and potassium, are essential for plant
growth and agricultural productivity. Conventional laboratory methods for measuring these
nutrients are accurate, but often time-consuming, expensive, and harmful to the environment.
This study explores the potential of portable visible-near infrared (Vis-NIR) spectrometers
combined with machine learning algorithms as a fast, cost-effective, and environmentally
friendly alternative for soil nutrient analysis. The soil samples used consisted of clay, sandy clay,
and loamy clay. The machine learning model used was artificial neural network (ANN). The
ANN model was developed using the H20O library with the AutoML feature as a hyperparameter
tuner to improve accuracy and cross-validation to reduce overfitting. A total of 81 reflectance
spectrum data from each soil type were obtained using the AS7265x sensor and processed to
develop a predictive model of nutrient content. The ANN model demonstrated high accuracy,
with R? values exceeding 0.8 for each soil texture type. This study highlights the potential of
integrating portable Vis-NIR spectrometers and machine learning to revolutionize soil nutrient
analysis, offering significant improvements in agricultural efficiency and sustainability.
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1. Introduction

The availability of soil nutrients such as nitrogen (AN), phosphorus (AP), and potassium (AK) is crucial
for supporting plant growth and directly impacts agricultural productivity [1].A deficiency in one or
more of these essential nutrients can hinder plant growth, cause nutrient deficiencies, and ultimately
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reduce crop yields [2]. Therefore, monitoring and measuring soil nutrient levels is vital to ensure
agricultural sustainability and optimize harvest outcomes.

Amid the growing global food demand and food security issues, precision fertilizer management is
becoming increasingly urgent. Excessive fertilizer use not only leads to resource wastage but also
negatively impacts the environment, such as water pollution, eutrophication, and increased greenhouse
gas emissions. In this context, accurate soil nutrient assessment is essential to optimize fertilizer usage
and minimize ecological impacts [3]. Conventional methods such as Kjeldahl testing for nitrogen, Bray
testing for phosphorus, and HCI extraction for potassium are still widely used [4]. However, these
methods have several limitations, including long processing times, high costs, potential environmental
harm from chemical use, and heavy reliance on personnel expertise. Variability in procedures often
affects the consistency of results, ultimately limiting efficiency and sustainability.

As a more efficient and environmentally friendly alternative, visible-near infrared spectroscopy (Vis-
NIR) has gained attention in soil nutrient analysis. This method utilizes light spectra and mathematical
models to estimate nutrient content. The main advantages of Vis-NIR lie in its non-destructive, rapid,
and chemical-free nature, allowing large-scale monitoring with low costs and providing timely
information in agricultural contexts.

To improve the accuracy of Vis-NIR measurements, machine learning-based prediction models, such
as Artificial Neural Networks (ANN), have been adopted. ANN is selected for its ability to handle both
linear and non-linear complex data, as well as high variability in soil samples [5]. Compared to other
machine learning algorithms, ANN offers the advantage of creating more robust predictive models,
thereby enhancing prediction accuracy [6]. A key advantage of portable spectrometers is their ability to
deliver immediate results in the field, unlike conventional methods, which tend to be more expensive
and require larger equipment. Portable spectrometers enable farmers to easily access soil nutrient
analysis data, leading to faster, data-driven decision-making.

Several studies have demonstrated the potential of Vis-NIR spectroscopy for this purpose. Jiang et
al. [7] successfully used NIR spectroscopy to predict various soil parameters, including TN, TP205, and
TK20, with improved accuracy through the application of machine learning. Similarly, Saidi et al. [8]
demonstrated the reliability of this method in predicting phosphorus adsorption at the watershed scale.
Furthermore, Metzger et al. [9] confirmed its effectiveness in detecting organic carbon soil and nitrogen
content. Meanwhile, Devianti et al. [10] demonstrated its accuracy in tropical agricultural land with the
help of machine learning, highlighting the great potential of Vis-NIR to support precision agriculture.

In this study, three types of soil texture were selected, namely clay, sandy clay, and loamy clay. The
selection of these three soil textures was based on the types of soil commonly used in agriculture. These
three types of soil represent the characteristics of soil commonly found in various agricultural areas,
with significant differences in terms of structure, texture, and water retention capacity. Therefore, this
study has great potential to provide practical and applicable solutions that can be used by farmers on
various types of land. Vis-NIR spectroscopy is a promising approach for measuring soil nutrients,
offering several advantages over conventional methods. Its application can help farmers optimize
fertilization, improve agricultural production efficiency, and minimize negative environmental impacts.
However, this technology still requires further research to enhance accuracy and field application, as
well as address challenges related to calibration and soil sample variability. The use of Vis-NIR for soil
nutrient measurement could be a strategic step toward more sustainable and environmentally friendly
agriculture.

2. Methods

2.1. Sample preparation

Soil samples were collected from three areas: clay soil from UB Forest, clay loam soil from UB
experimental land (Jatimulyo, Malang), and sandy clay soil from Sirah Kencong tea plantation (Blitar).
Soil samples were taken from a 2 x 2 m area at a depth of 0-30 cm, amounting to 50 kg. Furthermore,
these samples were analyzed in a laboratory to determine pH, organic carbon content (C-Organic, %),
available nitrogen (%), available phosphorus (mg/kg), and available potassium (me/100g). Soil samples
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were mixed with distilled water and a 1 N KCI solution at a 1:1 ratio to measure pH. Organic carbon
content was measured using the Walkey and Black method, nitrogen was measured using the Kjeldahl
method, phosphorus was measured using the Bray | method, and potassium was measured using the
ammonium acetate (NH4OAC) extraction method. The laboratory results are presented in Table 1.

Table 1. Research on weather/rain prediction

Result
. pH1:1 . . .
Soil texture KCI1 C-Organic  Nitrogen C/N  Phosphorus Potassium
H,O N (%) (%) ratio (mg/Kg) (me/100g)
Clay 5.6 5.5 3.53 0.23 15 19.91 1.10
Loam clay 6.4 5.7 1,25 0,13 10 23,51 0,51
Sandy clay 5,6 4.8 2,79 0,32 9 22,71 0,21

Next, nitrogen, phosphorus, and potassium levels were varied by adding single fertilizers, namely
Urea (46%), TSP (46%), and KCI (60%). Calculations were made for the addition of each single
fertilizer to determine the increase in nitrogen (%), phosphorus (mg/100g), and potassium (mg/100g).
Furthermore, nutrient levels were categorized into three groups: low (<20 mg/100g), medium (2040
mg/100g), and high (>40 mg/100g) [11]. Based on these categories, 27 combinations of nitrogen,
phosphorus, and potassium levels were obtained. Three values were selected for each category of each
nutrient, resulting in 81 samples. The pre-calculated mass of fertilizer was dissolved in distilled water
and homogenized with 300g of soil sample, then dried without heat treatment. The dried samples were
then ground to a fine powder and sieved with a 2 mm sieve.

2.2. Reflectance Spectrum Measurement and Data Acquisition

The reflectance spectrum measurement system consists of two parts: The sensor casing with dimensions
of 60.2 x 60.2 x 34 mm and the sample casing with dimensions of 60.2 x 60.2 x 19.5 mm (Figure 1).
The AS7265X sensor (SparkFun) covers the Vis-NIR wavelength range of 410-940 nm with 18
channels. This sensor is integrated with a Wemos Lolin ESP32 microcontroller and programmed in C++
language to transmit data via Bluetooth. In addition, a 3.7V Li-Po battery serves as the power source. A
sample cage was used to house the sample container during spectral data acquisition. Data was collected
from three points per sample, each point was scanned five times and averaged per point, resulting in 81
sets of spectrum data. After collecting spectrum data from each soil sample, the soil samples were
analyzed in the laboratory to determine the content of nitrogen, phosphorus, and potassium.

Sensor enclosure

Sensor

Reflectance Light source

Sample
Sample enclosure

(b)
Figure 1. Research Methodology

Before acquisition the spectral data, reference data from a white card and dark spectrum (non-active
LED sensor) were collected. These reference values were used to normalize the sample spectrum data.
The white card reference is defined as lwiite, the dark spectrum reference is defined as lgark, and the
reflectance spectrum of the sample is defined as lsample. The sample spectrum values were normalized
using the following formula (1):

0260103-03



_ Isample - Idark
Isample - # (1)
white — ‘dark

2.3. Classification and Prediction Model Development

The classification and prediction model for soil nitrogen, phosphorus, and potassium levels was
developed using ANN algorithm on the Google Colab platform with python programming language. A
total of 81 datasets were used, split into 90% for model development (with an internal 90:10 split for
training and validation) and 10% for testing. The data preprocessing technique of normalization is used
to reduce data noise, thereby improving the sensitivity of the built model. Additionally, feature selection
is performed using Principal Component Analysis (PCA) to extract the most important information.
Feature selection is based on loading scores, with the highest correlated scores being selected. Spectral
data served as predictors, while nutrient levels were the targets. Artificial neural networks (ANN) were
implemented using the H»O library with AutoML. This approach uses machine learning to automatically
build the optimal model by selecting parameters such as the number of hidden layers and neurons. Cross-
validation techniques were used to reduce overfitting [10]. During the AutoML process, several ANN
configurations were trained and evaluated based on validation metrics to identify the model with the
best performance. The final model selection is based on achieving the highest coefficient of
determination (R?) and the lowest root mean square error (RMSE). With this approach, ANN AutoML
helps reduce the time and effort required to build effective ANN models, as well as making machine
learning technology more accessible to users without in-depth experience in the field.

3. Results and Discussion

3.1. Nitrogen, Phosphorus, and Potassium Levels

Figure 2 presents violin plots of soil nutrient data, nitrogen, phosphorus, and potassium, showing data
distribution through median, interquartile range, outliers, and density estimation. Phosphorus and
potassium display a relatively normal distribution, indicated by their balanced density curves. In
contrast, nitrogen exhibits a narrower distribution due to differing measurement units. Despite this,
nitrogen values remain representative across low, medium, and high categories.

Nitrogen, phosphorus, and potassium are critical macronutrients for plant growth. Nitrogen supports
protein, enzyme, and chlorophyll synthesis, essential for photosynthesis. Deficiency may cause stunted
growth, chlorosis, and yield loss, while excess can lead to excessive vegetative growth at the expense
of reproductive parts [12]. Phosphorus promotes root development, flowering, and seed production, with
deficiency symptoms including stunted roots and leaf purpling [13]. Potassium strengthens stress
resistance to drought, disease, and temperature extremes, where deficiency results in necrotic leaf edges,
weak stems, and reduced quality of fruits and seeds [14].
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Figure 2. Violin plots of nutrients of soil (a) clay, (b) sandy loam, and (c) loam clay
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3.2. Characteristics of the soil spectrum

Figure 3 displays the reflectance spectra of clay, loam clay, and sandy clay soils in the 410-940 nm
range, showing distinct patterns influenced by texture, mineral composition, and moisture content [15].
Absorption in the 400-1000 nm range is mainly due to iron oxides like hematite and goethite, along
with organic matter [16], while absorption beyond 1000 nm relates to overtone and combination
vibrations of organic and inorganic functional groups [17]. Clay soils exhibit low reflectance in the
visible range (410-700 nm) with a sharp increase after 700 nm, influenced by kaolinite and
montmorillonite minerals that absorb visible light and reflect more in the NIR region [18]. Loam clay
soils follow a similar pattern but with slightly higher visible reflectance due to enhanced light scattering
from higher clay content. This indicates that clay plays a key role in modulating light absorption by soil
minerals [16]. Sandy clay soils show the highest reflectance, particularly in the NIR range, attributed to
larger sand particles that scatter light more effectively and retain less water. This aligns with Rossel &
Webster [16], who found that sand content increases reflectance in the NIR spectrum.

Overall, reflectance spectra reveal distinct optical behaviors: clay exhibits stronger absorption, loam
clay combines absorption and scattering, while sandy clay emphasizes scattering. These observations
support the application of Vis-NIR spectroscopy in distinguishing soil properties, as demonstrated by
Barman & Choudhury [19].

Effective Reflectance (%)

Effective Reflectance

Effective Reflectance

©

Figure 3. Spectrum of (a) Clay soil, (b) Loam clay soil, and (¢) Sandy clay soil

3.3. Classification model based on soil texture and soil nutrient categories

The classification model for soil texture was developed using ANN with both full and selected
reflectance spectral features. Based on Table 2, the model using all spectral features yielded the highest
performance, with 100% training accuracy and 96% testing accuracy. This model used three hidden
layers with ten nodes each. These results affirm that Vis-NIR reflectance can effectively distinguish soil
texture types by capturing spectral differences associated with soil profile characteristics [17,20]. Each
soil type exhibits distinct spectral patterns due to differences in particle composition: clay soil contains
balanced sand, silt, and clay; loam clay has a higher clay fraction, while sandy clay has dominant sand
content [19].
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Table 2. Categories classification model of soil texture

Dataset ANN structure Accuracy training Accuracy testing
All feature 10-10-10 100% 96%
Selected feature 100-100 99% 95%

Figure 4 shows the confusion matrix results of the training and testing data. The training model was
performed with 100% accuracy (Figure 4a), where all samples were classified correctly. The 66 clay
soil samples, 66 loam clay soil samples, and 64 sandy clay soil samples are all on the main diagonal,
indicating no misclassification. This result indicates that the model has learned the patterns from the
training data very well. Then, regarding the testing data, the model still performed very well, with an
accuracy of about 96% (Figure 4b), although there were a few misclassifications. 15 of 16 Clay soil
samples were correctly classified, while one was incorrectly classified as Sandy clay soil. For the Loam
clay soil category, 14 out of 15 samples were correctly classified, with 1 sample incorrectly classified
as Clay soil. As for Sandy clay soil, 16 of 17 samples were correctly classified, with 1 sample incorrectly
classified as Clay soil. This misclassification occurred between Clay soil and Sandy clay soil, most
likely due to the similarity in physical characteristics between the two soil types, such as higher sand

content than Loam clay soil.
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Figure 4. Confusion matrix for soil texture classification (a) Training, (b) Testing

In addition to the classification model based on soil texture, a classification model based on the
categories of nitrogen, phosphorus, and potassium nutrients from each type of soil texture was also
produced. The dataset used includes all and selected features from the reflectance spectrum. The
classification model based on nutrient categories is presented in Table 3.

Table 3. Categories classification model of nitrogen, phosphorus, and potassium of each soil type

Soil texture  Soil nutrients Dataset ANN structure Acc.ur‘acy MSE
training
All feature 100 0.97 0.015
1 0,

Nitrogen (%) Selected 100-100 0.80 0.168

feature
Clay soil PO All feature 100-100-100 1.00 0.013

205

(mg/100g) Sfele“ed 100-100 0.91 0.072

eature
K,0O All feature 20-20 0.97 0.016
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(mg/100g) Sfeefgfed 10-10-10 0.44 0412
All feature 100-100-100 0.98 0.018
Nitr %
itrogen (%) Sfogfed 100-100 0.96 0.013
Loam clay P,Os Asll 1feattu;e 100 0.95 0.052
soil (mg/100g) ff:;tflfe 100 0.96 0.033
K0 Asll 1feattu;e 20-20 1.00 0.001
(mg/100g) fe ecte 100 0.93 0.072
ecature
All feature 100-100-100 0.90 0.084
Nitr %
itrogen (%) Selected 100-100-100 0.88 0.084
feature
Sandy lay P0s ASH lfeattuge 100-100 1.00 0.007
soil (mg/100g) fza"tfl; 100-100 069 0.238
K0 Asll lfeatmée 100 1.00 0.031
(mg/100g) fe ecte 100-100 0.74 0.197
ecature

3.4.

Prediction model for nitrogen, phosphorus, and potassium

In this study, the best prediction models were selected based on the coefficient of determination (R2),
where values closer to 1 indicate a higher proportion of variability in nutrient content explained by the
soil reflectance spectra [10]. As shown in Table 4, the optimal models were developed using the full set
of spectral features. The highest R2 value for nitrogen prediction (R2 = 0.88) was achieved in clay soil
using a three-layer ANN with 20 nodes per layer (20-20-20). For loam clay soil, the best phosphorus
(P20s) prediction model yielded an R? of 0.81 using a two-layer ANN with 50 nodes per layer. The most
accurate potassium prediction (R2 = 0.97) was also obtained in loam clay soil using a three-layer ANN
with 20 nodes per layer. ANNs demonstrated strong performance for both linear and non-linear
relationships. These findings are consistent with Daniel et al. [21], who achieved an R? of 0.8 for
macronutrient estimation using Vis-NIR spectra (400-1100 nm). In contrast, Devianti et al. [10]
reported overfitting when using a broader spectral range (400-2500 nm) due to noise in spectral
acquisition. In this study, consistent spectral trends contributed to reliable and implementable models.
Other studies employing partial least squares regression (PLSR) reported R2 values of 0.82 for soil
organic carbon and 0.71 for phosphorus [22].

The application of portable Vis-NIR spectrometer combined with a machine learning model (ANN)
enables faster, more economical, and environmentally friendly measurement of soil nutrient content. In
addition, these portable spectrometers can be used directly in the field, providing instant results and
facilitating faster decision-making for farmers. With lower costs and ease of operation, this method
offers better scalability, allowing its application to various types of land with higher cos efficiency [23].
However, it is important to note that the accuracy of the model can be affected by varying soil conditions.
Factors such as moisture content, temperature, and soil pH can be affects spectral response, which in
turn affects the model’s prediction of nutrient content. Soils with high moisture content tend to exhibit
different spectral behavior compared to dry soils, which can affect light absorption and reflection in the
Vis-NIR spectrum [24]. In addition, differences in soil pH can alter the interaction between light and
soil particles, which may impact the model's accuracy in measuring nutrient levels. Therefore, further
research is needed to evaluate the robustness of this model under various soil conditions and to optimize
the calibration process in order to handle these variations more effectively.
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Table 4. Prediction models of nitrogen, phosphorus, and potassium from each soil type

Soil Soil Dataset ANN R? Trainin R? RMSE RMSE
texture nutrients structure g Testing  Training  Testing
. All feature  20-20-20 0.88 0.95 0.38 0.25
Nitrogen Selected
(%) clecte 20-20 0.82 0.91 0.46 0.32
feature
All feature 100 0.67 0.93 11.88 5.73
Clay soil (mP/2 1(())50 )  Sclected 100 037 0.65 15.91 12.75
& & feature ) ) ) )
K0 All feature 100-100 0.85 0.83 9.72 11.10
2
Selected
/100 _
(mg 2) feature 100-100 0.85 0.71 9.46 14.35
. All feature 50-50 0.79 0.53 0.27 0.35
Nitrogen Selocted
(%) A 50-50 0.71 0.78 0.30 0.23
eature
Loam P.Os Asll lfeiw;e 50-50 0.82 0.84 8.64 5.14
clay soil  (mg/100g) electe 100 0.50 0.35 14.72 10.21
feature
K0 All feature  20-20-20 0.97 0.96 4.46 4.01
2
Selected
/100 _
(mg 2) feature 50-50 0.76 0.67 12.69 12.38
100-100-
Nitrogen All feature 100 0.83 0.72 0.31 0.37
0
(%) Selected 20-20 0.72 0.77 0.40 0.33
feature
Sandy All feature  50-50-50 0.72 0.64 10.58 11.82
clay soil P20s Selected 100-100
) -100-
(mg/100g) feature 100 0.46 0.05 14.82 20.37
K0 All feature 100-100 0.85 0.91 8.83 4.24
2
Selected
/100 -50-
(mg 2) feature 50-50-50 0.54 0.24 16.36 12.32

A more complex network structure is required to improve the phosphorus prediction model,

especially for soil types that exhibit low performance. This can involve increasing the number of layers
or neurons in the model [6]. The scatter plot of training data can be seen in Figure 5. The scatter plot
shows that the predicted results closely align with a linear line, indicating minimal error values. Based

on the prediction model generated, it has great potential to be used as an approach for measuring soil

nutrient content, replacing laboratory testing. By understanding the availability of soil nutrients through
this model, farmers can determine the precise fertilizer dosage according to crop needs, thereby avoiding
over-fertilization or under-fertilization [25]. Moreover, it can assist in determining the optimal timing
for fertilization based on plant growth stages and the availability of soil nutrients, ensuring optimal
nutrient uptake by plants and reducing nutrient losses due to leaching. This approach minimizes negative
environmental impacts, such as groundwater contamination by nitrates or phosphates caused by over-

fertilization, making agricultural systems more sustainable [26].
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4 Conclusion

This study confirms that the integration of Vis-NIR spectroscopy and ANN algorithms is a viable and
efficient method for soil nutrient analysis. By leveraging spectral data and advanced machine learning
techniques, the proposed approach delivers accurate predictions for nitrogen, phosphorus, and potassium
content across different soil textures. ANN models, with their capability to handle non-linear and
complex relationships, enhanced the predictive accuracy, achieving R? values above 0.8 in each type
soil texture. The results demonstrate that this method can effectively replace traditional laboratory
methods, reducing costs, environmental impact, and time requirements. Furthermore, the application of
these models in agricultural practices has the potential to optimize fertilizer application, minimize
environmental harm, and support sustainable farming systems. Further research needs to focus on
improving the ANN model architecture to increase accuracy and robustness in the field, as well as
addressing soil sample variability so that the model is more robust in diverse conditions. The integration
of this model into real-time agricultural practices also needs to be considered in order to increase its
applicability and reliability on a large scale, thereby realizing more efficient, environmentally friendly,
and sustainable agricultural solutions.
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