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Abstract. Efficient urban mobility is essential to support transportation planning and policy. 

However, traditional methods are often limited in data resolution, lacking the ability to describe 

passenger movement dynamics in detail. This study aims to analyze passenger mobility patterns 

using high-resolution tap-in/tap-out data from the closed-loop LRT system in Jakarta during 

January-February 2025. The methods used include constructing an origin-destination (OD) 

matrix based on 185,512 trip records, as well as temporal and spatial analysis of passenger flows. 

The results showed the existence of peak hour patterns on weekdays (07.00-09.00 and 17.00-

19.00), trip spikes on weekends and holidays (14.00-18.00), and high flow concentrations at 

interchange stations such as Velodrome and North Boulevard. While data from the closed system 

allows for accurate trip tracking, potential data gaps due to technical errors or user behavior 

remain a concern for long-term analysis. The findings suggest that high-resolution smart card 

data can provide operationally relevant insights for short-term decision-making, such as schedule 

adjustments or fleet allocation. However, for long-term strategic planning, integration with 

predictive models and other planning tools remains necessary. This research fills a gap in the 

literature by showing that even limited-duration datasets can be leveraged to effectively support 

data-driven transportation management. 

Keywords: Light Rail Transit (LRT), smart card, transit analysis, LRT performance metrics, 

transit demand estimation, urban mobility.  
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1.   Introduction  

Jakarta’s population is expected to reach 10,6 million, making it one of the most densely populated urban 

areas in Southeast Asia. This increase in population can lead to a higher demand for transportation. 

Furthermore, with the high growth of private vehicles that is not matched by the growth of existing road 

infrastructure, this can result in severe congestion that is economically costly [1]. To address this issue, 

the government has developed several public transportation systems in Jakarta. These include: 

TransJakarta BRT, which operates 14 main corridors covering a total of 244 km and connecting various 

areas of Jakarta and its surroundings; the Jakarta MRT, which currently operates one North-South 
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corridor (Lebak Bulus-Bundaran HI, 15.7 km) and has another corridor under construction (Bundaran 

HI-Kota, 6.3 km); and the Jakarta LRT, which has one operational corridor (Pegangsaan Dua-Velodrome, 

5.8 km) and is extending another segment (Velodrome-Manggarai, 6.4 km).   

Based on the Jakarta-Bogor-Depok-Bekasi (Jabodetabek) Transportation Master Plan, the percentage 

of residents using urban public transportation must reach 60% [2]. One practical way to meet the 

mobility needs of urban communities is to build an urban rail system. It is estimated that the 

implementation of an urban rail system integrated with other public transportation networks will reduce 

traffic congestion. Urban railway systems are proven public transportation that can improve 

transportation efficiency by optimizing energy use, improving operational control, and contributing to 

economic and environmental benefits [3,9]. 

The Light Rail Transit (LRT) system is an urban rail transportation mode that is an important part of 

the public transportation network in Jakarta, one of the most densely populated cities in the world [10, 

15]. The system is designed to integrate with other modes in the multimodal transit ecosystem, such as 

TransJakarta and Commuter Line, to improve connectivity and travel efficiency. However, in practice, 

the Jakarta LRT faces considerable operational challenges, especially in terms of dynamic adjustment 

between operational resources such as train travel frequency and the number of station staff with 

fluctuations in passenger demand that occur every day. 

To deal with these challenges, a data-driven approach is needed that can provide a detailed picture 

of passenger mobility patterns. One commonly used tool is the origin-destination (OD) matrix, which 

can help map the flow of movements between stations and serve as the basis for optimizing 

transportation system operations [16]. 

 

Figure 1. The number of passengers per station for the period from 2019 to 2024 

Figure 1 shows the trend of Jakarta LRT ridership at all stations over the period 2020 to 2024. The 

data indicates significant growth in passenger volumes, especially after 2021. The decline in ridership 

in 2021 is thought to be the result of the COVID-19 pandemic which restricted mobility for a wide range 

of people. However, from 2022 to 2024, there was a sharp increase reflecting the recovery of activity 

and increased use of public transportation. In addition, the variation in ridership between stations is also 

quite striking. Velodrome (VEL) and North Boulevard (BVU) stations dominate passenger volumes 

during this period, indicating their role as key nodes of mobility. Travel fluctuations are not only 

seasonal, but also daily and weekly, depending on the time of day and type of day (weekday or weekend). 

Without an in-depth understanding of the origins and destinations of passenger trips, operators will find 

it difficult to adapt services adaptively, whether for train allocation, timetabling or other resource 

requirements. 

The OD matrices are a critical component of public transportation management, not only for real-

time operational decision making, but also for long-term strategic planning including annual trend 

analysis, service planning, and infrastructure investment justification [17,18]. High-resolution OD data 

provides the ability to analyze travel behavior in detail and identify spatial-temporal patterns that are 

not visible in aggregate data [19]. It has been used to adjust vehicle frequencies, dynamically estimate 
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waiting times [20,22], and support the development of predictive models for travel demand [23]. Even 

in the short-term scope, high-resolution data enables rapid policy responses to changes in travel patterns 

or service disruptions [24]. 

However, there are several gaps in the literature that remain unaddressed. First, most OD matrix 

studies still focus on developed countries, such as the United States and Europe [17], while similar 

studies in developing countries, including Indonesia, are still very limited. Secondly, many previous 

studies rely on open fare collection systems that only record tap-in data, requiring complex inference 

algorithms to estimate travel destinations [25, 26]. Third, the use of high-resolution OD data to describe 

detailed temporal dynamics in a closed-loop LRT system like Jakarta has not been explored. 

This study offers an update by utilizing the full tap-in and tap-out data of the Jakarta LRT system 

operating in a closed-loop environment, thus aiding the direct construction of the OD matrix without the 

need for additional estimation. In addition, this study uncovers previously unexplored daily and weekly 

temporal dynamics and establishes a data-driven framework for fleet allocation optimization. As such, 

this study makes an empirical and methodological contribution to data-driven transportation studies in 

developing countries, and strengthens the argument on the importance of using high-resolution data in 

closed systems as an alternative to the complex inference approaches commonly used in previous 

literature. 

Methodologically, this research contributes by presenting a practical and efficient data-driven 

approach to construct the OD matrix of a closed system, and shows how this granular data can be directly 

utilized to develop a dynamic fleet allocation and scheduling framework. This approach offers an 

operational solution that is responsive to peak hour demand spikes as well as daily variations, and can 

be easily replicated in similar urban transportation systems that have full tap-in/tap-out data. 

The contribution to the literature lies in filling the void of empirical studies on the utilization of smart 

card data in developing countries, particularly in closed-loop systems such as the Jakarta LRT. This 

study adds evidence that high-resolution data from closed systems is not only useful for short-term 

operational analysis, but can also be a solid basis for long-term strategic planning. The results of this 

study provide actionable insights for operators to improve real-time service efficiency and adapt to 

changing passenger mobility patterns. 

2.   Methods 

2.1. Research Stages 

This research was conducted through a series of systematic stages aimed at building an origin-

destination (OD) matrix based on smart card data. The process starts with data acquisition from the 

closed Automatic Fare Collection (AFC) system of Jakarta LRT, followed by preprocessing and data 

validation to ensure data integrity and cleanliness. For the next steps can be seen in Figure 2, the data is 

then processed through the preprocessing stage to clean and categorize it based on parameters such as 

weekdays and weekends. Next, a descriptive analysis was conducted using visualizations (e.g., box 

plots) to identify trends and peak hours. These insights were then used to generate an Origin-Destination 

(OD) matrix by mapping passengers’ origin and destination stations. The OD matrix results were further 

analyzed to uncover mobility patterns, including the busiest routes and differences in passenger volume 

between weekdays and weekends. The resulting insights offer potential support for operational 

decisions, such as service frequency adjustments and resource planning, although actual implementation 

would require further modeling or operator-level validation. The final output of this research process 

was a comprehensive OD matrix that served as a decision-support tool for managing the Jakarta LRT 

system. 
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Figure 2. Research Stages 

2.2. Study Location 

Jakarta is home to about 10.6 million people despite covering only about 225 square miles, making it 

one of the most densely populated cities in the world. This condition demands a reliable public 

transportation system to reduce congestion and support community mobility. One of the efforts made 

by the government is the construction of the Jakarta LRT Phase 1, which is currently in operation serving 

a 5.8-kilometer route. The existence of LRT is expected to be an efficient and sustainable urban 

transportation solution, with plans for further line development in the future to expand coverage and 

improve connectivity between regions in the capital city. 

 

 

Figure 3. Jakarta LRT network phase 1 (PT LRT Jakarta Annual Report, 2023) 
 

Table 1. Length of Track Between Stations 

From To Length 

Pegangsaan Dua (DPD) Boulevard Utara (BVU) 1.550 km  

Boulevard Utara (BVU) Boulevard Selatan (BVS) 1.287 km 

Boulevard Selatan (BVS) Pulomas (PUM) 1.130 km  

Pulomas (PUM) Equestrian (EQT) 0.740 km  

Equestrian (EQT) Velodrome (VEL) 1.020 km  

 

Figure 3 shows the map of the Jakarta LRT network, which includes two terminal stations and four 

transit stations. Each station featured indirect integration with Bus Rapid Transit (BRT) and angkot 
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(micro transit), except Velodrome (VEL) station, which had direct BRT integration via the integrated 

AFC system. The data in Table 1 provided details on the length of the route between stations. This 

information provided an overview of the network scale and distance between stations, which was an 

important factor in operational planning and scheduling of LRT services. 

2.3. Data Collection and Acquisition  

Data were collected from transactions at six stations between January 1 and February 28, 2025. The 

dataset had high temporal resolution, with time recorded to the second, enabling granular analysis of 

passenger mobility patterns. The study covered 40 typical weekdays and 16 weekend days. Figure 4: 

Automatic Fare Collection (AFC) gates at Pegangsaan Dua (DPD) station, illustrating the closed-loop 

fare payment system utilized for accurate passenger tap-in and tap-out data collection in this study. 

 

Figure 4. Automatic Fare Collection (AFC) gates at Pegangsaan Dua (DPD) station 

2.4. Data Preprocessing and Validation 

Data cleaning and validation steps are systematically performed to ensure the accuracy and reliability 

of subsequent analysis. The cleaning process includes removing duplicate transactions based on the 

combination of card ID and time, as well as checking the time logic to ensure that the tap-out time is 

always greater than the tap-in. Spatial validation is performed by ensuring that the origin and destination 

stations are within a geographically valid route network. Anomaly handling is performed using an 

interquartile range (IQR) approach to detect trips with extreme durations. Transactions that exhibit 

extremely short (<1 minute) or excessively long (>120 minutes) durations are flagged for manual 

analysis as they may indicate system errors or shared card usage. This procedure was performed to 

minimize noise and avoid misinterpretation of aberrant data. 

2.5. Data Analysis and Tools 

Following data acquisition, descriptive analysis was performed to generate box plots representing the 

hourly transaction distribution and identifying any outliers. These visualizations provided descriptive 

insights into peak periods and variations in passenger flow, which serve as preliminary indicators for 

further analysis. A combined method of box plots and visual comparisons of station-specific traffic on 

weekdays versus holidays ensured a comprehensive understanding of mobility trends. Subsequently, the 

data were used to construct an OD matrix that summarized passenger flows across stations and time 

intervals (e.g., weekdays vs. weekends). 

2.6. Origin-Destination (OD) Matrix Model 

Individual movements across geographic areas from origin (O) to destination (D) were captured using 

OD matrices, which illustrated passenger flows between stations or areas. Once OD matrices were 

created, further analyses on human mobility and transit demand were conducted. However, collecting 

OD matrices could be challenging due to hardware limitations at stations and infrastructure constraints 

within the transit system. 
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Table 2. Smart Card Data Specification 

Variable Format Description 

Card Type String Type of card used 

Smart card ID String Identification number of a smart card 

Time Gate In Time The card’s tap-in time, i.e., date, hour, minute, and 

second 

Time Get Out Time The card’s tap-out time, i.e., date, hour, minute, and 

second 

Station Code In String The card’s tap-in location, i.e., the station’s name 

Station Code Out String The card’s tap-out location, i.e., the station’s name 

Minimum Balance Numeric: Real Minimum balance that must be available on the card 

Far (Rp) Numeric: Real Travel fare is charged based on distance 

Balance Before (Rp) Numeric: Real The amount of credit (money) in the smart card 

Deduct (Rp) Numeric: Real The amount deducted from the smart card balance to 

pay for travel 

Balance (Rp) Numeric: Real Smart card balance after the transaction is made 

Status Moda String Status or type of transportation mode used, i.e., multi-

mode or single-mode. 

 

Table 2 presents the detailed specifications of the Automatic Fare Collection (AFC) data used in this 

study. The data includes various important information, such as the smart card ID that is unique to each 

user, the time when the user taps-in and taps-out at the entry and exit gates, and information about the 

origin and destination stations of the trip. In addition, the table also contains data on the card balance 

before and after the trip, the amount of fare charged, and the integration status of the trip with other 

modes of transportation, which are important indicators in the analysis of travel patterns and the 

effectiveness of the transportation integration system. 

2.7. Limitations and Bias Control 

This study recognizes a number of limitations that may affect the accuracy of the results. Not all smart 

cards represent unique individuals due to possible shared use within a family or group. While the closed 

system minimizes data loss, there is still the possibility of unrecorded transactions due to tap-out failures. 

The absence of user demographic attributes also limits the ability to segment or analyze individual 

behavior. Therefore, the results of the OD matrix in this study better represent macro patterns of 

aggregate population movement. For more accurate policy or operational applications, additional 

validation through field surveys, integration with GPS data, or testing through limited operational 

simulations is recommended. 

3.   Results and Discussion 

3.1. Descriptive Statistics 

We conduct a descriptive analysis to get an initial overview of the transaction dataset and LRT 

operations. Figure 5 shows the total number of passenger transactions at each station in units of 

transactions (passengers), distinguishing between tap-in (In) and tap-out (Out) transactions.  Typically, 

a single trip involves two transactions: a tap-in transaction at the origin station and a tap-out transaction 

at the destination station. Stations such as VEL and DPD showed a dominance of tap-in, indicating their 

characteristics as origin stations, while PUM, BVS, and BVU functioned as destination stations with a 

dominance of tap-out. The VEL station consistently had the highest passenger volume intensity, 

indicating its function as a major transportation node with the potential to become a transit center. 

However, the total number of tap-ins and tap-outs was the same, so there was no need to perform a 

validation method for missing data between tap-in and tap-out.  
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Figure 6 shows the distribution of average transactions per hour over the whole week (Sunday–

Saturday). Figure 7 isolates the weekdays (Monday–Friday), where transactions peak at around 1,500 

per hour per day during the evening rush hours from 5 p.m. to 8 p.m. A smaller peak is also observed 

during the morning peak hours between 7 a.m. and 9 a.m., indicating commuter activity toward central 

business areas. In contrast, the weekend pattern appears stable from 10 a.m. to 8 p.m., with a total of 

around 1,000 transactions per hour per day, and shows very little variation in the early morning hours. 
 

 

Figure 5. Passenger transactions between the Tap In and Tap Out period January-February 2025 

 

Figure 6. Distribution of passengers per hour on weekends 

 

 

Figure 7. Distribution of passengers per hour on weekdays 

 

The boxplot for weekdays at 10 a.m. shows a very large variation, indicating that the number of 

transactions at that time fluctuates more compared to other hours. This likely reflects the diverse 

behavior of passengers; some commuters depart early for work or appointments, while others delay their 

trips, resulting in a wider distribution. We also observe several outliers in the weekday data. These 

outliers are related to public holidays that fall on weekdays (e.g., New Year’s Day on January 1 and 

Chinese New Year on January 29), when the number of passengers deviates significantly from the usual 
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level. These anomalies help us distinguish routine operational peaks from extraordinary events that 

temporarily alter passenger flows. 

The significant variations that occur at certain hours, such as 10am and visible through the boxplot 

visualization, indicate the existence of non-commuting and more flexible mobility patterns. This is in 

line with [27] findings, which show that smart card data can be used to identify passenger groups with 

diverse travel preferences. In addition, the presence of outliers on public holidays supports [28] research, 

which states that disruptions to daily routines such as holidays or extreme weather conditions can trigger 

spikes or drops in passenger volumes that deviate from the usual pattern. 

3.2. Origin Destination (OD) Matrix Analysis 

The output from the consolidation method is the main input for building the final OD matrix. The OD 

matrix is basically a modified version of the Aggregated Data Output (Table 3). As shown in Table 4, 

the OD matrix combines all passenger transactions that board and disembark at the station in the desired 

period. The OD matrix can be synthesized at the station level. The table shows a snapshot of the OD 

matrix at the station level during January-February 2025. Observing the table allows one to analyze the 

passenger volume between the origin and destination stations. The total number of trips during this 

period is 185,512 passengers or trips. 
Table 3. Smart Card Transaction Record 

Time Get 

In 

Time Get 

Out 
Month 

Station 

Code 

Out 

Station 

Code 

In 

Status 

Moda 

2025-01-07 

15:25:11 

2025-01-07 

15:39:02 

Jan BVU VEL Single 

Moda 

2025-01-07 

15:25:31 

2025-01-07 

15:36:33 

Jan BVS VEL Single 

Moda 

2025-01-07 

15:26:06 

2025-01-07 

15:34:20 

Jan BVU DPD Single 

Moda 

2025-01-07 

15:27:24 

2025-01-07 

15:39:15 

Jan BVU PUM Single 

Moda 

2025-01-07 

15:27:24 

2025-01-07 

15:39:14 

Jan BVU PUM Multi 

Moda 

2025-01-07 

15:27:31 

2025-01-07 

15:39:08 

Jan BVU PUM Single 

Moda 

 

Table 4. Station OD Matrix Jan-Feb 2025 

Destination 

 

 

Origin  

DPD BVU BVS PUM EQT VEL Grand 

Total 

DPD 
 

1996 1421 3402 661 15271 22751 

BVU 1771 
 

5554 7475 3496 32384 50680 

BVS 1189 5209 
 

3313 558 9587 19856 

PUM 2633 7454 2856 
 

493 3044 16480 

EQT 654 4092 640 491 
 

1935 7812 

VEL 13717 36958 11232 3455 2571 
 

67933 

Grand 

Total 

19964 55709 21703 18136 7779 62221 185512 

 

However, weekdays and weekends need to be distinguished because there are significant differences 

in passenger behavior under these conditions. Travel demand in typical LRT systems varies throughout 
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the day, particularly during morning and evening peak periods. The OD matrix can be filtered according 

to specific time intervals, facilitating the analysis of the corridor's peak capacity. Examining the OD 

matrix in a tabular format may be tedious, particularly with extensive datasets. It is essential to present 

the OD matrix in a clear and comprehensible visual format. 

 

Figure 8. Distribution of passenger trips per hour per station on weekdays and weekends 

 

Figure 9. Distribution of passenger trips in morning peak hour (07:00-09:00) per station on weekdays 

 

Figure 10. Distribution of passenger trips in peak hour (17:00-19:00) per station on weekdays 

 

The OD matrix in Figure 8 shows that the VEL station has the highest passenger arrival and departure 

rates, both on weekdays and weekends. The data shows that on weekdays, 531 passengers are traveling 

from BVU to VEL, and 617 passengers are moving from VEL to BVU, making the BVU-VEL line the 

route with the highest movement volume. This trend even increased on weekends, with 598 passengers 

traveling from BVU to VEL and 653 passengers traveling from VEL to BVU. 

Figure 9 reveals that passenger flows are highly centralized inbound toward a few key stations. BVU 

emerges as the dominant destination with 169 inbound passengers, followed by VEL with 90 inbound 

passengers. DPD served as a significant origin during this period, sending 66 passengers to VEL. These 

results indicate a pronounced convergence of morning commuters toward central hub stations. In 

contrast, the weekday evening peak OD matrix, as in Figure 10, exhibits more dispersed outbound travel 

patterns. VEL, BVU, and BVS are the primary destination stations in the evening, receiving 

approximately 199, 167, and 110 passengers, respectively. The distribution of origin stations is broader 

as well, with PUM and BVU identified as notable origins contributing 36 and 29 outbound passengers, 

respectively. This suggests a decentralization of flows in the evening, as passengers disperse from 

central areas to multiple outer stations. 

Figure 11 presents a graphical representation of Origin-Destination (OD) station pairs using a circle-
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packing visualization technique. Each circle represents a specific OD pair, where the top station 

abbreviation indicates the origin (from) station, and the bottom abbreviation indicates the destination 

(to) station. For example, the label VEL BVU illustrates a passenger trip originating from VEL station 

and ending at BVU station. The size of each circle is proportional to the volume of trips between the 

corresponding OD pair, reflecting the relative intensity of passenger flows. Additionally, the color 

gradient ranging from light green to dark blue provides a visual cue for traffic density, with darker hues 

representing higher transaction volumes. 
 

 

 

Figure 11. Visualization of Origin-Destination (OD) circles 

 

This visualization offers a concise yet comprehensive overview of the most frequently used travel 

corridors. The largest and darkest circles, such as VEL BVU and BVU VEL, clearly indicate the highest-

volume bidirectional flows within the network. Meanwhile, smaller and lighter-colored circles represent 

less-utilized connections. Such visual tools play a crucial role in supporting travel pattern analysis by 

enabling rapid identification of dominant travel links. Moreover, the insights derived from this diagram 

can inform targeted infrastructure improvements, capacity enhancements, and prioritization of service 

adjustments, particularly for OD pairs with consistently high demand. 

 

 

Figure 12. Number of Passenger Volume, Route Length, and Passenger per Kilometer (pnp/km) 

period Jan-Feb 2025 

Figure 12 combines three key dimensions: passenger numbers, route length (km), and passengers per 

kilometer (passengers/km), which are visualized in a two-panel graph. The top panel compares 
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passenger volume and distance for each OD pair, while the bottom panel displays spatial efficiency in 

pax/km units. The results show that the BVU–VEL and VEL–BVU routes have the highest passenger 

volumes with medium distances, making them priority routes. The DPD–VEL route, despite its length 

and high volume, shows moderate efficiency. In contrast, routes such as EQT–DPD and VEL–EQT have 

short distances and volumes with little contribution to the system load. The lower panel reinforces that 

passengers/km effectively identifies spatially dense routes. VEL–BVU is the most efficient, followed 

by BVS–VEL and PUM–VEL. Meanwhile, low-volume routes and passenger/km have limited 

optimization potential. 

This finding confirms a previous study in [29] developing a predictive statistical model to estimate 

passenger density based on smart card data, emphasizing the importance of spatial and temporal aspects 

in evaluating the efficiency of transport systems. The bottom graph reinforces these findings, showing 

that the passenger per kilometer indicator is effective in identifying congested and spatially efficient 

routes, such as VEL-BVU, BVS-VEL, and PUM-VEL. In contrast, routes with low volumes and small 

passenger per kilometer values have limited optimization potential. Study, [30] also supports this data-

driven approach, optimizing transport network design through smart card origin-destination data and 

considering criteria such as travel time, number of transfers, and service coverage. 

However, for low-traffic routes, reducing service frequency is not always feasible especially on 

single-track systems such as the Jakarta LRT. Therefore, a number of studies offer alternative area-based 

solutions, such as Transit-Oriented Development (TOD) that encourages the integration of residential, 

business, and public facilities around transportation nodes, provision of park and ride facilities, and 

integration of micro-transit modes and adjustment of workforce zoning as strategies to increase ridership 

on low-utilization segments [31,33]. 

4.   Conclusion 

This research shows that utilizing smart card data from the closed-loop Jakarta LRT system can be used 

to construct origin-destination (OD) matrices directly without the need for complex estimation 

processes. By utilizing complete tap-in and tap-out records, the research constructs a deterministic 

framework that yields detailed insights into passenger flow patterns, including peak-hour congestion 

and flow imbalances during weekends. The findings demonstrate the great potential of OD analysis as 

a decision support tool in allocating resources and scheduling services more adaptively. 

However, the results of this study are not intended to completely replace field surveys or predictive 

modeling. Validation of these findings through operational observations, cost-benefit analysis, and 

limited testing is required before widespread policy application. The limitations of this study lie in the 

limited temporal coverage of the data and have not considered external variables such as special events, 

weather, or ambient traffic conditions. Moving forward, the gradual integration of OD matrix-based 

analysis into the Jakarta LRT operational planning system may be a realistic strategic move. This 

approach should be complemented with additional data and predictive models that enable improved 

accuracy and responsiveness in service management. Thus, this research makes an initial contribution 

in strengthening the foundation of data-driven planning for public transportation systems in developing 

urban areas such as Jakarta. 
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