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Abstract. This study examines the effect of multicollinearity on ordinal regression through a 

two-stage Monte Carlo simulation. A synthetic population of 2,000,000 observations was 

generated with predictors drawn from a normal distribution, and responses simulated using an 

ordinal probit model. A Monte Carlo procedure was employed with 10 repetitions, each 

consisting of 100 random samples of 1,000 observations. Parameter estimation employed 

Maximum Likelihood Estimation (MLE) for univariate models and Pairwise Likelihood (PL) for 

multivariate models, with performance assessed using mean squared error (MSE), bias, and 

computation time. Results show that multicollinearity had negligible impact on estimator bias 

and MSE, confirming the robustness of both MLE and PL to correlated predictors. However, 

severe multicollinearity substantially increased computation time, indicating a trade-off between 

estimator stability and efficiency. These findings highlight PL as a viable approach for analyzing 

complex ordinal data, particularly in applications such as socio-economic surveys and health 

metrics where predictor correlation is unavoidable. 
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1.   Introduction  

Multivariate regression represents a statistical methodology designed to assess the simultaneous effects 

of one or more independent variables on multiple dependent outcomes [1]. In contrast to univariate 

regression, which focuses on a single response variable, the multivariate framework enables researchers 

to investigate more intricate patterns of association within systems characterized by interdependent 

outcomes. This approach is particularly valuable in disciplines such as psychology [2], economics [3], 

[4], and epidemiology [5], where multiple outcome indicators often exhibit substantial correlations and 
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therefore require joint modeling for valid inference. One of the principal advantages of multivariate 

regression is its capacity to capture the interdependence structure among multiple response variables. 

By modeling all outcome variables simultaneously, the analysis becomes more efficient and produces 

more accurate parameter estimates, particularly when the response variables are substantively correlated 

[4]. For categorical response data with more than two levels, two general modeling approaches are 

commonly used: multinomial regression for unordered (nominal) categories, and ordinal logistic 

regression for ordered (ordinal) outcomes [6]. The multivariate ordinal regression model, also referred 

to as multivariate ordinal probit regression, integrates two essential components: the ordinal nature of 

the response variables and the correlation structure among them [7,8].  

As the number of response dimensions increases, full maximum likelihood estimation becomes 

increasingly prohibitive. Consequently, researchers have explored alternative estimation strategies that 

are computationally more efficient while maintaining statistical consistency. The pairwise likelihood 

(PL) has become a well-recognized solution in the statistical literature [7,9]. Instead of evaluating the 

full joint likelihood of all response variables, PL relies solely on contributions from pairs of response 

variables, thereby reducing the complexity of high-dimensional integrals to more computationally 

manageable expressions. This method has demonstrated effectiveness across a wide range of 

applications, especially in models involving numerous response variables and complex correlation 

structures [10,11]. More recently, Wieditz [12] and Gambarota & Altoè [13] highlighted the use of 

simulation-based evaluations to investigate ordinal regression under correlated latent structures, 

confirming the consistency of PL in practice. Nevertheless, while theoretical advances and software 

implementations have expanded rapidly, empirical simulation studies that systematically evaluate the 

robustness of PL, particularly under varying levels of predictor multicollinearity, remain limited. 

Although PL has been established as a computationally efficient alternative in multivariate ordinal 

regression, most existing studies primarily emphasize its theoretical properties or its performance under 

correlated latent response structures. Recent empirical works have contributed valuable insights into the 

consistency of PL estimators; however, systematic simulation-based evaluations remain limited in 

scope. In particular, little attention has been given to how varying levels of predictor multicollinearity 

influence the accuracy and stability of PL estimates. This study directly addresses the identified research 

gap by systematically evaluating the impact of predictor multicollinearity on parameter estimation using 

Pairwise Likelihood Estimation (PLE) in both univariate and multivariate ordinal regression models. 

While prior works have primarily emphasized latent response correlations, little attention has been given 

to predictor-side multicollinearity, a pervasive issue in applied research. To fill this gap, we conduct 

large-scale Monte Carlo simulations that explicitly vary degrees of predictor multicollinearity and assess 

their effects on estimator bias, variance, mean squared error (MSE), and computation time. In doing so, 

this research provides new empirical evidence on the robustness of PLE under challenging predictor 

correlation structures and offers methodological guidance for applied contexts such as socio-economic 

surveys, psychometric assessments, and epidemiological studies. 

2.   Methods 

2.1. Research Methods 

This simulation study evaluates the consistency of parameter estimates in univariate and multivariate 

ordinal regression models under varying levels of predictor multicollinearity. The primary goal is to 

assess the stability of estimates and the validity of consistency assumptions when predictors are highly 

correlated. The overall research flow is summarized as follwos. First, ordinal responses are generated 

using a probit model from latent normally distributed variables, categorized through thresholding. 

Parameter estimates are repeatedly compared to known true values to assess bias, variance, and 

systematic deviation. Second, to assess the impact of multicollinearity, predictor variables were 

designed to reflect three levels of intercorrelation based on Variance Inflation Factor (VIF): categorized 

as low when VIF < 5, moderate when 5 ≤ VIF < 10, and high when VIF ≥ 10, with additional validation 

using the Pearson correlation matrix. This design was applied to both univariate and multivariate ordinal 
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probit regression models, where ordinal outcomes are treated as thresholded realizations of latent 

variables following a (multivariate) normal distribution. In the multivariate case, inter-response 

correlations are modeled through the latent covariance structure. An overview of the simulation design 

is illustrated in Figure 1.  

Third, to reflect real-world settings where the true data-generating process is unknown, a synthetic 

population of 2,000,000 observations was generated. Predictors were drawn from a standard normal 

distribution, and ordinal responses were created using a probit regression framework. Fourth, a Monte 

Carlo design with 10 repetitions was employed, where each repetition involved drawing 100 random 

samples of 1,000 observations each. This setup mimics model evaluation based on holdout samples. 

Fifth, for every simulation, parameter estimates were obtained across all predictors and resampling 

iterations, resulting in 100 estimates per predictor per repetition. Mean Squared Error (MSE) was then 

computed by comparing these estimates with the true parameter values [14]. 

 

 
Figure 1. Simulation design. 

Sixth, based on the MSE computed in each repetition, summary results are reported for low, 

moderate, and high multicollinearity scenarios. The simulation results are further illustrated using dot 

plots (showing parameter distribution across repetitions) and box plots (highlighting estimator 

variability and deviation from true values). These visualizations enable a comprehensive assessment of 

estimation accuracy under increasing multicollinearity in both univariate and multivariate settings. All 

computations were performed in R (version 4.4.2) on a system with 16 GB RAM, ensuring scalability 

for large-scale simulations [15]. The study contributes methodological insights into how ordinal probit 

regression performs under multicollinearity while emphasizing the computational efficiency of the 

pairwise likelihood (PL) approach in handling multivariate ordinal data. Numerous R packages are 

available to support the modeling of ordinal data [15]. In the present simulation study, univariate ordinal 

regression was performed using the polr() function in the MASS pacakage and for the multivariate 

ordinal setting, we adopted the MMO2 specification implemented in the mvord package, which 

accommodates multiple correlated ordinal responses within a unified modeling framework. 
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2.2. Univariate Ordinal Regression 

As a core statistical tool, the Linear Model (LM) offers a basis for analyzing the linear relationship 

between a response variable and its predictors [16]. The approach was later broadened through the 

Generalized Linear Model (GLM), which allows for flexible response distributions beyond normality 

and the use of alternative link functions [17]. Logistic regression represents a specific case of GLM, 

applicable when the outcome variable is categorical—either binary or polytomous, and nominal or 

ordinal in nature. Ordinal logistic regression is particularly suited for modeling ordered categorical 

outcomes with three or more levels. Unlike multinomial logistic regression, which is used for nominal 

outcomes without inherent ordering, ordinal models leverage the natural rank of the response variable. 

Depending on the link function used, ordinal models can be estimated via the logit or probit link. The 

ordinal logit model is widely used due to its interpretability through odds ratios, making it especially 

relevant for applied research involving relative risk assessment. Meanwhile, the ordinal probit model, 

also known as the threshold model, assumes normally distributed latent errors and is preferred in 

contexts such as psychometrics or latent trait modeling, where normality assumptions are theoretically 

grounded [18,19]. 

Let 𝑌𝑖 denote an ordinal response variable with 𝑐 ordered categories, and let 𝒙𝒊 represent a vector of 

𝑝 predictor variables for the 𝑖𝑡ℎobservation, such that 𝒙𝒊 = [𝒙𝒊𝟏 𝒙𝒊𝟐 ⋯ 𝒙𝒊𝒑]𝑇  with 𝑖 = 1,2, ⋯ , 𝑛, 

with 𝑛 indicating the total count of observations.  The ordinal probit model, the estimation process 

begins with the specification of the structural form, as defined in Equation 1 [12]. 

𝑌𝑖
∗ = 𝒙𝒊

𝑻𝜷 + 𝜺𝒊 (1) 

The latent variable 𝑦∗ is a continuous, unobserved variable assumed to follow a normal distribution 

𝒀∗~𝑁(𝜷𝑻𝒙, 𝜎2), 𝒙 is the vector of predictor variables, 𝜷 denotes the corresponding parameter 

coefficients, and 𝜺~𝒩(0, 𝜎2) represents the normally distributed error term. The term “latent” refers to 

an unobservable construct that cannot be directly measured but is inferred from observed data [19]. As 

with the ordinal logit model, suppose the response variable consists of 𝑐 ordered categories. In the 

ordinal probit model, the observed categorical outcome is derived from the latent variable 𝑌∗ through a 

series of thresholds 𝛾, such that the classification occurs in an ordered manner as Equation 2 [13,20] 
𝑌𝑖 = 1 if 𝑌𝑖

∗ ≤ 𝛾1 

𝑌𝑖 = 2 if 𝛾1 < 𝑌𝑖
∗ ≤ 𝛾2 

⋮ 
𝑌𝑖 = 𝑐 if 𝑌𝑖

∗ > 𝛾𝑐−1 

(2) 

The thresholds on the latent scale are defined as −∞ ≡ 𝛾0 < 𝛾1 < 𝛾2 < ⋯ < 𝛾𝑐−1 < 𝛾 ≡ ∞ where 𝛾 

epresents the cutoff points that partition the continuous latent variable into ordered response categories 

[21]. An illustration of the relationship between the latent variable values and the observed ordinal 

outcomes in the ordered probit model is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The upper panel displays ordinal outcomes derived from thresholding a cumulative normal 

distribution, as illustrated in the lower panel [12,22] 

 

The general form of the ordinal probit model can be expressed as Equation 3 [9]. 
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Pr(𝑌𝑖 ≤ 𝑗) = Pr (𝒙𝒊
𝑇𝜷 + 𝜀𝑖 ≤ 𝛾

𝑗
) = Φ(𝛾

1
− 𝒙𝒊

𝑇𝜷) = 𝜋1(𝒙𝒊) + 𝜋2(𝒙𝒊) + ⋯ + 𝜋𝑗(𝒙𝒊) (3) 

where Φ(⋅) denotes the cumulative probability function of the standard normal distribution, mapping 

each value to the probability that a standard normal variable is less than or equal to it. The term 𝜋𝑗(𝒙𝒊) 

represents the probability that the 𝑖𝑡ℎ observation falls into category 𝑗, given the predictor values 

𝒙𝒊. Parameter estimation in the ordinal probit model is conducted using the MLE method as Equation 4 

[23]. 

ℒ(𝜽) =  ∏ ∏ (𝜋𝑗(𝒙𝒊))
𝑌𝑖𝑗

𝑐

𝑗=1

𝑛

𝑖=1

 

ℓ(𝜽) = ln(ℒ(𝜃)) = ∑ ∑ 𝑌𝑖𝑗 ln(𝜋𝑗(𝒙𝒊)

𝒄

𝑗=1

𝑛

𝑖=1

  

(4) 

𝜽 = [𝜸 𝜷]𝑇 = [𝛾1 𝛾2 ⋯ 𝛾𝑐−1 𝛽1 𝛽2 ⋯ 𝛽𝑝]𝑇. As with the ordinal logit regression model, 

the first-order partial derivatives of the log-likelihood function in the ordinal probit model are not 

available in closed form. Consequently, numerical optimization techniques are required for parameter 

estimation. 

2.3. Multivariate Ordinal Regression using Pairwise Likelihood 

Ordinal multivariate regression models multiple correlated ordinal responses as thresholded latent 

variables, extending the univariate probit framework to account for inter-response correlations and 

predictor effects [8,11]. As an illustration, consider 𝑖 = 1,2, ⋯ , 𝑛 independent observations, each 

associated with a 𝑞-dimensional ordinal response vector 𝒀𝒊 = (𝑌𝑖1, 𝑌𝑖2, ⋯ , 𝑌𝑖𝑞)
𝑇
 where 𝑌𝑖𝑗 ∈

{1,2, ⋯ , 𝐾} for 𝑗 = 1,2, ⋯ , 𝑞. Each 𝒀𝒊 is treated as a realization from a joint distribution 𝑔(𝒀𝒊) that 

depends on an unknown parameter vector 𝜽. According to the model, each individual 𝑖 is assumed to 

possess an underlying continuous latent vector that cannot be directly observed 𝒁𝑖 =

(𝑍𝑖1, 𝑍𝑖2, 𝑍𝑖3, ⋯ , 𝑍𝑖𝑞)
𝑇

, which follows a multivariate normal distribution 𝒩(0, 𝚺) where 𝚺 is a 

symmetric and positive definite 𝑞 × 𝑞 correlation matrix.  

The general structure of 𝚺 includes unit values on the diagonal and off-diagonal elements 𝜌𝑟𝑠,  

representing the correlation between the 𝑟𝑡ℎ and 𝑠𝑡ℎ dimensions of the latent variables. The observed 

ordinal variable 𝑦𝑖𝑗 is obtained by discretizing the latent variable 𝑧𝑖𝑗 through a set of threshold 

values{𝑎𝑘}, such as 𝑦𝑖𝑘 = 𝑘 ⇔ 𝑧𝑖𝑗 ∈ (𝛼𝑘−1, 𝑎𝑘). These thresholds are ordered as −∞ ≡ 𝑎0 < 𝑎1 <

𝑎2 < ⋯ < 𝑎𝐾 ≡ ∞ orming a partition of the real line into 𝐾 mutually exclusive intervals [8]. Based on 

this structure, the likelihood function for a single observational unit can be expressed as a multivariate 

normal integral, where the limits of integration are determined by the threshold values associated with 

each ordinal dimension. Specifically, the joint probability of observing the ordinal response vecto 𝒀𝒊 =
(𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦𝑖𝑞) is given by Equation 5 [8]. 

Pr(𝑌i1 = yi1, 𝑌i2 = yi2, ⋯ , 𝑌𝑖𝑞 = 𝑦𝑖𝑞) =  ∫ ∫ ⋯ ∫ 𝜙𝚺(𝑧𝑖1, 𝑧𝑖2, ⋯ , 𝑧𝑖𝑞)𝑑𝑧𝑖1𝑑𝑧𝑖2 ⋯ 𝑑𝑧𝑖𝑞

𝑎𝑦𝑖1

𝑎𝑦𝑖𝑞−1

𝑎𝑦𝑖1

𝑎𝑦𝑖2−1

𝑎𝑦𝑖1

𝑎𝑦𝑖1−1

 (5) 

where 𝜙 𝚺(⋅) corresponds to the multivariate normal distribution’s density, specified by a zero mean 

vector and covariance structure 𝚺. Accordingly, the full log-likelihood function for all 𝑛 observational 

units can be expressed as Equation 6. 

ℓ(𝜽) =  ∑ log { ∫ ∫ ⋯ ∫ 𝜙𝚺(𝑧𝑖1, 𝑧𝑖2, ⋯ , 𝑧𝑖𝑞)𝑑𝑧𝑖1𝑑𝑧𝑖2

𝑎𝑦𝑖1

𝑎𝑦𝑖𝑞−1

𝑎𝑦𝑖1

𝑎𝑦𝑖2−1

𝑎𝑦𝑖1

𝑎𝑦𝑖1−1

⋯ 𝑑𝑧𝑖𝑞}

𝑛

𝑖=1

 (6) 

From the Equation 6, several parameters are involved in the model: (1) the set of threshold parameters 

used for categorization  (𝑎1, 𝑎2, ⋯ , 𝑎𝐾−1), (2) the latent correlation parameters 𝜌𝑟𝑠 for all pairs 𝑟, 𝑠 =

1,2, ⋯ , 𝑞 with 𝑟 < 𝑠, and (3) the complete parameter vector 𝜽 = (𝑎1, 𝑎2, ⋯ , 𝑎𝐾−1, 𝜌12, 𝜌13, ⋯ , 𝜌𝑞−1,𝑞) 
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where 𝜽̂ . However, the likelihood function in the previous equation involves a 𝑞-dimensional integral 

for each individual observation. This implies that evaluating the full likelihood requires computing 𝑛 

multivariate Gaussian integrals of high dimension. Consequently, direct estimation becomes 

computationally intensive and impractical, particularly when the number of response variables 𝑞 is large 

or the sample size 𝑛 is substantial. To address this limitation, pairwise likelihood (PL) methods 

employed as a more computationally efficient alternative. 

The PL approach is a simplified alternative to the full likelihood function, which only considers 

bivariate (pairwise) combinations of the response variables. Specifically, the pairwise log-likelihood is 

constructed by summing the joint probabilities of all possible pairs of ordinal response variables, rather 

than evaluating the full multivariate distribution. This reduction in complexity makes the estimation 

process more computationally feasible, particularly in high-dimensional settings. The general form of 

the pairwise log-likelihood is given by the following Equation 7 [24].  

ℓ𝑝(𝜽) =  ∑ ∑ ∑ log{Pr(𝑌𝑖𝑟 = 𝑦𝑖𝑟 , 𝑌𝑖𝑠 = 𝑦𝑖𝑠)}

𝑞

𝑠=𝑟+1

𝑞−1

𝑟=1

𝑛

𝑖=1

 (7) 

where each term corresponds to the log of the joint probability of observing the pair (𝑌𝑖𝑟 , 𝑌𝑖𝑠) for subject 

𝑖, and the summation runs over all possible unique pairs of response variables. Equation 7 can be 

expressed in terms of a bivariate integral, as Equation 8.  

ℓ𝑝(𝜽) =  ∑ ∑ ∑ log { ∫ ∫ 𝜙𝚺(𝜌𝑟,𝑠)(𝑧𝑖𝑟 , 𝑧𝑖𝑠) 𝑑𝑧𝑖𝑟𝑑𝑧𝑖𝑠

𝑎𝑦𝑖𝑠

𝑎𝑦𝑖𝑠−1

𝑎𝑦𝑖𝑟

𝑎𝑦𝑖𝑟−1

}

𝑞

𝑠=𝑟+1

𝑞−1

𝑟=1

𝑛

𝑖=1

 (8) 

The matrix 𝚺(𝜌𝑟,𝑠) efers to a 2×2 correlation matrix with ones on the diagonal, representing unit 

variances, and the correlation coefficien 𝜌𝑟𝑠 as the off-diagonal elements, which quantify the association 

between the two latent variables. The PL approach is particularly advantageous because it replaces the 

computationally intractable high-dimensional integrals in the full likelihood with a series of more 

manageable bivariate integrals, which can be efficiently evaluated using standard statistical software. In 

general, PL operate in a manner analogous to traditional likelihood-based procedures. For instance, the 

pairwise score vector 𝑈𝑃(𝜽), defined as the derivative of the pairwise log-likelihood with respect to the 

parameter vector 𝜽, retains the property of unbiasedness. This is because it is constructed as the sum of 

contributions from all pairs of response variables. The formal expression for the score function is 

presented in the following Equation 9. 

𝑈𝑃(𝜽) =
𝜕ℓ𝑝(𝜽)

𝜕𝜽
 =  ∑ ∑ ∑

1

𝑃𝑖𝑟𝑠(𝜃)

𝜕

𝜕𝜃
{ ∫ ∫ 𝜙𝚺(𝜌𝑟,𝑠)(𝑧𝑖𝑟 , 𝑧𝑖𝑠) 𝑑𝑧𝑖𝑟𝑑𝑧𝑖𝑠

𝑎𝑦𝑖𝑠

𝑎𝑦𝑖𝑠−1

𝑎𝑦𝑖𝑟

𝑎𝑦𝑖𝑟−1

}

𝑞

𝑠=𝑟+1

𝑞−1

𝑟=1

𝑛

𝑖=1

 (9) 

Parameter estimation in the PL framework, denoted as  𝜽̂𝑃, can be obtained either by maximizing the 

pairwise log-likelihood functionℓ𝑝(𝜽), or equivalently, by solving the score equation 𝑈𝑃(𝜽) = 0, 

similar to the standard maximum likelihood estimation approach. The PL estimator is consistent and 

asymptotically normally distributed as the sample size 𝑛 becomes large 𝑛 → ∞ [25]. More formally, the 

asymptotic distribution of the estimator is 𝜽̂𝑃~𝒩(𝜃, 𝐺(𝜃)−1) , 𝐺(𝜽) = 𝑊(𝜽)𝐽(𝜽)−1𝑊(𝜽) referred to 

as the Godambe information matrix, which serves as an analogue to the Fisher information matrix in 

full likelihood settings and is used to approximate the asymptotic variance of the estimator. Godambe 

information matrix is constructed from the combination of two key components: the sensitivity matrix 

𝑾(𝜽) = 𝔼𝜃 {
−𝜕𝑈𝑃(𝜃)

𝜕
} and  the variability matrix 𝑱(𝜽) = 𝑽𝒂𝒓𝜽{𝑈𝑝(𝜽)} [24]. In the multivariate setting, 

parameter estimation is performed using the PL method. This approach approximates the full likelihood 

by considering only the bivariate marginal distributions of each pair of ordinal responsesBy reducing 

the high-dimensional integral in the full likelihood to multiple two-dimensional integrals, the PL method 

significantly alleviates computational complexity and is well-suited for high-dimensional multivariate 

settings. As an illustration, we have included an appendix demonstrating parameter estimation using 

both the univariate and the multivariate ordinal regression. The appendix provides a comparative 
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example of how parameters are estimated under each link function, along with a simulated dataset and 

the corresponding ordinal logistic regression models. 

Beyond its theoretical foundations, PL has also been applied in diverse empirical domains, 

demonstrating its practical utility. In psychometrics, Robitzsch (2024) showed that PL can yield nearly 

unbiased estimates in the two-parameter logistic (2PL) item response theory model, even when the local 

independence assumption is violated due to stimulus-based dependencies across items. In computational 

biology, Mazo et al. (2024) introduced a randomized pairwise likelihood (RPL) approach to efficiently 

analyze transcriptomic count data, reducing computational burden while maintaining estimator 

consistency [27]. In health metrics, Tong et al. (2022) developed a privacy-preserving distributed 

conditional logistic regression (dCLR) algorithm that leverages PL to integrate electronic health records 

from 230 hospitals during the COVID-19 pandemic, achieving greater robustness compared to meta-

analysis methods, especially under rare-event settings [28]. These applied studies underscore the 

versatility of PL as not only a theoretically sound estimation method but also a robust and scalable 

solution for addressing correlation structures, data heterogeneity, and computational challenges in real-

world applications. 

3.   Result 

3. 1. Univariate Ordinal regression Simulation 

As shown in the flow diagram, the simulation begins with a univariate ordinal probit model and adopts 

a Monte Carlo approach to assess the stability of parameter estimates. Due to computational constraints, 

the simulation was limited to 𝑟 = 10 repetitions. In each repetition, a large synthetic population (𝑛 =
2,000,000) was generated, from which 𝑠 = 100 random samples (each ≈1,000 observations, or 0.05%) 

were drawn to mimic data sparsity conditions. To ensure valid ordinal model estimation, subsampling 

was controlled so that all outcome categories were present in each training set. Predictor variables 𝑋1 to 

𝑋4 (𝑝 = 4) were drawn from a standard normal distribution and standardized using z-score 

transformation. True regression coefficients (𝛽) were randomly varied across iterations by perturbing a 

baseline vector [-2, 3, -4, and 0.6] with noise from 𝒩(0,1). In the initial simulation scenario, the 

predictors were designed to exhibit low multicollinearity, as indicated by VIF below 5.  

For clarity of exposition, the simulation workflow is summarized as a pseudocode in Algorithm 1. 

The pseudocode details the application of Pairwise Likelihood Estimation (PLE) in both univariate and 

multivariate ordinal probit models, evaluated under varying degrees of predictor multicollinearity. By 

structuring the steps of data generation, resampling, estimation, and performance assessment, the 

pseudocode provides a transparent and reproducible framework for examining the robustness and 

efficiency of PLE. 

Algorithm 1 

Input: 
o 𝑁: synthetic population size (e.g., 2,000,000) 

o 𝑛: sample size per estimation (e.g., 1,000) 

o 𝑅: number of Monte Carlo replications (e.g., 10) 

o 𝑆: number of resamples per replication (e.g., 100) 

o 𝑝: number of predictors (e.g., 3–4) 

o 𝛽𝑡𝑟𝑢𝑒: true regression coefficients (intercept included) 

o Threshold probabilities: 
- Univariate: (0.15,0.35,0.70,0.85) 

- Multivariate: response-specific (e.g., 1/3, 2/3, 0.25, 0.5, 0.75) 

o Σ: latent residual covariance matrix (for multivariate responses) 
o VIF thresholds: low (<  5), moderate (5 − 10), high (≥  10) 
o 𝑇𝑚𝑎𝑥: maximum resampling attempts to ensure complete category coverage 

Output: 

o Estimated parameters (𝛽̂, 𝜁̂)for univariate and multivariate models 
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o Variance Inflation Factors (VIF)  

o Bias, variance, and Mean Squared Error (MSE) summaries 

o Visual diagnostics (boxplots of estimates, MSE curves) 

 
Procedure 
1. Initialization 

1.1. Set random seed; load required libraries (MASS, mvord, dplyr, car, ggplot2, mvtnorm) 

1.2. Define simulation parameters (𝑁, 𝑛, 𝑅, 𝑆, 𝑇𝑚𝑎𝑥) and true values of 𝛽𝑡𝑟𝑢𝑒. 

2. Population Generation 
2.1. Generate baseline predictors 𝑋𝑗~𝑁(0,1), 𝑗 = 1,2 ⋯ , 𝑝 

2.2. For each multicollinearity level 𝐿 ∈ {low, moderate, high} 

- Construct predictors with target VIF structure: 

a. Low: independent normal predictors. 

b. Moderate/High: introduce linear dependencies among predictors. 

- Standardize predictors and compute VIF; log results. 

 

3. Response Construction 

 Univariate Case: 

3.1. Compute latent variable 𝑌∗ = 𝑋𝛽𝑡𝑟𝑢𝑒 + 𝜀, 𝜀~𝑁(0,1) 

3.2. Derive thresholds 𝜏 = Φ−1(𝑝𝑟𝑜𝑏𝑠)  

3.3. Categorize 𝑌 = 𝑐𝑢𝑡 (𝑌∗, 𝜏) into 5 ordered categories (for example). 
Multivariate Case 

3.4. For each response  𝑟 = 1,2, ⋯ , 𝑞: 
- Compute latent variable 𝑍𝑟 = 𝑋𝛽𝑟

𝑡𝑟𝑢𝑒 + 𝜀𝑟 , with 𝜀~𝑁𝑞(0, Σ). 

- Apply response-specific thresholds 𝜏 = Φ−1(𝑝𝑟𝑜𝑏𝑠)  

- Categorize 𝑌𝑟 = 𝑐𝑢𝑡 (𝑌∗, 𝜏𝑟) into 𝐶𝑟 ordered categories (for example). 
 

4. Monte Carlo Sampling 

For each replication 𝑖 = 1,2, ⋯ , 𝑅: 
4.1. (Optional) Perturb 𝛽𝑡𝑟𝑢𝑒 slightly to mimic parameter variability. 

4.2. For each subsample 𝑠 = 1,2, ⋯ , 𝑆: 
- Draw random sample of size 𝑛 from population. 

- If any category is missing, resample until all categories are represented (≤ 𝑇𝑚𝑎𝑥) 

- Estimate parameters: 

a. Univariate model: Maximum Likelihood Estimation via polr(..., 

method="probit"). 

b. Multivariate model: Pairwise Likelihood Estimation via mvord(..., 

link="mvprobit"). 

- Store coefficient estimates, thresholds, and standard errors. 

 

5. Performance Evaluation 

5.1. Compute Bias, Variance, and MSE for each parameter: 

𝑀𝑆𝐸𝑘 =
1

𝑅. 𝑆
∑ ∑(𝛽̂𝑖, 𝑠, 𝑘 − 𝛽𝑘

𝑡𝑟𝑢𝑒)
2

𝑆

𝑠=1

𝑅

𝑖=1

 

5.2. Summarize results by multicollinearity level: mean, SD, min, max of MSE. 

5.3. Visualize 

- Boxplots of estimated coefficients with true values indicated. 

- Line plots of MSE across replications. 
6. Output 

- Consolidate results into tables (parameter estimates, VIF log, MSE summary). 
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- Report computational time and goodness-of-fit indices (log-PL, CLAIC, CLBIC for multivariate). 

- Provide diagnostic plots for interpretation. 

7. End of Algorithm 

All simulation results were compiled into a panel data structure, enabling both the visualization of 

estimation dynamics and the computation of performance metrics such as MSE across conditions. Figure 

3 provides a visual comparison between the true parameters and their estimates, illustrating the accuracy 

and stability of the estimation process under varying sampling conditions. 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c) (d) 

Figure 3. Parameter estimates across Monte Carlo repetitions, (a) 𝑋1, (b) 𝑋2, (c) 𝑋3, and (d) 𝑋4. 

 

Based on Figure 3, the estimated parameter values appear to be closely aligned with the true 

(simulated) parameter values, suggesting that the estimators are unbiased. At a glance, the associated 

standard errors also appear relatively small. To further support this observation, two additional 

simulation scenarios were conducted: one under moderate multicollinearity (5 < VIF ≤ 10), and another 

under high multicollinearity (VIF > 10). Both simulations followed the same design and procedural 

steps as the first. MSE for each predictor variable, calculated by comparing the estimated regression 

coefficients with their corresponding true parameter values, a quantitative assessment of estimation 

accuracy across simulation repetitions (𝑀𝑆𝐸𝑟,𝑝) as Equation 10. 

𝑀𝑆𝐸𝑟,𝑝 =
1

𝑠
∑(𝛽𝑟,𝑝

𝑡𝑟𝑢𝑒 − 𝛽̂𝑟,𝑠,𝑝)
2

𝑠

𝑖=1

 (10) 

𝑀𝑆𝐸𝑟,𝑝 denote the MSE for the p-th variable in the r-th repetition. The term 𝛽𝑟,𝑝
𝑡𝑟𝑢𝑒 refers to the true 

parameter value, while 𝛽̂𝑟,𝑠,𝑝 represents the estimated parameter value obtained from the s-th resamping 

within the r-th repetition for the p-th predictor variable. Here, 𝑟 = 1,2, ⋯ , 10, 𝑠 = 1,2, ⋯ , 100, and 𝑝 =
1,2,3,4. An illustration of this formulation is presented in Equation 11, which summarizes the 
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computation of MSE arranged by repetition (r) and variable (p). 

𝑀𝑆𝐸1,1 =
1

100
∑(𝛽1,1 − 𝛽̂1,𝑠,1)

2
=

100

𝑠=1

1

100
((𝛽1,1 − 𝛽̂1,1,1)

2
+ (𝛽1,1 − 𝛽̂1,2,1)

2
+ ⋯ + (𝛽1,1 − 𝛽̂1,100,1)

2
) 

(11) ⋮ 

𝑀𝑆𝐸10,4 =
1

𝑠
∑(𝛽10,4 − 𝛽̂10,𝑠,4)

2
=

100

𝑖=1

1

100
((𝛽10,4 − 𝛽̂10,1,4)

2
+ (𝛽10,4 − 𝛽̂10,2,4)

2
+ ⋯ + (𝛽10,4 − 𝛽̂10,100,4)

2
) 

Subsequently, the MSE values for each variable across all repetitions were summarized and presented 

in Table 1. This summary provides an overview of the estimation performance and variability for each 

predictor over the course of the simulation study. 

 

Table 1. Summary of MSE between estimated and true parameter values from each repetition 

 

No VIF Variable Mean Standar Deviation Minimum Maximum 

1 𝑉𝐼𝐹 ≤ 5 𝑋1 0.024 0.023 0.004 0.073 

2 𝑋2 0.043 0.036 0.013 0.137 

3 𝑋3 0.053 0.041 0.011 0.139 

4 𝑋4 0.009 0.004 0.002 0.014 

5 5 < 𝑉𝐼𝐹 ≤ 10 𝑋1 0.038 0.016 0.019 0.061 

6 𝑋2 0.036 0.020 0.011 0.081 

7 𝑋3 0.043 0.037 0.009 0.138 

8 𝑋4 0.021 0.005 0.011 0.029 

9 > 10 𝑋1 0.100 0.035 0.053 0.162 

10 𝑋2 0.038 0.023 0.012 0.093 

11 𝑋3 0.037 0.027 0.009 0.101 

12 𝑋4 0.073 0.023 0.043 0.117 

The Table 1 presents a summary of the MSE values obtained from comparing the estimated 

parameters with the true values across three levels of multicollinearity, categorized based on VIF 

thresholds in the univariate ordinal regression simulations. Overall, there is a noticeable trend indicating 

that higher VIF levels are associated with increased average MSE values—most prominently observed 

in predictors X₁ and 𝑋4. For instance, the average MSE for 𝑋1 rises substantially from 0.024 (VIF ≤ 5) 

to 0.100 (VIF > 10). Nevertheless, this pattern does not hold consistently across all predictors. Variables 

such as 𝑋2 and 𝑋3 exhibit relatively minor variations in MSE across multicollinearity conditions. 

Furthermore, the range of MSE values (minimum to maximum) within each VIF category shows modest 

fluctuation, suggesting that while multicollinearity does impact estimation stability, its effect may not 

be universally severe. These findings imply that, despite the presence of multicollinearity, the parameter 

estimates may remain approximately unbiased. 

3. 2. Multivariate Ordinal regression Simulation 

In this simulation study, a Monte Carlo simulation is conducted involving two ordinal response variables 

𝑞 = 2. The first response variable consists of three ordinal categories, while the second has four, and 

the response vector for the i-th individual is denoted as 𝒀𝒊 = (𝑌𝑖1, 𝑌𝑖2)𝑇, representing a bivariate ordinal 

outcome. For each repetition 𝑟 = 1,2, ⋯ , 𝑅, a population of N=2,000,000 observations is generated. 

Each observation is associated with a predictor vector 𝑿 = (𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒 ) ∈ ℝ4, where the predictors 

are sampled from a standard normal distribution. The regression parameters for each response variable, 

denoted as 𝜷𝟏 = (𝛽10, 𝛽11, 𝛽12, 𝛽13, 𝛽14) and 𝜷𝟐 = (𝛽20, 𝛽21𝛽22, 𝛽23, 𝛽24), are randomly generated for 

each repetition based on the specification provided in Equation 12. 

𝛽𝑘 = (𝛽𝑘0, 𝛽𝑘1, ⋯ , 𝛽𝑘4) = (1, 𝜇𝑘 + 𝜀𝑘), 𝜀𝑘~𝒩4(𝟎, 𝜎2𝑰) (12) 

For 𝑘 = 1,2, with a standard deviation of 𝜎 = 0.2, the true regression coefficients are fixed at 

randomly selected values, defined as 𝜇1 = (0.3, −0.4,0.8, −0.5) and 𝜇2 = (0.2, −0.2,0.5, −0.7), 

respectively. Based on these coefficient vectors, the corresponding latent variables are constructed 



  

02504024-011 

 

following the specification outlined in Equation 13. Subsequently, the latent variable 𝑌𝑘
∗ was 

transformed into an ordinal response variable 𝑌𝑘 using a quantile-based thresholding procedure. 
𝑌1

∗ = 𝑿𝜷𝟏 + 𝜺𝟏 

𝑌2
∗ = 𝑿𝜷𝟐 + 𝜺𝟐 

dengan [
𝜀1

𝜀2
] ~𝒩2(𝟎, 𝚺), 𝚺 = [

1 𝜌
𝜌 1

] , 𝜌 = 0.7 (13) 

From the full dataset consisting of two million observations, a resampling procedure was conducted 100 

times per iteration, with each resample consisting of a fixed sample size of 𝑛 = 1000 (0.05%). For each 

resampled subset, parameter estimation was performed using a multivariate ordinal probit model 

specified. Although the model includes an intercept term, the analysis focuses solely on the regression 

coefficients (𝛽𝑘1, 𝛽𝑘2, 𝛽𝑘3, 𝛽𝑘4). For each estimation, both the estimated coefficient 𝛽̂𝑘𝑗 and the 

corresponding true parameter value 𝛽𝑘𝑗
true are recorded. The estimation error is defined as 𝑒𝑘𝑗 = 𝛽̂𝑘𝑗 −

𝛽𝑘𝑗
true. These results are then compiled into a comprehensive evaluation table to assess the bias and 

stability of the parameter estimates under controlled data structures and random variability. To facilitate 

interpretation, the estimated regression coefficients are presented separately for each response variable. 

This partial presentation allows a more focused evaluation of parameter behavior specific to each 

outcome (low multicollinearity) (see Table 2).  

 

Table 2. Summary of simulation results for estimated regression coefficients in the multivariate 

ordinal regression model. 

No Response Predictor Repetition Resampling 

Repetition 
𝜷𝒌𝒋

𝐭𝐫𝐮𝐞 𝜷̂𝒌𝒋 𝜷̂𝒌𝒋 − 𝜷̂ 

1 𝑌1 𝑋1 1 1 0.26 0.28 0.03 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
100 𝑌1 𝑋1 1 100 0.26 0.27 0.01 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
400 𝑌1 𝑋4 1 100 -0.34 -0.38 -0.04 

401 𝑌2 𝑋1 1 1 0.54 0.49 -0.05 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8000 𝑌2 𝑋4 10 100 -0.49 -0.42 0.07 

Based on Table 2, to facilitate interpretation, Figure 4 provides a visual representation of the 

estimated regression coefficients 𝛽̂
𝑘𝑗

 across all repetitions and resampling iterations, in comparison to 

their corresponding true parameter values (𝛽𝑘𝑗
true). 

 

 

 

 

 

 

 

 

 
 

(a) 𝑌1 on 𝑋1 

(b) 𝑌2 on 𝑋1 

 

 

 

 

 

 

 
(c) 𝑌1 on 𝑋2 (d) 𝑌2 on 𝑋2 
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(e) 𝑌1 on 𝑋3 (f) 𝑌2 on 𝑋3 

  

  

 

 

 

 

 

 

 

 

 
(g) 𝑌1 on 𝑋4 (h) 𝑌2 on 𝑋4 

Figure 4. Deviation of the estimated regression coefficients 𝛽̂
𝑘𝑗

 from the true parameter 𝛽𝑘𝑗
true in low 

multicollinearity (Left: Effect of predictors on 𝑌1; Right: Effect of predictors on 𝑌2). 

 

The distribution of parameter estimates in datasets with high multicollinearity does not differ 

substantially from those with low multicollinearity. A more in-depth evaluation is provided through the 

Mean Squared Error (MSE) results, which are summarized in Table 3 for each response variable across 

the three levels of multicollinearity. Overall, the results presented in the table indicate that 

multicollinearity does not exert a substantial impact on the accuracy of parameter estimates in 

multivariate ordinal regression. The Mean Squared Error (MSE) values across the three levels of 

multicollinearity remain relatively stable, particularly for predictors 𝑋3  and 𝑋4, which demonstrate 

consistent alignment with the true parameter values. 

 

Table 3. Summary of MSE between estimated and true parameter values from each repetition. 

 

No VIF 𝒀 𝑿 Mean Standar Deviation Minimum Maximum 

1.  𝑉𝐼𝐹 < 5 𝑌1 𝑋1 0.0019 0.0002 0.0015 0.0022 

2.  𝑌1 𝑋2 0.0022 0.0004 0.0017 0.0032 

3.  𝑌1 𝑋3 0.0028 0.0006 0.0019 0.0038 

4.  𝑌1 𝑋4 0.0022 0.0004 0.0016 0.0031 

5.  𝑌2 𝑋1 0.0017 0.0003 0.0013 0.0021 

6.  𝑌2 𝑋2 0.0018 0.0002 0.0016 0.0021 

7.  𝑌2 𝑋3 0.0021 0.0005 0.0015 0.0029 

8.  𝑌2 𝑋4 0.0024 0.0006 0.0017 0.0038 

9.  5 ≤ 𝑉𝐼𝐹 < 10 𝑌1 𝑋1 0.0160 0.0025 0.0118 0.0200 

10.  𝑌1 𝑋2 0.0214 0.0041 0.0165 0.0317 

11.  𝑌1 𝑋3 0.0030 0.0008 0.0016 0.0045 
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No VIF 𝒀 𝑿 Mean Standar Deviation Minimum Maximum 

12.  𝑌1 𝑋4 0.0208 0.0026 0.0178 0.0272 

13.  𝑌2 𝑋1 0.0141 0.0023 0.0110 0.0177 

14.  𝑌2 𝑋2 0.0168 0.0019 0.0130 0.0193 

15.  𝑌2 𝑋3 0.0021 0.0005 0.0015 0.0029 

16.  𝑌2 𝑋4 0.0195 0.0024 0.0160 0.0231 

17.  𝑉𝐼𝐹 ≥ 10 𝑌1 𝑋1 0.0369 0.0067 0.0278 0.0472 

18.  𝑌1 𝑋2 0.0219 0.0046 0.0157 0.0321 

19.  𝑌1 𝑋3 0.0032 0.0009 0.0018 0.0048 

20.  𝑌1 𝑋4 0.0220 0.0034 0.0168 0.0274 

21.  𝑌2 𝑋1 0.0321 0.0042 0.0253 0.0380 

22.  𝑌2 𝑋2 0.0179 0.0024 0.0135 0.0208 

23.  𝑌2 𝑋3 0.0021 0.0004 0.0016 0.0029 

24.  𝑌2 𝑋4 0.0204 0.0024 0.0174 0.0232 

 

Although the MSE values tend to be slightly higher under moderate and high multicollinearity 

compared to the low-multicollinearity setting, the spread of parameter estimates under severe 

multicollinearity still centers around the true values. This is evidenced by the narrow range between 

minimum and maximum values and the moderate standard deviations observed across repetitions. These 

findings reinforce the notion that, within the context of this simulation, multicollinearity does not 

inherently introduce systematic bias into parameter estimation, suggesting that the estimators remain 

essentially unbiased. Nonetheless, while the accuracy of the estimates is largely unaffected, high 

multicollinearity does lead to increased computational complexity, as reflected in longer estimation 

times and higher resource demands. These results are consistent with prior findings that multicollinearity 

can degrade algorithmic performance and complicate parameter estimation, especially in high-

dimensional contexts [29–31]. In scenarios with VIF ≥ 10, estimation procedures required noticeably 

more processing time compared to low-multicollinearity conditions. This increase is likely due to strong 

intercorrelations among predictors, which can slow convergence in iterative optimization algorithms, 

particularly in multivariate models with correlated response structures. Therefore, even though the 

quality of the parameter estimates remains robust, the presence of multicollinearity should still be 

considered a critical factor from the perspective of computational efficiency and resource allocation. 

 

Conclusion 

As outlined in the introduction and further elaborated in the results and discussion sections, this study 

investigated parameter estimation in both univariate and multivariate ordinal regression models under 

three levels of multicollinearity among predictor variables: low, moderate, and high. While an increase 

in MSE was observed under high multicollinearity, the deviation between true and estimated values 

remained relatively small, indicating that multicollinearity does not substantially distort parameter 

estimation. Both Maximum Likelihood Estimation (MLE) for univariate ordinal regression and Pairwise 

Likelihood (PL) for multivariate ordinal regression yielded parameter estimates that were essentially 

unbiased, although computation time increased considerably in high-correlation settings. The broader 

implication of these findings is that MLE and PL remain robust estimation strategies even when 

predictor variables exhibit strong correlations, a condition frequently encountered in applied contexts 

such as large-scale surveys, psychometric assessments, and socio-economic studies. Nonetheless, the 

generalizability of these results is limited by the simulation design, which assumed normally distributed 

latent traits and balanced data structures. Real-world data often involve heteroskedasticity, non-normal 

latent distributions, or incomplete responses, which may affect estimation performance. Future research 

should therefore extend this work by incorporating such complexities, particularly examining estimator 
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behavior under heteroskedastic errors, skewed or heavy-tailed latent distributions, and missing data 

mechanisms. Exploring these scenarios will enhance methodological guidance for practitioners 

analyzing complex ordinal data and ensure that estimation techniques remain robust across diverse 

empirical applications. 
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