Advance Sustainable Science, Engineering and Technology (ASSET)
Vol. 7, No.4, October 2025, pp. 02504024-01 ~ 02504024-015
ISSN: 2715-4211 DOI: https://doi.org/10.26877/asset.v7i4.2282

I\
&

Evaluating Ordinal Multivariate Models under Multicollinearity
via Pairwise Likelihood: A Simulation Perspective

Achmad Fauzan'?*, Kusman Sadik?, Anang Kurnia’
IStatistics Study Program, Faculty of Mathematics and Natural Science, Universitas
Islam Indonesia, Yogyakarta, Indonesia

Study Program of Statistics and Data Science, School of Data Science, Mathematics
and Informatics, [PB University, Indonesia

*achmadfauzan@uii.ac.id, fauzanachmad@apps.ipb.ac.id

Abstract. This study examines the effect of multicollinearity on ordinal regression through a
two-stage Monte Carlo simulation. A synthetic population of 2,000,000 observations was
generated with predictors drawn from a normal distribution, and responses simulated using an
ordinal probit model. A Monte Carlo procedure was employed with 10 repetitions, each
consisting of 100 random samples of 1,000 observations. Parameter estimation employed
Maximum Likelihood Estimation (MLE) for univariate models and Pairwise Likelihood (PL) for
multivariate models, with performance assessed using mean squared error (MSE), bias, and
computation time. Results show that multicollinearity had negligible impact on estimator bias
and MSE, confirming the robustness of both MLE and PL to correlated predictors. However,
severe multicollinearity substantially increased computation time, indicating a trade-off between
estimator stability and efficiency. These findings highlight PL as a viable approach for analyzing
complex ordinal data, particularly in applications such as socio-economic surveys and health
metrics where predictor correlation is unavoidable.
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1. Introduction

Multivariate regression represents a statistical methodology designed to assess the simultaneous effects
of one or more independent variables on multiple dependent outcomes [1]. In contrast to univariate
regression, which focuses on a single response variable, the multivariate framework enables researchers
to investigate more intricate patterns of association within systems characterized by interdependent
outcomes. This approach is particularly valuable in disciplines such as psychology [2], economics [3],
[4], and epidemiology [5], where multiple outcome indicators often exhibit substantial correlations and
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therefore require joint modeling for valid inference. One of the principal advantages of multivariate
regression is its capacity to capture the interdependence structure among multiple response variables.
By modeling all outcome variables simultaneously, the analysis becomes more efficient and produces
more accurate parameter estimates, particularly when the response variables are substantively correlated
[4]. For categorical response data with more than two levels, two general modeling approaches are
commonly used: multinomial regression for unordered (nominal) categories, and ordinal logistic
regression for ordered (ordinal) outcomes [6]. The multivariate ordinal regression model, also referred
to as multivariate ordinal probit regression, integrates two essential components: the ordinal nature of
the response variables and the correlation structure among them [7,8].

As the number of response dimensions increases, full maximum likelihood estimation becomes
increasingly prohibitive. Consequently, researchers have explored alternative estimation strategies that
are computationally more efficient while maintaining statistical consistency. The pairwise likelihood
(PL) has become a well-recognized solution in the statistical literature [7,9]. Instead of evaluating the
full joint likelihood of all response variables, PL relies solely on contributions from pairs of response
variables, thereby reducing the complexity of high-dimensional integrals to more computationally
manageable expressions. This method has demonstrated effectiveness across a wide range of
applications, especially in models involving numerous response variables and complex correlation
structures [10,11]. More recently, Wieditz [12] and Gambarota & Alto¢ [13] highlighted the use of
simulation-based evaluations to investigate ordinal regression under correlated latent structures,
confirming the consistency of PL in practice. Nevertheless, while theoretical advances and software
implementations have expanded rapidly, empirical simulation studies that systematically evaluate the
robustness of PL, particularly under varying levels of predictor multicollinearity, remain limited.

Although PL has been established as a computationally efficient alternative in multivariate ordinal
regression, most existing studies primarily emphasize its theoretical properties or its performance under
correlated latent response structures. Recent empirical works have contributed valuable insights into the
consistency of PL estimators; however, systematic simulation-based evaluations remain limited in
scope. In particular, little attention has been given to how varying levels of predictor multicollinearity
influence the accuracy and stability of PL estimates. This study directly addresses the identified research
gap by systematically evaluating the impact of predictor multicollinearity on parameter estimation using
Pairwise Likelihood Estimation (PLE) in both univariate and multivariate ordinal regression models.
While prior works have primarily emphasized latent response correlations, little attention has been given
to predictor-side multicollinearity, a pervasive issue in applied research. To fill this gap, we conduct
large-scale Monte Carlo simulations that explicitly vary degrees of predictor multicollinearity and assess
their effects on estimator bias, variance, mean squared error (MSE), and computation time. In doing so,
this research provides new empirical evidence on the robustness of PLE under challenging predictor
correlation structures and offers methodological guidance for applied contexts such as socio-economic
surveys, psychometric assessments, and epidemiological studies.

2. Methods

2.1. Research Methods

This simulation study evaluates the consistency of parameter estimates in univariate and multivariate
ordinal regression models under varying levels of predictor multicollinearity. The primary goal is to
assess the stability of estimates and the validity of consistency assumptions when predictors are highly
correlated. The overall research flow is summarized as follwos. First, ordinal responses are generated
using a probit model from latent normally distributed variables, categorized through thresholding.
Parameter estimates are repeatedly compared to known true values to assess bias, variance, and
systematic deviation. Second, to assess the impact of multicollinearity, predictor variables were
designed to reflect three levels of intercorrelation based on Variance Inflation Factor (VIF): categorized
as low when VIF < 5, moderate when 5 < VIF < 10, and high when VIF > 10, with additional validation
using the Pearson correlation matrix. This design was applied to both univariate and multivariate ordinal
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probit regression models, where ordinal outcomes are treated as thresholded realizations of latent
variables following a (multivariate) normal distribution. In the multivariate case, inter-response
correlations are modeled through the latent covariance structure. An overview of the simulation design
is illustrated in Figure 1.

Third, to reflect real-world settings where the true data-generating process is unknown, a synthetic
population of 2,000,000 observations was generated. Predictors were drawn from a standard normal
distribution, and ordinal responses were created using a probit regression framework. Fourth, a Monte
Carlo design with 10 repetitions was employed, where each repetition involved drawing 100 random
samples of 1,000 observations each. This setup mimics model evaluation based on holdout samples.
Fifth, for every simulation, parameter estimates were obtained across all predictors and resampling
iterations, resulting in 100 estimates per predictor per repetition. Mean Squared Error (MSE) was then
computed by comparing these estimates with the true parameter values [14].

> Data generation
(Y, X1, X2, ..., Xp)

RS
r=1,s=2 |: " .
| : Parameter estimation at the r-th
| | : repetition and s-th sample (r, s)
r=1s=8
| r=2s=1 ! :
Sample selection (s) ; =2s=2 |:
s=12,...,8 l | : . .
| oes : Visualization of actual versus
| 757 predicted parameters for cach
R . repetition and each simulation
| I=R,5=
- | TR0 v
\V4 | 5 | :
= H . -
Repetition (1) I ! | r—Rs=s Calculation of MSE between the true
r=12,..,R >| r=R I | [ parameters and the predicted parameters
o ! T
N | g
| I Statistical summary of Finish
[ the MSE results
| _ o .

Three treatments based on VIF values (low, middle, high)

Figure 1. Simulation design.

Sixth, based on the MSE computed in each repetition, summary results are reported for low,
moderate, and high multicollinearity scenarios. The simulation results are further illustrated using dot
plots (showing parameter distribution across repetitions) and box plots (highlighting estimator
variability and deviation from true values). These visualizations enable a comprehensive assessment of
estimation accuracy under increasing multicollinearity in both univariate and multivariate settings. All
computations were performed in R (version 4.4.2) on a system with 16 GB RAM, ensuring scalability
for large-scale simulations [15]. The study contributes methodological insights into how ordinal probit
regression performs under multicollinearity while emphasizing the computational efficiency of the
pairwise likelihood (PL) approach in handling multivariate ordinal data. Numerous R packages are
available to support the modeling of ordinal data [15]. In the present simulation study, univariate ordinal
regression was performed using the polr () function in the MASS pacakage and for the multivariate
ordinal setting, we adopted the MMO2 specification implemented in the mvord package, which
accommodates multiple correlated ordinal responses within a unified modeling framework.
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2.2. Univariate Ordinal Regression
As a core statistical tool, the Linear Model (LM) offers a basis for analyzing the linear relationship
between a response variable and its predictors [16]. The approach was later broadened through the
Generalized Linear Model (GLM), which allows for flexible response distributions beyond normality
and the use of alternative link functions [17]. Logistic regression represents a specific case of GLM,
applicable when the outcome variable is categorical—either binary or polytomous, and nominal or
ordinal in nature. Ordinal logistic regression is particularly suited for modeling ordered categorical
outcomes with three or more levels. Unlike multinomial logistic regression, which is used for nominal
outcomes without inherent ordering, ordinal models leverage the natural rank of the response variable.
Depending on the link function used, ordinal models can be estimated via the logit or probit link. The
ordinal logit model is widely used due to its interpretability through odds ratios, making it especially
relevant for applied research involving relative risk assessment. Meanwhile, the ordinal probit model,
also known as the threshold model, assumes normally distributed latent errors and is preferred in
contexts such as psychometrics or latent trait modeling, where normality assumptions are theoretically
grounded [18,19].

Let ¥; denote an ordinal response variable with ¢ ordered categories, and let x; represent a vector of
p predictor variables for the it"observation, such that x; = [Xi1  Xi2 *** Xip]T with i = 1,2,---,n,
with n indicating the total count of observations. The ordinal probit model, the estimation process
begins with the specification of the structural form, as defined in Equation 1 [12].

Y, =x{B+& 0]
The latent variable y* is a continuous, unobserved variable assumed to follow a normal distribution
Y*~N(BTx,02), x is the vector of predictor variables, B denotes the corresponding parameter
coefficients, and e~V (0, o) represents the normally distributed error term. The term “latent” refers to
an unobservable construct that cannot be directly measured but is inferred from observed data [19]. As
with the ordinal logit model, suppose the response variable consists of ¢ ordered categories. In the
ordinal probit model, the observed categorical outcome is derived from the latent variable Y* through a
series of thresholds y, such that the classification occurs in an ordered manner as Equation 2 [13,20]
Y =1ifY <n
Yi=2 ifV1.< V' <v, )
YVi=cif¥] >y
The thresholds on the latent scale are defined as —0 =y, <y; <y, <+ <Ye_q <y = oo Wherey
epresents the cutoff points that partition the continuous latent variable into ordered response categories
[21]. An illustration of the relationship between the latent variable values and the observed ordinal
outcomes in the ordered probit model is presented in Figure 2.
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Figure 2. The upper panel displays ordinal outcomes derived from thresholding a cumulative normal
distribution, as illustrated in the lower panel [12,22]

The general form of the ordinal probit model can be expressed as Equation 3 [9].
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Pr(Y; <j)=Pr (xiTﬂ +¢ < )/]-) = q’()’l —xIB) = my (x) + o (x) + - + m;(x;) 3)
where ®(-) denotes the cumulative probability function of the standard normal distribution, mapping
each value to the probability that a standard normal variable is less than or equal to it. The term m;(x;)

represents the probability that the it* observation falls into category j, given the predictor values
x;. Parameter estimation in the ordinal probit model is conducted using the MLE method as Equation 4

[23].
c@ =[] [(me)”
R )
£(6) = n(£(9) = > > ¥y In(;(x)
i=1j=1
0=y BI"=[v1 Y2 = V1 B1 B . Bp]T. As with the ordinal logit regression model,

the first-order partial derivatives of the log-likelihood function in the ordinal probit model are not
available in closed form. Consequently, numerical optimization techniques are required for parameter
estimation.

2.3.  Multivariate Ordinal Regression using Pairwise Likelihood

Ordinal multivariate regression models multiple correlated ordinal responses as thresholded latent
variables, extending the univariate probit framework to account for inter-response correlations and
predictor effects [8,11]. As an illustration, consider i = 1,2,---,n independent observations, each

associated with a g-dimensional ordinal response vector Y; = (Hl,lﬁz,"',lﬁq)T where Y;; €
{1,2,---,K} for j =1,2,---,q. Each Y; is treated as a realization from a joint distribution g(¥;) that
depends on an unknown parameter vector 8. According to the model, each individual i is assumed to
possess an underlying continuous latent vector that cannot be directly observed Z; =

(Zi1,Zi2, Zi3, ~--,Zl-q)T, which follows a multivariate normal distribution N (0,Z) where X is a
symmetric and positive definite g X g correlation matrix.

The general structure of X includes unit values on the diagonal and off-diagonal elements p,.,
representing the correlation between the " and st" dimensions of the latent variables. The observed
ordinal variable y;; is obtained by discretizing the latent variable z; through a set of threshold
values{ay}, such as y; = k & z;; € (ak—1,a,). These thresholds are ordered as —o = ay < a; <
a, < - < ag = oo orming a partition of the real line into K mutually exclusive intervals [8]. Based on
this structure, the likelihood function for a single observational unit can be expressed as a multivariate
normal integral, where the limits of integration are determined by the threshold values associated with
each ordinal dimension. Specifically, the joint probability of observing the ordinal response vecto ¥; =
(Vi1 Yiz»***» Yig) 1S given by Equation 5 [8].

Byin Qi yis

Pr(Yiy = yir, Yio = Viz - Yig = ¥ig) = f f f (211,219, 2ig )dzin dziy -+ dzig  (5)
yi1-1Ay;p-1 Ayge-1
where ¢ X(-) corresponds to the multivariate normal distribution’s density, specified by a zero mean
vector and covariance structure X. Accordingly, the full log-likelihood function for all n observational
units can be expressed as Equation 6.

By Yy Ay

n
1@ =gl [ | [ #2nang)dzdzg - dzi ©
=1 Tyi1-1Ay;p-1 Ay
From the Equation 6, several parameters are involved in the model: (1) the set of threshold parameters
used for categorization (aq,a,,,ax—_1), (2) the latent correlation parameters p,.¢ for all pairs r, s =
1,2,--,q withr < s, and (3) the complete parameter vector 6 = (al, s, ,0g_1,P12, P13, """ » pq_l_q)
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where 8 . However, the likelihood function in the previous equation involves a g-dimensional integral
for each individual observation. This implies that evaluating the full likelihood requires computing n
multivariate Gaussian integrals of high dimension. Consequently, direct estimation becomes
computationally intensive and impractical, particularly when the number of response variables q is large
or the sample size n is substantial. To address this limitation, pairwise likelihood (PL) methods
employed as a more computationally efficient alternative.

The PL approach is a simplified alternative to the full likelihood function, which only considers
bivariate (pairwise) combinations of the response variables. Specifically, the pairwise log-likelihood is
constructed by summing the joint probabilities of all possible pairs of ordinal response variables, rather
than evaluating the full multivariate distribution. This reduction in complexity makes the estimation
process more computationally feasible, particularly in high-dimensional settings. The general form of
the pairwise log-likelihood is given by the following Equation 7 [24].

n q-1
°(8) = Z;S;log{mm Virs Yis = ¥is)} )

where each term corresponds to the log of the joint probability of observing the pair (Y;,, Y;s) for subject
i, and the summation runs over all possible unique pairs of response variables. Equation 7 can be

expressed in terms of a bivariate integral, as Equation 8.
QAy. QAy.
n q-1 q Yir Yis

@)=Y Y tgl [ | 62605 dugdzs ®
i=1r=1s=r+1 Ay, -1 Qy; 1

The matrix Z(p, s) efers to a 2x2 correlation matrix with ones on the diagonal, representing unit
variances, and the correlation coefficien p,. as the off-diagonal elements, which quantify the association
between the two latent variables. The PL approach is particularly advantageous because it replaces the
computationally intractable high-dimensional integrals in the full likelihood with a series of more
manageable bivariate integrals, which can be efficiently evaluated using standard statistical software. In
general, PL operate in a manner analogous to traditional likelihood-based procedures. For instance, the
pairwise score vector UF (8), defined as the derivative of the pairwise log-likelihood with respect to the
parameter vector 0, retains the property of unbiasedness. This is because it is constructed as the sum of
contributions from all pairs of response variables. The formal expression for the score function is

presented in the following Equation 9.
Ty s

ur () =250 ZZ Z Pm(e) S [ [ oGm0 dada, ©

i=1r=1s= Ay, —1Qy; 1
Parameter estimation in the PL framework, denoted as 8, can be obtained either by maximizing the
pairwise log-likelihood function#” (@), or equivalently, by solving the score equation UF(8) = 0,
similar to the standard maximum likelihood estimation approach. The PL estimator is consistent and
asymptotically normally distributed as the sample size n becomes large n — oo [25]. More formally, the
asymptotic distribution of the estimator is 87 ~N(6,G(0)™1) , G(0) = W(08)](0) "W (0) referred to
as the Godambe information matrix, which serves as an analogue to the Fisher information matrix in
full likelihood settings and is used to approximate the asymptotic variance of the estimator. Godambe
information matrix is constructed from the combination of two key components: the sensitivity matrix

_ P
W) = E,y { aUa (9)} and the variability matrix J(0) = Varg{UP(0)} [24]. In the multivariate setting,

parameter estimation is performed using the PL method. This approach approximates the full likelihood
by considering only the bivariate marginal distributions of each pair of ordinal responsesBy reducing
the high-dimensional integral in the full likelihood to multiple two-dimensional integrals, the PL method
significantly alleviates computational complexity and is well-suited for high-dimensional multivariate
settings. As an illustration, we have included an appendix demonstrating parameter estimation using
both the univariate and the multivariate ordinal regression. The appendix provides a comparative
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example of how parameters are estimated under each link function, along with a simulated dataset and
the corresponding ordinal logistic regression models.

Beyond its theoretical foundations, PL has also been applied in diverse empirical domains,
demonstrating its practical utility. In psychometrics, Robitzsch (2024) showed that PL can yield nearly
unbiased estimates in the two-parameter logistic (2PL) item response theory model, even when the local
independence assumption is violated due to stimulus-based dependencies across items. In computational
biology, Mazo et al. (2024) introduced a randomized pairwise likelihood (RPL) approach to efficiently
analyze transcriptomic count data, reducing computational burden while maintaining estimator
consistency [27]. In health metrics, Tong et al. (2022) developed a privacy-preserving distributed
conditional logistic regression (dCLR) algorithm that leverages PL to integrate electronic health records
from 230 hospitals during the COVID-19 pandemic, achieving greater robustness compared to meta-
analysis methods, especially under rare-event settings [28]. These applied studies underscore the
versatility of PL as not only a theoretically sound estimation method but also a robust and scalable
solution for addressing correlation structures, data heterogeneity, and computational challenges in real-
world applications.

3. Result

3. 1. Univariate Ordinal regression Simulation

As shown in the flow diagram, the simulation begins with a univariate ordinal probit model and adopts
a Monte Carlo approach to assess the stability of parameter estimates. Due to computational constraints,
the simulation was limited to = 10 repetitions. In each repetition, a large synthetic population (n =
2,000,000) was generated, from which s = 100 random samples (each ~1,000 observations, or 0.05%)
were drawn to mimic data sparsity conditions. To ensure valid ordinal model estimation, subsampling
was controlled so that all outcome categories were present in each training set. Predictor variables X; to
X, (p=4) were drawn from a standard normal distribution and standardized using z-score
transformation. True regression coefficients (f) were randomly varied across iterations by perturbing a
baseline vector [-2, 3, -4, and 0.6] with noise from N (0,1). In the initial simulation scenario, the
predictors were designed to exhibit low multicollinearity, as indicated by VIF below 5.

For clarity of exposition, the simulation workflow is summarized as a pseudocode in Algorithm 1.
The pseudocode details the application of Pairwise Likelihood Estimation (PLE) in both univariate and
multivariate ordinal probit models, evaluated under varying degrees of predictor multicollinearity. By
structuring the steps of data generation, resampling, estimation, and performance assessment, the
pseudocode provides a transparent and reproducible framework for examining the robustness and
efficiency of PLE.

Algorithm 1
Input:
o

: synthetic population size (e.g., 2,000,000)
: sample size per estimation (e.g., 1,000)
: number of Monte Carlo replications (e.g., 10)
: number of resamples per replication (e.g., 100)
: number of predictors (e.g., 3-4)
Bir#e: true regression coefficients (intercept included)
Threshold probabilities:
- Univariate: (0.15,0.35,0.70,0.85)
- Multivariate: response-specific (e.g., 1/3,2/3,0.25,0.5,0.75)
o ZI: latent residual covariance matrix (for multivariate responses)
o VIF thresholds: low (< 5), moderate (5 — 10), high (= 10)
0 Tax: maximum resampling attempts to ensure complete category coverage
Output:
o Estimated parameters (B, ¢)for univariate and multivariate models

W LI =

O O O 0O O O
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o Variance Inflation Factors (VIF)
o Bias, variance, and Mean Squared Error (MSE) summaries
o Visual diagnostics (boxplots of estimates, MSE curves)

Procedure
1. Initialization
1.1. Set random seed; load required libraries (MASS, mvord, dplyr, car, ggplot2, mvtnorm)
1.2. Define simulation parameters (N, 1, R, S, T4, ) and true values of f17€.
2. Population Generation
2.1. Generate baseline predictors X]-~N(0,1),j =12,p
2.2. For each multicollinearity level L € {low, moderate, high}
- Construct predictors with target VIF structure:
a. Low: independent normal predictors.
b. Moderate/High: introduce linear dependencies among predictors.
- Standardize predictors and compute VIF; log results.

3. Response Construction
Univariate Case:
3.1. Compute latent variable Y* = XB™€ + ¢,e~N(0,1)
3.2. Derive thresholds T = ®~1(probs)
3.3. Categorize Y = cut (Y*, 1) into 5 ordered categories (for example).
Multivariate Case
3.4.For each response r = 1,2,+:+,q:
- Compute latent variable Z, = XBf™¢ + &, with e~N, (0, %).
- Apply response-specific thresholds 7 = @~ (probs)
- Categorize Y, = cut (Y*, t,) into C, ordered categories (for example).

4. Monte Carlo Sampling
For each replicationi = 1,2,+--, R:
4.1. (Optional) Perturb B¢ slightly to mimic parameter variability.
4.2. For each subsample s = 1,2,---, S:
- Draw random sample of size n from population.
- Ifany category is missing, resample until all categories are represented (< Typax)
- Estimate parameters:
a. Univariate model: Maximum  Likelihood Estimation via polr(..
method="probit").
b. Multivariate model: Pairwise Likelihood Estimation via mvord(...,
link="mvprobit") .
- Store coefficient estimates, thresholds, and standard errors.

-7

5. Performance Evaluation
5.1. Compute Bias, Variance, and MSE for each parameter:

R S
1 A 2
MSEk = ﬁz Z(ﬁl,s,k - B]térue)

i=1s=1
5.2. Summarize results by multicollinearity level: mean, SD, min, max of MSE.
5.3. Visualize
- Boxplots of estimated coefficients with true values indicated.
- Line plots of MSE across replications.
6. Output
- Consolidate results into tables (parameter estimates, VIF log, MSE summary).
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- Report computational time and goodness-of-fit indices (log-PL, CLAIC, CLBIC for multivariate).
- Provide diagnostic plots for interpretation.
7. End of Algorithm
All simulation results were compiled into a panel data structure, enabling both the visualization of
estimation dynamics and the computation of performance metrics such as MSE across conditions. Figure
3 provides a visual comparison between the true parameters and their estimates, illustrating the accuracy
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Figure 3. Parameter estimates across Monte Carlo repetitions, (a) X1, (b) X5, (c) X5, and (d) X,.

Based on Figure 3, the estimated parameter values appear to be closely aligned with the true
(simulated) parameter values, suggesting that the estimators are unbiased. At a glance, the associated
standard errors also appear relatively small. To further support this observation, two additional
simulation scenarios were conducted: one under moderate multicollinearity (5 < VIF < 10), and another
under high multicollinearity (VIF > 10). Both simulations followed the same design and procedural
steps as the first. MSE for each predictor variable, calculated by comparing the estimated regression
coefficients with their corresponding true parameter values, a quantitative assessment of estimation
accuracy across simulation repetitions (MSE.. ,,) as Equation 10.

N

1 A 2
MSEpp =< > (B = Brsp) (10)

i=1

MSE, ,, denote the MSE for the p-th variable in the r-th repetition. The term B/7}*¢ refers to the true
parameter value, while Br_s,p represents the estimated parameter value obtained from the s-th resamping
within the r-th repetition for the p-th predictor variable. Here,r = 1,2,---,10,s = 1,2,---,100,and p =
1,2,3,4. An illustration of this formulation is presented in Equation 11, which summarizes the
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computation of MSE arranged by repetition (r) and variable (p).
100

1 A 1 A o ~
M5E1,1 = WZ(ﬁu - ﬁ1,s,1)2 =m((ﬂl,l - B1,1,1)2 + (31,1 - BI,Z,I)Z +oe (Bl,l - ﬁ1,100,1)2)
’ (11)

100

1 A~ 1 . o o
MSE o4 = ;2(310,4 - 310,5,4)2 = 100 ((510,4 - ,310,1,4)2 + (ﬁ1o,4 - ﬁ1o,2,4)2 + -+ (ﬁ1o,4 - 310,100.4)2)
i=1

Subsequently, the MSE values for each variable across all repetitions were summarized and presented
in Table 1. This summary provides an overview of the estimation performance and variability for each
predictor over the course of the simulation study.

Table 1. Summary of MSE between estimated and true parameter values from each repetition

No VIF Variable | Mean | Standar Deviation | Minimum | Maximum
1 VIF <5 X 0.024 0.023 0.004 0.073
2 X, 0.043 0.036 0.013 0.137
3 X, 0.053 0.041 0.011 0.139
4 X4 0.009 0.004 0.002 0.014
5 5<VIF <10 X4 0.038 0.016 0.019 0.061
6 X, 0.036 0.020 0.011 0.081
7 X 0.043 0.037 0.009 0.138
8 X, 0.021 0.005 0.011 0.029
9 > 10 X, 0.100 0.035 0.053 0.162
10 X, 0.038 0.023 0.012 0.093
11 X; 0.037 0.027 0.009 0.101
12 X, 0.073 0.023 0.043 0.117

The Table 1 presents a summary of the MSE values obtained from comparing the estimated
parameters with the true values across three levels of multicollinearity, categorized based on VIF
thresholds in the univariate ordinal regression simulations. Overall, there is a noticeable trend indicating
that higher VIF levels are associated with increased average MSE values—most prominently observed
in predictors Xi and X,. For instance, the average MSE for X; rises substantially from 0.024 (VIF <5)
to 0.100 (VIF > 10). Nevertheless, this pattern does not hold consistently across all predictors. Variables
such as X, and X3 exhibit relatively minor variations in MSE across multicollinearity conditions.
Furthermore, the range of MSE values (minimum to maximum) within each VIF category shows modest
fluctuation, suggesting that while multicollinearity does impact estimation stability, its effect may not
be universally severe. These findings imply that, despite the presence of multicollinearity, the parameter
estimates may remain approximately unbiased.

3. 2. Multivariate Ordinal regression Simulation
In this simulation study, a Monte Carlo simulation is conducted involving two ordinal response variables
q = 2. The first response variable consists of three ordinal categories, while the second has four, and
the response vector for the i-th individual is denoted as ¥; = (Y, Y;,)7, representing a bivariate ordinal
outcome. For each repetition r = 1,2,---, R, a population of N=2,000,000 observations is generated.
Each observation is associated with a predictor vector X = (X4, X, X3, X4 ) € R*, where the predictors
are sampled from a standard normal distribution. The regression parameters for each response variable,
denoted as B1 = (B10, B11, P12, P13, B14) and B2 = (B0, B21P22, P23, B24), are randomly generated for
each repetition based on the specification provided in Equation 12.
B = (Bros Bier, *+» Bra) = (1, e + &), €, ~N3 (0, 5°1) (12)

For k = 1,2, with a standard deviation of ¢ = 0.2, the true regression coefficients are fixed at
randomly selected values, defined as u; = (0.3,—0.4,0.8,—0.5) and u, = (0.2,—0.2,0.5,—0.7),
respectively. Based on these coefficient vectors, the corresponding latent variables are constructed
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following the specification outlined in Equation 13. Subsequently, the latent variable Y was
transformed into an ordinal response variable Y, using a quantile-based thresholding procedure.
* &
2 - g; i 2 dengan [} ~2v;(0,2),% = [[1) 'ﬂ,p =07  (13)

From the full dataset consisting of two million observations, a resampling procedure was conducted 100
times per iteration, with each resample consisting of a fixed sample size of n = 1000 (0.05%). For each
resampled subset, parameter estimation was performed using a multivariate ordinal probit model
specified. Although the model includes an intercept term, the analysis focuses solely on the regression
coefficients (By1, Biz» Bis» Pra)- FOr each estimation, both the estimated coefficient S, ; and the
corresponding true parameter value [)’,g-“e are recorded. The estimation error is defined as ey ; = B =
[)’,g-“e. These results are then compiled into a comprehensive evaluation table to assess the bias and
stability of the parameter estimates under controlled data structures and random variability. To facilitate
interpretation, the estimated regression coefficients are presented separately for each response variable.
This partial presentation allows a more focused evaluation of parameter behavior specific to each
outcome (low multicollinearity) (see Table 2).

Table 2. Summary of simulation results for estimated regression coefficients in the multivariate
ordinal regression model.

No | Response | Predictor | Repetition | Resampling Bij© By By — B
Repetition
1 Y, X, 1 1 0.26 0.28 0.03
100 Y, X, 1 100 0.26 0.27 0.01
400 Y, X, 1 100 034 | -038 20.04
401 Y, X, 1 1 0.54 0.49 20.05
8000 Y, X, 10 100 049 | 042 0.07

Based on Table 2, to facilitate interpretation, Figure 4 provides a visual representation of the
estimated regression coefficients Ekj across all repetitions and resampling iterations, in comparison to

their corresponding true parameter values (8.
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Figure 4. Deviation of the estimated regression coefficients ,[)’k from the true parameter [)’”“e in low
multicollinearity (Left: Effect of predictors on Y;; Right: Effect of predictors on Y5).

The distribution of parameter estimates in datasets with high multicollinearity does not differ
substantially from those with low multicollinearity. A more in-depth evaluation is provided through the
Mean Squared Error (MSE) results, which are summarized in Table 3 for each response variable across
the three levels of multicollinearity. Overall, the results presented in the table indicate that
multicollinearity does not exert a substantial impact on the accuracy of parameter estimates in
multivariate ordinal regression. The Mean Squared Error (MSE) values across the three levels of
multicollinearity remain relatively stable, particularly for predictors X3 and X,, which demonstrate
consistent alignment with the true parameter values.

Table 3. Summary of MSE between estimated and true parameter values from each repetition.

No VIF Y X Mean Standar Deviation | Minimum | Maximum
L | VIF<S5 Y; | X, | 0.0019 0.0002 0.0015 0.0022
2. Y | X, | 0.0022 0.0004 0.0017 0.0032
3 Y1 | X5 | 0.0028 0.0006 0.0019 0.0038
4 Y; | X, | 0.0022 0.0004 0.0016 0.0031
5 Y, | X, | 0.0017 0.0003 0.0013 0.0021
6. Y, | X, | 0.0018 0.0002 0.0016 0.0021
e Y, | X5 | 0.0021 0.0005 0.0015 0.0029

8. Y, | X, | 0.0024 0.0006 0.0017 0.0038
9. | 5<VIF<10 | v; | X; | 0.0160 0.0025 0.0118 0.0200
10, Y | X, | 0.0214 0.0041 0.0165 0.0317

11. Y1 | X3 | 0.0030 0.0008 0.0016 0.0045
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No VIF Y X Mean | Standar Deviation | Minimum | Maximum
12, Y1 | X4 | 0.0208 0.0026 0.0178 0.0272
13| Y, | X; | 0.0141 0.0023 0.0110 0.0177
14 Y, | X3 | 0.0168 0.0019 0.0130 0.0193
15 Y, | X5 | 0.0021 0.0005 0.0015 0.0029

16. Y, | X4 | 0.0195 0.0024 0.0160 0.0231
171 VIF=10 Y; | X; | 0.0369 0.0067 0.0278 0.0472
18, | Y1 | Xz | 0.0219 0.0046 0.0157 0.0321
19, Y1 | X5 | 0.0032 0.0009 0.0018 0.0048
20, | Y1 | X4 | 0.0220 0.0034 0.0168 0.0274
21| Y, | X; | 0.0321 0.0042 0.0253 0.0380
22| Y, | Xo | 0.0179 0.0024 0.0135 0.0208
23| Y, | X5 | 0.0021 0.0004 0.0016 0.0029

24. Y, | X4 | 0.0204 0.0024 0.0174 0.0232

Although the MSE values tend to be slightly higher under moderate and high multicollinearity
compared to the low-multicollinearity setting, the spread of parameter estimates under severe
multicollinearity still centers around the true values. This is evidenced by the narrow range between
minimum and maximum values and the moderate standard deviations observed across repetitions. These
findings reinforce the notion that, within the context of this simulation, multicollinearity does not
inherently introduce systematic bias into parameter estimation, suggesting that the estimators remain
essentially unbiased. Nonetheless, while the accuracy of the estimates is largely unaffected, high
multicollinearity does lead to increased computational complexity, as reflected in longer estimation
times and higher resource demands. These results are consistent with prior findings that multicollinearity
can degrade algorithmic performance and complicate parameter estimation, especially in high-
dimensional contexts [29—31]. In scenarios with VIF > 10, estimation procedures required noticeably
more processing time compared to low-multicollinearity conditions. This increase is likely due to strong
intercorrelations among predictors, which can slow convergence in iterative optimization algorithms,
particularly in multivariate models with correlated response structures. Therefore, even though the
quality of the parameter estimates remains robust, the presence of multicollinearity should still be
considered a critical factor from the perspective of computational efficiency and resource allocation.

Conclusion

As outlined in the introduction and further elaborated in the results and discussion sections, this study
investigated parameter estimation in both univariate and multivariate ordinal regression models under
three levels of multicollinearity among predictor variables: low, moderate, and high. While an increase
in MSE was observed under high multicollinearity, the deviation between true and estimated values
remained relatively small, indicating that multicollinearity does not substantially distort parameter
estimation. Both Maximum Likelihood Estimation (MLE) for univariate ordinal regression and Pairwise
Likelihood (PL) for multivariate ordinal regression yielded parameter estimates that were essentially
unbiased, although computation time increased considerably in high-correlation settings. The broader
implication of these findings is that MLE and PL remain robust estimation strategies even when
predictor variables exhibit strong correlations, a condition frequently encountered in applied contexts
such as large-scale surveys, psychometric assessments, and socio-economic studies. Nonetheless, the
generalizability of these results is limited by the simulation design, which assumed normally distributed
latent traits and balanced data structures. Real-world data often involve heteroskedasticity, non-normal
latent distributions, or incomplete responses, which may affect estimation performance. Future research
should therefore extend this work by incorporating such complexities, particularly examining estimator
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behavior under heteroskedastic errors, skewed or heavy-tailed latent distributions, and missing data
mechanisms. Exploring these scenarios will enhance methodological guidance for practitioners
analyzing complex ordinal data and ensure that estimation techniques remain robust across diverse
empirical applications.
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