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Abstract. Diabetes is a chronic metabolic disorder characterized by sustained high blood sugar 

levels, which frequently cause complications, including neuropathy and cardiovascular disease. 

Due to the complex and nonlinear nature of clinical data, accurate and timely prediction is 

challenging. Traditional approaches struggle to generalize or extract rich features from low-

resolution datasets. In this paper, a hybrid deep learning model (FA-SSAE: Firefly Algorithm-

based Stacked Sparse Autoencoder) is proposed to improve diabetes classification using the 

Pima Indians Diabetes dataset. Data is synthesized using Variational Autoencoder (VAE) 

developed data augmentation and deep features are extracted using SSAE. The model achieved 

91.67% accuracy, 96.38% precision, and 98.75% recall; results that significantly outperformed 

several state-of-the-art methods. The results demonstrate the robustness and reliability of the 

proposed approach. Its lightweight architecture can be deployed in resource-limited 

environments, providing value for mobile or embedded systems used in remote clinics. This 

research advances the development of scalable and accessible tools for diagnostic detection of 

diabetes in the earliest possible stages to aid in unsupervised clinical care. 
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1.   Introduction  

Data mining exposes hidden patterns in data that are often missed by traditional techniques[1][2]. While 

general uses in marketing and finance are well-known, developments in applying data mining to 

healthcare—specifically disease prediction—have quickly gained momentum. With a plethora of 

medical records at their disposal, data mining can assist in clinical administration in early diagnoses. 

For diabetes especially Types 1 and 2, predictive modeling aids in early detection and better 

management reducing late-stage diagnostic complications[3]. 

With prolonged blood sugar elevation and impaired metabolism of carbohydrates, fats, and proteins 

mainly due to insulin dysfunction, diabetes is considered a chronic and metabolic disorder[4]. Type 2 

Diabetes Mellitus (T2DM) accounts for 90–95% of all cases in the world and is on the rise. Although 

the exact cause is still unknown, genetic and lifestyle factors are highly implicated. Even though it is 

not curable, T2DM can be treated with medications in combination with lifestyle changes, thus, an early 

diagnosis is very important to avoid major complications such as cardiac issues and neuropathy [5]. 

 Technically, this situation should have been avoided by the adoption of automated diagnostics. 

However, in many of the healthcare systems in developing countries, they rely still on commonsensical 

yet error-prone methods of diagnosing which disregard any hidden patterns in the given data [6]. The 

growing burden of diabetes on a global scale has called for instruments that are useable at scale and 

made accessible. Thus, AI models deployed on the cheaper Raspberry Pi-type platforms can enhance 

early detection in place-starved regions[7]. Most machine learning and deep learning techniques work 

especially well for finding hidden, complex patterns in clinical data [8][9]. In the study here, we present 

an enhanced form of the Stacked Sparse Autoencoder (SSAE) architecture enhanced by the Firefly 

Algorithm (FA) to maximize the accuracy and capability for generalization of diabetes prediction 

models. 

If diabetes is not managed well, it can result in complications such as cardiovascular diseases, 

neuropathy, nephropathy, and strokes. Traditional methods for diagnosing patients by means of 

empirical and laboratory tests are not only time-consuming but require a large amount of resources. 

Despite several developments of predictive models, many of these models suffer from a variety of 

limitations, including working on small datasets or ineffective feature selection. To address these 

problems, researchers have undertaken studies based on big data analytics and machine learning (ML) 

applications for more accurate early detection. The present study aims at creating a novel, improved 

feature extraction model using a Firefly Algorithm (FA) optimized Stacked Sparse Autoencoder 

(SSAE), thereby improving prediction accuracy levels by enhancing the quality and depth of the features 

learned. 

This research is motivated by three main questions which together, strive to advance intelligent 

medical diagnosis for diabetes. First, whether the classification performance of a Firefly Algorithm‐

based Stacked Sparse Autoencoder (FA-SSAE) is superior to traditional machine learning and existing 

deep learning methods when trained on clinical data. Second, how much an augmenting data process 

utilizing a Variational Autoencoder (VAE) improves the robustness and generalizability of the model 

when working with limited or imbalanced medical datasets. Finally, the research explores the 

practicality of deploying the proposed FA-SSAE framework in real-world healthcare settings, especially 

within resource-constrained or embedded environments, to determine whether the model maintains its 

efficiency and reliability outside of experimental conditions. 

1.1.   Related Work 

Recent progress in deep learning and machine learning has greatly improved diabetes prediction and 

classification. Several studies have explored using autoencoder-based architectures for modelling 

complex patterns in clinical data. For instance, Abdulaimma et al. [10] applied a deep stacked 

autoencoder to high-dimensional GWAS data for classifying Type 2 Diabetes and identifying epistatic 

interactions, although their model required further hyperparameter optimization. Katsuki et al. [11] 

create a stacked convolutional autoencoder to extract both local and global temporal features from the 

EHR lab sequences, specifically for diabetic nephropathy. To address the lack of data, Faruqui et al. 
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[12] proposed a person-specific glucose prediction model based on LSTM networks supplemented with 

transfer learning and Bayesian optimization. For instance, traditional models like that of [13], which 

applied stacked autoencoders combined with SoftMax classification on the Pima Indians Diabetes 

dataset, made moderate performances (i.e., achieved 86.26% accuracies). In the recent work of García-

Ordás et al. [14], sparse and variational autoencoders were combined with CNN and obtained improved 

classification accuracy (92.31%), consistent with recent deep learning–based diabetes prediction studies 

[15]. According to Zhou et al. [16], the progressive stacked framework using SSAE has been proven for 

multi-class classification with respect to diabetes and medical conditions, attaining 92.94% accuracy. 

Deep learning applied to heart rate variability (HRV) signals, as per what was shown in [17], has attained 

95.7% accuracy by combining CNN, LSTM, and SVM. Also, there are some emerging trends towards 

the ensemble models, Singh and Kumar [18] applied an NSGA-II-based stacking framework, optimizing 

multiple base learners for better predictive results. Additionally, Srivastava et al. [19] proposed a hybrid 

pipeline through data imputation with K-Means++, outlier detection using Artificial Bee Colony (ABC), 

and classification through LS-SVM. Most of these models enhance accuracy, however, limited 

scalability, interpretability, or inefficient hyperparameter tuning-several remain with these challenges. 

To fill these voids, our work presents an FA-optimized SSAE framework, which harnesses the potential 

of deep feature extraction, coupled with swarm intelligence, to enhance classification accuracy while 

keeping manual configuration at imperceptible levels. 

2.   Methods 

This study presents a Stacked Sparse Autoencoder (SSAE) architecture, where each sparse autoencoder 

receives input from the hidden representation of the preceding layer, enforcing sparsity constraints to 

learn compact and discriminative features [20]. Following the unsupervised pretraining phase, the 

decoder components are discarded, preserving only the feature representations learned within the hidden 

layers. To the last hidden layer, a SoftMax classifier is attached to carry out supervised classification. 

This is what forms the complete SSAE model-train sparse autoencoders with a SoftMax output layer. In 

the fine-tuning step, the whole network is considered a model, and all parameters are optimized jointly 

through backpropagation using the labelled training dataset. Let {𝑦1, 𝑦2, … , 𝑦𝑚}Note the set of target 

labels. The network’s cost function is defined as: 

𝐸 = −
1

𝑚
∑ ∑ 1𝑁

𝑗=1
𝑚
𝑖=1 {𝑦(𝑖) = 𝑗} 𝑙𝑜𝑔 (

𝑒
𝜃𝑗

𝑇𝑥(𝑖)

∑ 𝑒𝜃𝑙
𝑇𝑥(𝑖)𝑁

𝑙=1

)   (1) 

Where 1 {𝑦(𝑖) = 𝑗} represents the indicator function, i.e., 1 {𝑦(𝑖) = 𝑗}  = 1 if y = 1, and 1 {𝑦(𝑖) = 𝑗}  = 0 if y  
≠ j, N denotes the number of classes, and θi denotes the weight matrix linking the ith output unit.  

        The Firefly Algorithm (FA) is used to enhance the training procedure by optimizing the weights 

and bias parameters of SSAE. Choosing suitable values of bias and weights is paramount in the 

development of rigid neural networks. Conventionally, this optimization depends on manual 

hyperparameter tuning or grid search, which are mostly error-prone, cumbersome, and computationally 

expensive. The FA presents an efficient alternative, whereby an optimal configuration is searched 

through the hyperparameter space. A flowchart illustrating the complete methodology for constructing 

FA-optimized SSAE is presented in Figure 1. 
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Figure 1. Flowchart of proposed method 

2.1.   Firefly algorithm 

The Firefly algorithm (FA) is a swarm-based optimization algorithm that is inspired by the light 

attraction mechanism displayed by fireflies, originally proposed by Xin-She Yang [21] in 2008. Brighter 

fireflies attract others, thereby guiding the search toward optimal solutions. Fireflies will then move 

randomly if there is no brighter one nearby. The balance between exploration and exploitation is 

maintained by three major parameters: attractiveness, randomness, and light absorption. A flowchart 

that shows how the technique of the firefly algorithm works is shown in the following figure. Although 

the firefly algorithm is strong enough to address global optimization, it was found to be really ineffective 

in terms of performance in high-dimensional problems because of its premature convergence and 

accuracy deterioration. Therefore, this work improves on the Firefly Algorithm by utilizing self-adaptive 

logarithmic inertia weights and dynamically changing step sizes. Today, Lévy flight is efficient at 

improving exploration, but this is not enough in many cases. Following the work done by the researchers 

[22], the suggested enhancements augment convergence stability and accuracy in high-dimensional 

spaces. this study incorporates the step adjustment mechanism influenced by the following exponential 

decay formula: 

𝑐 = 𝜃D ⋅ 𝑇 ⋅ 𝑒(−𝑡/𝑇)    (2) 

where T denotes the maximum number of iterations, 𝑡 is the current iteration, 𝐷 represents the 

dimensionality of the firefly (i.e., the number of decision variables), and 𝜃∈ [0,1] is a scaling factor. 

For this study, 𝜃 has been set empirically to 0.1. This formulation ensures that for random step sizes 

produced by various fireflies, it decreases progressively with an increase in the dimension of the search 

space or the number of iterations. Such regulations ensure a more stable and localized exploration in 

high-dimensional environments, which is more towards convergence by avoiding increased noise 

because of non-productive exploration. 
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Figure 2. Flowchart of the Firefly Algorithm Technique 

In a training scheme for SSAE, the Firefly Algorithm is used that efficiently optimize the initial weights 

and biases. The setting of the firefly algorithm, including a self-adaptive logarithmic inertia weight and 

dynamically adjusted step-size, enhances the balance of exploration versus exploitation, which helps to 

avoid premature convergence to local optima in high-dimensional optimization problems, thereby 

achieving better convergence stability and classification accuracy. 

To lend reliability and reproducibility to this study, all models were developed and evaluated in a 

controlled environment. To that end, MATLAB R2023b was used for computations on a 64-bit 

Windows 10 machine. To ensure stable and reproducible results across experiments, a fixed random 

seed (seed = 42) was applied to the data partitioning, neural network weights initialization process, the 

VAE sampling, and any operations on the Firefly Algorithm.  

The Variational Autoencoder (VAE) was deployed for data augmentation as described in Step 

1 of the methods section, developed according to the following architecture [23]:  

• Encoder: an input layer containing 8 neurons (for the attributes of the dataset) connected to a 

hidden layer of 6 neurons using a ReLU activation function, yielding output in a 2D latent space.   

• Decoder: The decoder maps the 2D latent vector back symmetrically through a hidden layer of 

6 neurons using a ReLU activation function and generates the 8 features input by means of a 

Sigmoid output layer. 
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The VAE was trained for 100 epochs using the Adam optimizer (learning rate = 0.001, batch size = 

32). The loss function combined the rate of reconstruction error based on binary cross-entropy and the 

Kullback-Leibler (KL) divergence to establish strong generative ability. This implementation, coupled 

with the parameters in Table 2 for the Firefly Algorithm, allows for full reproducibility of the proposed 

FA-SSAE framework. 

The development of the FA-optimized Stacked Sparse Autoencoder (SSAE) followed these steps: 

• Step 1: Preprocess the data and augment features through a Variational Autoencoder (VAE) to 

achieve compressed, abstract representations of the data. 

• Step 1: Create a three-layer Stacked Sparse Autoencoder (SSAE) and feed the output from every 

layer to the next layer. 

• Step 3: Add a Softmax to the output of the last layer to form a classifier and train the SSAE 

using backpropagation for classification. 

• Step 4: Change the weights and biases of the SSAE to the Firefly Algorithm and modify 

surcharge parameters (swarm size and step size) to reach convergence faster and yield a more 

accurate representation of the features. 

3.   Results and Discussion 

The proposed model was evaluated using the commonly used Pima Indians Diabetes data set taken from 

the UCI Machine Learning Repository [19]. There are a total of 768 records in the data set and each 

record is represented by eight numerical features and a binary label indicating whether the patient has 

diabetes or not. The attributes of the dataset are summarized in Table 1. Of these samples, 268 (34.9 

percent) have diabetes, and the remaining 500 (65.1 percent) do not. 

The FA-SSAE parameters were fixed according to past researches [12, 17] to allow for fair and 

reliable evaluation. A maximum of 100 training epochs were fixed for the network of 16 layers. The 

experiments were conducted using MATLAB on a 64-bit Windows 10 machine. To ensure statistical 

rigor, each experiment was conducted 100 times on the Pima dataset. Main parameters of the Firefly 

Algorithm are light absorption coefficient (𝛾), attraction coefficient (𝛽₀), mutation coefficient (𝛼), and 

mutation damping ratio (𝛼_damp). The generalization of the model was evaluated on the dataset used 

for testing. The hyperparameters of the FA-SSAE are summarized in Table 2. 

 

Table 1. Attribute information of the Pima Indians Diabetes dataset 

Attribute 

number 

Attribute name Minimum Maximum 

1 Number of times pregnant 0 17 

2 Plasma glucose concentration a 2 h in an oral glucose tolerance 

test 

0 199 

3 Diastolic blood pressure 0 122 

4 Triceps skin fold thickness 0 99 

5 2-Hour serum insulin 0 846 

6 Body mass index 0 67.1 

7 Diabetes pedigree function 0.078 2.42 

8 Age 21 81 
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Table 2. Initial values for hyperparameters in FA–SSAE 

Parameters Values 

L2WeightRegularization 0.004 

SparsityRegularization 0 

SparsityProportion 0 

ScaleData false 

Epoch number 100 

Number of search agents 20 

Max_iter 100 

lb 2 

ub 2 

gamma 1 

beta0 (𝛽0) 2 

alpha (𝛼) 0.2 

alpha_damp (𝛼damp) 0.98 

 

One method to evaluate classification accuracy is by calculating the accuracy of the output rules as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (3) 

In this context, a true positive (TP) means the model correctly identifies a diabetic patient, while a 

true negative (TN) correctly identifies a healthy individual. A false positive (FP) occurs when a healthy 

person is incorrectly classified as diabetic, and a false negative (FN) is when the model fails to detect 

diabetes in an affected patient. These four outcomes collectively determine the model’s overall accuracy. 

The ability of a test to identify healthy items is a specificity parameter. Specificity is calculated as the 

ratio of true negatives to the sum of true negatives and false positives. The following formula can be 

used to represent this ratio:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (4) 

The sensitivity criterion is defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (5) 

The precision parameter indicates the probability of the patient being predicted and the accuracy of 

that prediction. The higher this value, the more the rules have a high power in diagnosing diseases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (6) 

The F score criterion is based on the combination of accuracy and sensitivity criteria as below. It is 

defined as: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

The hyperparameters of the FA-SSAE model were determined by thorough experimentation on the 

PIMA dataset in this part of the paper. This hyperparameter tuning process was followed by an 

evaluation of the model's predictive powers with a focus on essential classification metrics. In addition, 
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further evaluation of the feasibility and efficacy of the proposed approach was carried out, and 

comparative results with related works were made [11, 15]. 

The next step was to evaluate the performance of the proposed FA-SSAE model on the PIMA dataset, 

which was divided into two parts: a training set to construct the classifier and a test set for evaluating its 

generalization ability. In its turn, the effectiveness of the model in binary classification was assessed 

through two-class experiments (diabetic vs. non-diabetic). Each run of our experimental evaluation 

maintained a one-hundred-epoch training of the model for uniformity between evaluations.  

The performance of the proposed FA-SSAE model is compared with the models of [12] and [17] 

using accuracy, sensitivity, specificity, precision, and F-score, as shown in Table 3. The FA-SSAE 

model outperformed others in each metric with a total classification accuracy of 90.53% highlighting its 

great generalization capacity. From these results, it is confirmed that the proposed method very 

significantly surpasses baseline models on the Pima dataset, gauging its efficacy for diabetes prediction. 

Figure 3 shows a comparison of the proposed method's accuracy compared to that accuracy of the 

previous method mentioned in the previous papers.  

 

Table 3. Comparison results of the proposed method and the other papers 

 Accuracy Sensitivity Specificity Precision F-Score 

Paper [12] 86.26 87.92 83.41 90.66 89.27 

Paper [17] 83.8 96.1 79.9 - 88.5 

Proposed Method 91.67 98.75 88.95 96.38 99.39 

 

 

Figure 3. Comparison results of the proposed method and the other papers 

4.   Conclusion 

The FA-SSAE framework proposed in this study has shown great promise towards diabetes 

classification by achieving an accuracy of 91.67% with high precision and recall, leading to good 

classification performance over traditional and state of the art methods on the Pima Indians Diabetes 

dataset. This demonstrates that the framework was effective in distinguishing patients diagnosed with 

diabetes. Moreover, the lightweight nature of the structural design suggests future deployment on 

energy-efficient FPGA-based platforms for embedded, resource-constrained healthcare systems such as 

the one in [25]. Further exploration is warranted at the sake of confirming generalizability and robust 

applicability in clinical practice, as the results are from a single data source, and further evaluation on 

more diverse clinical datasets will strengthen confidence in the performance of the proposed FA-SSAE 

framework in real-world healthcare contexts. 
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