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Abstract. Diabetes is a chronic metabolic disorder characterized by sustained high blood sugar
levels, which frequently cause complications, including neuropathy and cardiovascular disease.
Due to the complex and nonlinear nature of clinical data, accurate and timely prediction is
challenging. Traditional approaches struggle to generalize or extract rich features from low-
resolution datasets. In this paper, a hybrid deep learning model (FA-SSAE: Firefly Algorithm-
based Stacked Sparse Autoencoder) is proposed to improve diabetes classification using the
Pima Indians Diabetes dataset. Data is synthesized using Variational Autoencoder (VAE)
developed data augmentation and deep features are extracted using SSAE. The model achieved
91.67% accuracy, 96.38% precision, and 98.75% recall; results that significantly outperformed
several state-of-the-art methods. The results demonstrate the robustness and reliability of the
proposed approach. Its lightweight architecture can be deployed in resource-limited
environments, providing value for mobile or embedded systems used in remote clinics. This
research advances the development of scalable and accessible tools for diagnostic detection of
diabetes in the earliest possible stages to aid in unsupervised clinical care.
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1. Introduction

Data mining exposes hidden patterns in data that are often missed by traditional techniques[1][2]. While
general uses in marketing and finance are well-known, developments in applying data mining to
healthcare—specifically disease prediction—have quickly gained momentum. With a plethora of
medical records at their disposal, data mining can assist in clinical administration in early diagnoses.
For diabetes especially Types 1 and 2, predictive modeling aids in early detection and better
management reducing late-stage diagnostic complications[3].

With prolonged blood sugar elevation and impaired metabolism of carbohydrates, fats, and proteins
mainly due to insulin dysfunction, diabetes is considered a chronic and metabolic disorder[4]. Type 2
Diabetes Mellitus (T2DM) accounts for 90-95% of all cases in the world and is on the rise. Although
the exact cause is still unknown, genetic and lifestyle factors are highly implicated. Even though it is
not curable, T2DM can be treated with medications in combination with lifestyle changes, thus, an early
diagnosis is very important to avoid major complications such as cardiac issues and neuropathy [5].

Technically, this situation should have been avoided by the adoption of automated diagnostics.
However, in many of the healthcare systems in developing countries, they rely still on commonsensical
yet error-prone methods of diagnosing which disregard any hidden patterns in the given data [6]. The
growing burden of diabetes on a global scale has called for instruments that are useable at scale and
made accessible. Thus, Al models deployed on the cheaper Raspberry Pi-type platforms can enhance
early detection in place-starved regions[7]. Most machine learning and deep learning techniques work
especially well for finding hidden, complex patterns in clinical data [8][9]. In the study here, we present
an enhanced form of the Stacked Sparse Autoencoder (SSAE) architecture enhanced by the Firefly
Algorithm (FA) to maximize the accuracy and capability for generalization of diabetes prediction
models.

If diabetes is not managed well, it can result in complications such as cardiovascular diseases,
neuropathy, nephropathy, and strokes. Traditional methods for diagnosing patients by means of
empirical and laboratory tests are not only time-consuming but require a large amount of resources.
Despite several developments of predictive models, many of these models suffer from a variety of
limitations, including working on small datasets or ineffective feature selection. To address these
problems, researchers have undertaken studies based on big data analytics and machine learning (ML)
applications for more accurate early detection. The present study aims at creating a novel, improved
feature extraction model using a Firefly Algorithm (FA) optimized Stacked Sparse Autoencoder
(SSAE), thereby improving prediction accuracy levels by enhancing the quality and depth of the features
learned.

This research is motivated by three main questions which together, strive to advance intelligent
medical diagnosis for diabetes. First, whether the classification performance of a Firefly Algorithm-
based Stacked Sparse Autoencoder (FA-SSAE) is superior to traditional machine learning and existing
deep learning methods when trained on clinical data. Second, how much an augmenting data process
utilizing a Variational Autoencoder (VAE) improves the robustness and generalizability of the model
when working with limited or imbalanced medical datasets. Finally, the research explores the
practicality of deploying the proposed FA-SSAE framework in real-world healthcare settings, especially
within resource-constrained or embedded environments, to determine whether the model maintains its
efficiency and reliability outside of experimental conditions.

1.1 Related Work

Recent progress in deep learning and machine learning has greatly improved diabetes prediction and
classification. Several studies have explored using autoencoder-based architectures for modelling
complex patterns in clinical data. For instance, Abdulaimma et al. [10] applied a deep stacked
autoencoder to high-dimensional GWAS data for classifying Type 2 Diabetes and identifying epistatic
interactions, although their model required further hyperparameter optimization. Katsuki et al. [11]
create a stacked convolutional autoencoder to extract both local and global temporal features from the
EHR lab sequences, specifically for diabetic nephropathy. To address the lack of data, Faruqui et al.
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[12] proposed a person-specific glucose prediction model based on LSTM networks supplemented with
transfer learning and Bayesian optimization. For instance, traditional models like that of [13], which
applied stacked autoencoders combined with SoftMax classification on the Pima Indians Diabetes
dataset, made moderate performances (i.e., achieved 86.26% accuracies). In the recent work of Garcia-
Ordas et al. [14], sparse and variational autoencoders were combined with CNN and obtained improved
classification accuracy (92.31%), consistent with recent deep learning—based diabetes prediction studies
[15]. According to Zhou et al. [16], the progressive stacked framework using SSAE has been proven for
multi-class classification with respect to diabetes and medical conditions, attaining 92.94% accuracy.
Deep learning applied to heart rate variability (HRV) signals, as per what was shown in [17], has attained
95.7% accuracy by combining CNN, LSTM, and SVM. Also, there are some emerging trends towards
the ensemble models, Singh and Kumar [18] applied an NSGA-II-based stacking framework, optimizing
multiple base learners for better predictive results. Additionally, Srivastava et al. [19] proposed a hybrid
pipeline through data imputation with K-Means++, outlier detection using Artificial Bee Colony (ABC),
and classification through LS-SVM. Most of these models enhance accuracy, however, limited
scalability, interpretability, or inefficient hyperparameter tuning-several remain with these challenges.
To fill these voids, our work presents an FA-optimized SSAE framework, which harnesses the potential
of deep feature extraction, coupled with swarm intelligence, to enhance classification accuracy while
keeping manual configuration at imperceptible levels.

2. Methods

This study presents a Stacked Sparse Autoencoder (SSAE) architecture, where each sparse autoencoder
receives input from the hidden representation of the preceding layer, enforcing sparsity constraints to
learn compact and discriminative features [20]. Following the unsupervised pretraining phase, the
decoder components are discarded, preserving only the feature representations learned within the hidden
layers. To the last hidden layer, a SoftMax classifier is attached to carry out supervised classification.
This is what forms the complete SSAE model-train sparse autoencoders with a SoftMax output layer. In
the fine-tuning step, the whole network is considered a model, and all parameters are optimized jointly
through backpropagation using the labelled training dataset. Let {y;,y>, ..., i }Note the set of target
labels. The network’s cost function is defined as:

1 ; 077
E=-— ?;12%11{)’(1) = j}log (m) (1)
Y= et
Where 1 {y® = j} represents the indicator function, i.e., 1 {y® =j}=1ify=1,and 1 {y®D =j}=0ify
#]J, N denotes the number of classes, and 6i denotes the weight matrix linking the ith output unit.

The Firefly Algorithm (FA) is used to enhance the training procedure by optimizing the weights
and bias parameters of SSAE. Choosing suitable values of bias and weights is paramount in the
development of rigid neural networks. Conventionally, this optimization depends on manual
hyperparameter tuning or grid search, which are mostly error-prone, cumbersome, and computationally
expensive. The FA presents an efficient alternative, whereby an optimal configuration is searched
through the hyperparameter space. A flowchart illustrating the complete methodology for constructing
FA-optimized SSAE is presented in Figure 1.
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Figure 1. Flowchart of proposed method

2.1. Firefly algorithm

The Firefly algorithm (FA) is a swarm-based optimization algorithm that is inspired by the light
attraction mechanism displayed by fireflies, originally proposed by Xin-She Yang [21] in 2008. Brighter
fireflies attract others, thereby guiding the search toward optimal solutions. Fireflies will then move
randomly if there is no brighter one nearby. The balance between exploration and exploitation is
maintained by three major parameters: attractiveness, randomness, and light absorption. A flowchart
that shows how the technique of the firefly algorithm works is shown in the following figure. Although
the firefly algorithm is strong enough to address global optimization, it was found to be really ineffective
in terms of performance in high-dimensional problems because of its premature convergence and
accuracy deterioration. Therefore, this work improves on the Firefly Algorithm by utilizing self-adaptive
logarithmic inertia weights and dynamically changing step sizes. Today, Lévy flight is efficient at
improving exploration, but this is not enough in many cases. Following the work done by the researchers
[22], the suggested enhancements augment convergence stability and accuracy in high-dimensional
spaces. this study incorporates the step adjustment mechanism influenced by the following exponential
decay formula:

c=02.T.e0t/D ()

where T denotes the maximum number of iterations, t is the current iteration, D represents the
dimensionality of the firefly (i.e., the number of decision variables), and < [0,1] is a scaling factor.
For this study, 8 has been set empirically to 0.1. This formulation ensures that for random step sizes
produced by various fireflies, it decreases progressively with an increase in the dimension of the search
space or the number of iterations. Such regulations ensure a more stable and localized exploration in
high-dimensional environments, which is more towards convergence by avoiding increased noise
because of non-productive exploration.
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In a training scheme for SSAE, the Firefly Algorithm is used that efficiently optimize the initial weights
and biases. The setting of the firefly algorithm, including a self-adaptive logarithmic inertia weight and
dynamically adjusted step-size, enhances the balance of exploration versus exploitation, which helps to
avoid premature convergence to local optima in high-dimensional optimization problems, thereby
achieving better convergence stability and classification accuracy.

To lend reliability and reproducibility to this study, all models were developed and evaluated in a
controlled environment. To that end, MATLAB R2023b was used for computations on a 64-bit
Windows 10 machine. To ensure stable and reproducible results across experiments, a fixed random
seed (seed = 42) was applied to the data partitioning, neural network weights initialization process, the
VAE sampling, and any operations on the Firefly Algorithm.

The Variational Autoencoder (VAE) was deployed for data augmentation as described in Step
1 of the methods section, developed according to the following architecture [23]:

¢ Encoder: an input layer containing 8 neurons (for the attributes of the dataset) connected to a
hidden layer of 6 neurons using a ReL U activation function, yielding output in a 2D latent space.

e Decoder: The decoder maps the 2D latent vector back symmetrically through a hidden layer of
6 neurons using a ReL U activation function and generates the 8§ features input by means of a
Sigmoid output layer.
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The VAE was trained for 100 epochs using the Adam optimizer (learning rate = 0.001, batch size =
32). The loss function combined the rate of reconstruction error based on binary cross-entropy and the
Kullback-Leibler (KL) divergence to establish strong generative ability. This implementation, coupled
with the parameters in Table 2 for the Firefly Algorithm, allows for full reproducibility of the proposed
FA-SSAE framework.

The development of the FA-optimized Stacked Sparse Autoencoder (SSAE) followed these steps:

e Step 1: Preprocess the data and augment features through a Variational Autoencoder (VAE) to
achieve compressed, abstract representations of the data.

e Step 1: Create a three-layer Stacked Sparse Autoencoder (SSAE) and feed the output from every
layer to the next layer.

e Step 3: Add a Softmax to the output of the last layer to form a classifier and train the SSAE
using backpropagation for classification.

e Step 4: Change the weights and biases of the SSAE to the Firefly Algorithm and modify
surcharge parameters (swarm size and step size) to reach convergence faster and yield a more
accurate representation of the features.

3. Results and Discussion

The proposed model was evaluated using the commonly used Pima Indians Diabetes data set taken from
the UCI Machine Learning Repository [19]. There are a total of 768 records in the data set and each
record is represented by eight numerical features and a binary label indicating whether the patient has
diabetes or not. The attributes of the dataset are summarized in Table 1. Of these samples, 268 (34.9
percent) have diabetes, and the remaining 500 (65.1 percent) do not.

The FA-SSAE parameters were fixed according to past researches [12, 17] to allow for fair and
reliable evaluation. A maximum of 100 training epochs were fixed for the network of 16 layers. The
experiments were conducted using MATLAB on a 64-bit Windows 10 machine. To ensure statistical
rigor, each experiment was conducted 100 times on the Pima dataset. Main parameters of the Firefly
Algorithm are light absorption coefficient (y), attraction coefficient (8o), mutation coefficient («), and
mutation damping ratio («_damp). The generalization of the model was evaluated on the dataset used
for testing. The hyperparameters of the FA-SSAE are summarized in Table 2.

Table 1. Attribute information of the Pima Indians Diabetes dataset

Attribute Attribute name Minimum Maximum
number
1 Number of times pregnant 0 17
2 Plasma glucose concentration a 2 h in an oral glucose tolerance 0 199
test
3 Diastolic blood pressure 0 122
4 Triceps skin fold thickness 0 99
5 2-Hour serum insulin 0 846
6 Body mass index 0 67.1
7 Diabetes pedigree function 0.078 242
8 Age 21 81

02601024-06



Table 2. Initial values for hyperparameters in FA-SSAE

Parameters Values
L2WeightRegularization 0.004
SparsityRegularization 0
SparsityProportion 0
ScaleData false
Epoch number 100
Number of search agents 20
Max_iter 100
1b 2
ub 2
gamma 1
beta0 (Bo) 2
alpha () 0.2
alpha_damp (damp) 0.98

One method to evaluate classification accuracy is by calculating the accuracy of the output rules as
follows:

TP+TN
TP+TN+FP+FN 3)

In this context, a true positive (TP) means the model correctly identifies a diabetic patient, while a
true negative (TN) correctly identifies a healthy individual. A false positive (FP) occurs when a healthy
person is incorrectly classified as diabetic, and a false negative (FN) is when the model fails to detect
diabetes in an affected patient. These four outcomes collectively determine the model’s overall accuracy.
The ability of a test to identify healthy items is a specificity parameter. Specificity is calculated as the
ratio of true negatives to the sum of true negatives and false positives. The following formula can be
used to represent this ratio:

Accuracy =

P TN
Specificity = prev @)
The sensitivity criterion is defined as follows:
Sensitivity = P 5)

The precision parameter indicates the probability of the patient being predicted and the accuracy of
that prediction. The higher this value, the more the rules have a high power in diagnosing diseases.
TP

TP+FP (6)

The F score criterion is based on the combination of accuracy and sensitivity criteria as below. It is
defined as:

Precision =

2X(PrecisionXRecall)

F — Score = — (7
Precision+Recall

The hyperparameters of the FA-SSAE model were determined by thorough experimentation on the
PIMA dataset in this part of the paper. This hyperparameter tuning process was followed by an
evaluation of the model's predictive powers with a focus on essential classification metrics. In addition,
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further evaluation of the feasibility and efficacy of the proposed approach was carried out, and
comparative results with related works were made [11, 15].

The next step was to evaluate the performance of the proposed FA-SSAE model on the PIMA dataset,
which was divided into two parts: a training set to construct the classifier and a test set for evaluating its
generalization ability. In its turn, the effectiveness of the model in binary classification was assessed
through two-class experiments (diabetic vs. non-diabetic). Each run of our experimental evaluation
maintained a one-hundred-epoch training of the model for uniformity between evaluations.

The performance of the proposed FA-SSAE model is compared with the models of [12] and [17]
using accuracy, sensitivity, specificity, precision, and F-score, as shown in Table 3. The FA-SSAE
model outperformed others in each metric with a total classification accuracy of 90.53% highlighting its
great generalization capacity. From these results, it is confirmed that the proposed method very
significantly surpasses baseline models on the Pima dataset, gauging its efficacy for diabetes prediction.
Figure 3 shows a comparison of the proposed method's accuracy compared to that accuracy of the
previous method mentioned in the previous papers.

Table 3. Comparison results of the proposed method and the other papers

Accuracy  Sensitivity  Specificity  Precision F-Score
Paper [12] 86.26 87.92 83.41 90.66 89.27
Paper [17] 83.8 96.1 79.9 - 88.5
Proposed Method 91.67 98.75 88.95 96.38 99.39
94
92
90
n 88
]
2 86
> 84
82
80
78
Accuracy
M paper [44] W paper [48] proposed method

Figure 3. Comparison results of the proposed method and the other papers

4. Conclusion

The FA-SSAE framework proposed in this study has shown great promise towards diabetes
classification by achieving an accuracy of 91.67% with high precision and recall, leading to good
classification performance over traditional and state of the art methods on the Pima Indians Diabetes
dataset. This demonstrates that the framework was effective in distinguishing patients diagnosed with
diabetes. Moreover, the lightweight nature of the structural design suggests future deployment on
energy-efficient FPGA-based platforms for embedded, resource-constrained healthcare systems such as
the one in [25]. Further exploration is warranted at the sake of confirming generalizability and robust
applicability in clinical practice, as the results are from a single data source, and further evaluation on
more diverse clinical datasets will strengthen confidence in the performance of the proposed FA-SSAE
framework in real-world healthcare contexts.
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