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Abstract. This study investigates green industrial palm oil project cost performance 

determinants through Artificial Intelligence (AI)-based Architecture, Engineering, and 

Construction (AEC) systems. The study employed a Structural Equation Modeling Partial Least 

Squares (SEM-PLS) approach to analyze significant data collected from 115 respondents 

through 166 validated indicators. Ten primary drivers were identified, and alternative water 

sources topped the list, followed by indoor air quality auditing, green material, and smart 

metering systems, all of which were identified as primary cost-effectiveness drivers. Simulations 

of Green Mark certification levels (Gold, Gold Plus, and Platinum) indicated potential cost 

savings of 7.01% to 7.05%. The model continued to have very good predictive capability with 

an R² value of 0.791, testifying to the robustness of the methodology presented. The results 

validate the engineering value of AI-aided AEC in cost performance maximization and 

enhancement in eco-friendly industrial building. The findings also offer practical suggestions for 

design, planning, and execution of cost-saving, eco-friendly palm oil mills. 
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1.   Introduction  

The palm oil industry is one of the major drivers of Indonesia's economy, with a national Gross Domestic 

Product (GDP) contribution of 3.76% in 2022. It supplies domestic and export markets for cooking oil, 

biodiesel, and others product [1]. In the meantime, the industry is also a major driver of environmental 

problems such as greenhouse gas emissions and deforestation, necessitating the adoption of 

development practices in line with green industry principles [2]. The green industry concept aims to 

minimize environmental effects by utilizing improved energy efficiency and reduced emissions, in line 

with global directions of sustainable industrial and construction development. Indonesian industrial area 
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development was initiated under Presidential Decree No. 53 of 1989, which set the foundation for green 

industry development. 

The integration of Artificial Intelligence (AI)-based Architecture, Engineering, and Construction 

(AEC) practice offers encouraging prospects to increase energy efficiency, promote cost performance, 

and reduce environmental effects in the palm oil sector [3,4]. A number of the key drivers of green 

industry practice include energy efficiency, wastewater treatment, and water conservation, which are 

essential given Indonesia's relatively low environmental performance. The 2024 Environmental 

Performance Index (EPI) ranked Indonesia 162nd out of 180 countries with a score of 33.80, 

necessitating environmental policy reform and green construction practices [5].   

The World Emissions Clock 2024 reports the construction sector emits 3.2 gigatons of CO₂ 

worldwide out of a total of 58.9 gigatons. In Indonesia, the construction sector contributes approximately 

24.9 million tons of CO₂ annually [6]. These figures indicate the sector's importance in achieving 

emission reduction and energy conservation targets. The concept of green building focuses on reducing 

energy and carbon emissions throughout the life cycle of a building, from design and construction to 

demolition. 

The incorporation of green space and sustainable design also enables carbon sequestration, while 

water resource conservation remains a critical component [7]. Aligned with the Sustainable 

Development Goals (SDGs), the integration of AEC and green technologies can increase cost-

effectiveness and promote industrial sustainability towards 2030 [8]. Proper integration of green 

technologies can reduce energy consumption by 30% to 80%. However, investment in green buildings 

tends to be higher than in conventional projects by around 5%, primarily due to management, labor, and 

certification expenses. Within the palm oil industry, AI-powered AEC can potentially integrate 

industrial building design and construction in terms of cost and energy efficiency [3]. 

Previous research has demonstrated the beneficial effect of technology adoption on green building 

project cost performance. Waqar et al. [9] confirmed the use of Building Information Modeling (BIM) 

and intelligent construction technologies to improve cost and time efficiency in infrastructure projects. 

Pratama et al. [10] showed that integrating green building design with smart energy management 

systems can enhance energy efficiency by up to 25%. Kyivska and Tsiutsiura [11] identified building 

orientation and optimization of the building envelope design as factors for reducing energy 

consumption, while Kim and Park [12] and Pham et al. [13] stated that building envelope optimization 

can reduce energy loads by 50% and automated HVAC systems by 20%. Chaudhuri et al. [14] 

emphasized the importance of designing energy-efficient infrastructure for reducing industrial waste. 

Prasetyawan et al. [15],  through Structural Equation Modeling–Partial Least Squares (SEM-PLS), 

identified cost uncertainty and fiscal incentives as significant drivers of green building implementation. 

Husin and Priyawan [16] and Husin et al. [17] applied SEM-PLS combined with Blockchain-BIM in 

Indonesian green retrofitting projects, which led to improved cost effectiveness and lifecycle value. Yu 

et al. [18] promoted adaptive energy efficiency standards that evolve with technological advancements. 

Istri et al. [19] also demonstrated through SEM analysis that the adoption of green construction practices 

enhances cost performance, quality outcomes, and environmental sustainability. The objective of this 

study is to identify the most important factors that affect cost performance in green palm oil 

industrialization development through the utilization of AI-based AEC technologies. The study also 

intends to examine the real-world implementation of these technologies to identify their potential in 

reducing construction costs and improving operational effectiveness. 

2.   Methods 

This study adopted an Action Research approach, with the central goal of raising the sustainability of 

palm oil industrial complexes through innovative, sustainable design and construction processes, and 

reducing associated environmental impacts. The study model comprised one dependent variable, cost 

effectiveness, and three independent variables: Palm Oil Mill (X1), Green Industry (X2), and 

Architecture, Engineering, and Construction (AEC) (X3). 
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Primary data were obtained through direct observation and structured questionnaires administered to 

selected respondents. Both variables and indicators were developed from existing literature and system-

based interactions observed in the studied industrial estates [20].  Secondary data were obtained from 

academic journals, official reports, books, and other credible publications to improve theoretical analysis 

and verify primary findings [21]. 

Data collection techniques included semi-structured, in-depth interviews with key informants, direct 

observation of project-related phenomena, and documentation through field notes and photographs. All 

data were organized systematically by variables and sub-factors using Microsoft Excel. 

Data were analyzed using the Structural Equation Modeling Partial Least Squares (SEM-PLS) 

method [22], selected for its suitability in modeling complex relationships between latent variables and 

for its capability with relatively small sample sizes. In the research of green building, SEM-PLS is most 

effective when used in combination with value engineering and lifecycle cost analysis (LCCA) to 

optimize environmental and cost performance [23].  The process of analysis involved model 

specification based on theory, testing for model fit, inputting data using covariance or correlation 

matrices, and assessing goodness-of-fit. Subsequently, the responses were screened, and variables were 

measured using a six-point Likert scale (1 = Strongly Disagree, 6 = Strongly Agree) for hypothesis 

testing. 

3.   Results and Discussion 
3.1 Preliminary Data Analysis 

Expert interviews were conducted during the initial data collection to validate and refine the indicators. 

This process led to the elimination of 46 redundant indicators from the initial 211, leaving 166 valid 

indicators that were grouped into 19 dimensions and four primary latent variables. Responses from 115 

respondents were analyzed through a focus on the SEM–PLS approach, providing four primary variable 

models (Table 1). 

 

Table 1. Main Structural Path Modeling of SEM-PLS 

Variable 

Manifest/ Indicator 
Latent Variable Primary Construct 

X1.1.1 – X1.1.12 Planning (X1.1) 

Palm Oil Mill  

(X1) 

X1.2.1 – X1.2.5 Contract Tender (X1.2) 

X1.3.1 – X1.3.6 Project Management (X1.3) 

X1.4.1 – X1.1.18 Construction (X1.4) 

X1.5.1 – X1.5.16 Operational & Maintenance (X1.5) 

X2.1.1 – X2.1.10 Energy Efficiency (X2.1) 

Green Industry 

(X2) 

X2.2.1 – X2.2.9 Water Efficiency (X2.2) 

X2.3.1 – X2.3.17 
Sustainable Construction & 

Management (X2.3) 

X2.4.1 – X2.4.17 Smart and Healthy Building (X2.4) 

X2.5.1 – X2.6.13 Green Features and Innovations (X2.5) 

X3.1.1 – X3.1.6 Machine Learning (X3.1) 
Architecture Engineer 

Construction 

Architecture 

Engineering 

Construction (AEC) 

 (X3) 

X3.2.1 – X3.1.6 Computer Vision (X3.2) 

X3.3.1 – X3.3.6 Automated Planning and Scheduling (X3.3) 

X3.4.1 – X3.4.6 Robotics (X3.4) 

X3.5.1 – X3.5.5 Knowledge-based systems (X3.5) 

X3.6.1 – X3.6.4 Natural Language processing (X3.6) 

X3.7.1 – X3.7.4 Optimisation (X3.7) 

Y1.1.1 – Y1.1.4 Internal (Y1.1) Cost 

(Y) Y1.2.1 – Y1.2.2 External (Y2.2) 
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3.2 Outer Model Test 

The outer model test confirmed the reliability and validity of the measurement model. All outer loading 

values were greater than 0.50, exhibiting good convergent validity. Average Variance Extracted (AVE) 

values were also above the 0.50 benchmark. Cronbach's Alpha and Composite Reliability values were 

all ≥ 0.70, indicating high internal consistency between constructs. 

For ease of readability, the complete indicator-level validity and reliability estimates, like outer loadings, 

Cronbach's Alpha, Composite Reliability, and AVE values, are presented in Appendix A (Tables A1–

A2). In short, the Green Industry construct proved to be the most reliable (Cronbach's Alpha = 0.986), 

followed closely by Palm Oil Mill (0.985) and Architecture, Engineering, and Construction (AEC) 

(0.982). 

Figure 1 indicates the path coefficients of the structural model, and Figure 2 and Figure 3 indicate 

the measures of reliability and discriminant validity. These confirm that the measurement instruments 

effectively discriminate between constructs and maintain conceptual uniqueness. 

 
Figure 1. SEM-PLS Path Coefficients 

 

 
Figure 2. Cronbach’s Alpha Value Diagram 
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Figure 3. Average Variance Extracted (AVE) Diagram 

 

The coefficient of determination (R²) for the Cost Performance construct reached 0.791 (Adjusted R² 

= 0.785), indicating that approximately 79.1% of the variance is explained by the independent variables, 

with the remainder attributable to other factors. Several constructs achieved notably high explanatory 

power, including Automated Planning and Scheduling (R² = 0.940) and Construction (R² = 0.928), 

suggesting their substantial influence on overall model performance (see Appendix, Table A3) 

 
3.3 Inner Model Analysis 

The results of the model indicate that the variable Cost Performance (Y) had an R² value of 0.791 

(Adjusted R² = 0.785), therefore Palm Oil Mill, Green Industry, and AEC constructs explain 79.1% 

variation. This is a satisfactory explanatory power in engineering management research. Predictive 

relevance (Q²) testing resulted in Q² > 0 for all endogenous variables, and this is a confirmation of the 

power to predict with the model. Effect size (f²) test revealed the largest effect of Green Industry on 

Cost Performance (f² = 0.42), followed by AEC (f² = 0.35), and then Palm Oil Mill (f² = 0.28), 

representing large, medium, and medium effects, respectively. The GoF index of the model was 0.72, 

indicating a very strong overall fit to applied engineering practice. 
The significance of all the path coefficients obtained through the bootstrapping technique is depicted 

in Figure 4, which reveals strength and direction of causality between constructs. The SEM–PLS green 

industrial cost performance model, which was R² = 0.825 when Q² and f² were included to verify it. The 

lower R² for this present model is balanced by a broader range of indicators, thereby thereby enhancing 

its generalizability to industrial settings in green humid tropical climates. 

 
Figure 4. Bootstrapping Result 
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3.4 Key Factor Analysis 

Factor ranking identified ten most important drivers of cost performance improvement for achieving 

BCA Green Mark certification (Platinum and Gold levels). They are: advanced monitoring technologies, 

alternative water supplies, green materials, indoor air quality audits, smart metering systems, and solar-

ready roofs (Table 2). 

 

Table 2. Top Ten Factors Affecting Green Industrial Cost Performance 

  T Statistics  

   Original 

Sample 
 >1,96 

In Relation 

to R Square 

No Sub Factor   Mean (p< 0,05)  

1 Alternative Water Sources X2.2.8 0,8171 0,8157 28,9744 

0,791 

2 
Indoor Air Quality (IAQ) 

Surveillance Audit 
X2.4.3 0,8629 0,8610 28,8570 

3 
Power Usage Effectiveness 

(PUE) 
X2.1.1 0,8196 0,8169 26,0819 

4 Green Materials X2.3.5 0,7597 0,7619 22,6955 

5 Solar Ready Roof X2.1.9 0,7704 0,7711 19,0364 

6 

Private meters to measure the 

water consumption at the 

cooling tower make-up water 

tank. 

X2.2.5 0,7476 0,7450 18,6210 

7 

Smart remote metering system 

with alert features for leak 

detection and monitoring 

purposes. 

X2.2.6 0,7478 0,7422 15,0430 

8 
Data Centre Infrastructure 

Management (DCIM) 
X2.4.5 0,7678 0,7616 14,2396 

9 
Lighting Quality and 

Management 
X2.4.4 0,7384 0,7288 12,1187 

10 Recycling Facilities X2.3.17 0,7061 0,7006 10,4281 

 

 

The use of energy efficiency measures as the most highly ranked driver underscores their critical role 

in reducing operational expenses and environmental impacts. Optimizing the building envelope alone is 

to reduce energy consumption by 50% [24], and advanced HVAC automation can achieve an additional 

20% reduction [25].  The integration of AI-based AEC technology complements these gains through 

enabling predictive maintenance, real-time monitoring, and automated resource allocation. 

Compared to previous research, the present findings confirm the relevance of infrastructure quality, 

working practices, and adaptability in adjusting to evolving green standards [26-28].  For example, the 

integration of predictive analytics and smart systems significantly improved cost and energy 

performance in green industrial buildings. 

 

3.5 Practical Implications 

The results provide practical implications for policymakers, engineers, and industry professionals: 

• Policy Synergy: Incentive structures should be in place to encourage investment in green 

features of high impact such as renewable energy readiness and self-monitoring systems. 

• Engineering Optimization: Value engineering together with SEM–PLS modelling offers a sound 

approach to establishing cost–benefit priorities in green industrial initiatives. 
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• Sustainability Alignment: The model supports sustainable industrial transformation through the 

balancing of technical efficiency and cost performance in accordance with certification schemes. 

4.   Conclusion 

This study identified ten key factors with the greatest influence on the improvement of cost performance 

in the green industrial development of palm oil using Artificial Intelligence (AI)-based Architecture, 

Engineering, and Construction (AEC). They include alternative sources of water, indoor air quality 

monitoring, power efficiency consumption, green building materials, and smart metering. The adoption 

of AI-based AEC strategies was found to be highly cost-saving, with simulations across various Green 

Mark certification levels (Gold, Gold Plus, and Platinum) yielding potential savings between 7.01% and 

7.05%. The findings confirm that AI-based AEC enhances not only the technical efficacy of construction 

activities but also the strategic capacity to develop a sustainable and competitive palm oil industry. 

Based on these, it is recommended that government agencies develop policies, rules, and special 

incentives for promoting the adoption of Green Industry principles in Palm Oil Mills (POMs). 

Implementation of these practices offers obvious benefits to stakeholders, including reduced 

consumption of raw materials, energy, and water, as well as reduced production of waste and emissions. 

Furthermore, this research also provides a reference model for the extension of green industry principles 

to other industries, the development of more sustainable and economically successful industries.  
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Appendix 

Table A1. Outer Loading Value (Convergent Validity) 

The table reveals the outer loading values of each indicator to establish convergent validity. All 

indicators are greater than the minimum value (>0.50), indicating high construct validity. 

No Indicator 
Outer Loading 

Value 

Validity 

S > 0,5 
 No Indicator 

Outer Loading 

Value 

Validity 

S > 0,5 

1 X1.1.1 0,714 valid  84 X2.3.8 0,777 valid 

2 X1.1.2 0,680 valid  85 X2.3.9 0,684 valid 

3 X1.1.3 0,691 valid  86 X2.3.10 0,701 valid 

4 X1.1.4 0,803 valid  87 X2.3.11 0,753 valid 

5 X1.1.5 0,787 valid  88 X2.3.12 0,707 valid 

6 X1.1.6 0,694 valid  89 X2.3.13 0,760 valid 

7 X1.1.7 0,762 valid  90 X2.3.14 0,678 valid 

8 X1.1.8 0,786 valid  91 X2.3.15 0,793 valid 

9 X1.1.9 0,632 valid  92 X2.3.16 0,689 valid 

10 X1.1.10 0,867 valid  93 X2.3.17 0,760 valid 

11 X1.1.11 0,860 valid  94 X2.4.1 0,863 valid 

12 X1.1.12 0,639 valid  95 X2.4.2 0,689 valid 

13 X1.2.1 0,868 valid  96 X2.4.3 0,863 valid 

14 X1.2.2 0,843 valid  97 X2.4.4 0,738 valid 

15 X1.2.3 0,724 valid  98 X2.4.5 0,768 valid 

16 X1.2.4 0,674 valid  99 X2.4.6 0,859 valid 

17 X1.2.5 0,641 valid  100 X2.4.7 0,629 valid 

18 X1.3.1 0,871 valid  101 X2.4.8 0,867 valid 

19 X1.3.2 0,866 valid  102 X2.4.9 0,874 valid 

20 X1.3.3 0,667 valid  103 X2.4.10 0,841 valid 

21 X1.3.4 0,752 valid  104 X2.4.11 0,728 valid 

22 X1.3.5 0,766 valid  105 X2.4.12 0,706 valid 

23 X1.3.6 0,777 valid  106 X2.4.13 0,680 valid 

24 X1.4.1 0,850 valid  107 X2.4.14 0,673 valid 

25 X1.4.2 0,765 valid  108 X2.4.15 0,705 valid 

26 X1.4.3 0,809 valid  109 X2.4.16 0,729 valid 

27 X1.4.4 0,816 valid  110 X2.4.17 0,612 valid 

28 X1.4.5 0,692 valid  111 X2.5.1 0,819 valid 

29 X1.4.6 0,768 valid  112 X2.5.2 0,713 valid 

30 X1.4.7 0,856 valid  113 X2.5.3 0,740 valid 

31 X1.4.8 0,694 valid  114 X2.5.4 0,824 valid 

32 X1.4.9 0,612 valid  115 X2.5.5 0,824 valid 

33 X1.4.10 0,704 valid  116 X2.5.6 0,724 valid 

34 X1.4.11 0,859 valid  117 X2.5.7 0,648 valid 

35 X1.4.12 0,718 valid  118 X2.5.8 0,720 valid 
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No Indicator 
Outer Loading 

Value 

Validity 

S > 0,5 
 No Indicator 

Outer Loading 

Value 

Validity 

S > 0,5 

36 X1.4.13 0,707 valid  119 X2.5.9 0,795 valid 

37 X1.4.14 0,712 valid  120 X2.5.10 0,677 valid 

38 X1.4.15 0,839 valid  121 X2.5.11 0,727 valid 

39 X1.4.16 0,775 valid  122 X2.5.12 0,761 valid 

40 X1.4.17 0,714 valid  123 X2.5.13 0,751 valid 

41 X1.4.18 0,716 valid  124 X3.1.1 0,846 valid 

42 X1.5.1 0,709 valid  125 X3.1.2 0,845 valid 

43 X1.5.2 0,735 valid  126 X3.1.3 0,726 valid 

44 X1.5.3 0,703 valid  127 X3.1.4 0,881 valid 

45 X1.5.4 0,749 valid  128 X3.1.5 0,787 valid 

46 X1.5.5 0,759 valid  129 X3.1.6 0,782 valid 

47 X1.5.6 0,744 valid  130 X3.2.1 0,666 valid 

48 X1.5.7 0,664 valid  131 X3.2.2 0,883 valid 

49 X1.5.8 0,767 valid  132 X3.2.3 0,887 valid 

50 X1.5.9 0,765 valid  133 X3.2.4 0,919 valid 

51 X1.5.10 0,772 valid  134 X3.2.5 0,828 valid 

52 X1.5.11 0,665 valid  135 X3.2.6 0,813 valid 

53 X1.5.12 0,788 valid  136 X3.3.1 0,820 valid 

54 X1.5.13 0,798 valid  137 X3.3.2 0,635 valid 

55 X1.5.14 0,716 valid  138 X3.3.3 0,939 valid 

56 X1.5.15 0,681 valid  139 X3.3.4 0,943 valid 

57 X1.5.16 0,633 valid  140 X3.3.5 0,929 valid 

58 X2.1.1 0,820 valid  141 X3.3.6 0,869 valid 

59 X2.1.2 0,811 valid  142 X3.4.1 0,923 valid 

60 X2.1.3 0,705 valid  143 X3.4.2 0,900 valid 

61 X2.1.4 0,715 valid  144 X3.4.3 0,947 valid 

62 X2.1.5 0,658 valid  145 X3.4.4 0,706 valid 

63 X2.1.6 0,721 valid  146 X3.4.5 0,923 valid 

64 X2.1.7 0,809 valid  147 X3.4.6 0,913 valid 

65 X2.1.8 0,756 valid  148 X3.5.1 0,709 valid 

66 X2.1.9 0,770 valid  149 X3.5.2 0,861 valid 

67 X2.1.10 0,741 valid  150 X3.5.3 0,830 valid 

68 X2.2.1 0,813 valid  151 X3.5.4 0,806 valid 

69 X2.2.2 0,755 valid  152 X3.5.5 0,845 valid 

70 X2.2.3 0,729 valid  153 X3.6.1 0,775 valid 

71 X2.2.4 0,794 valid  154 X3.6.2 0,810 valid 

72 X2.2.5 0,748 valid  155 X3.6.3 0,746 valid 

73 X2.2.6 0,748 valid  156 X3.6.4 0,805 valid 

74 X2.2.7 0,688 valid  157 X3.7.1 0,809 valid 
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No Indicator 
Outer Loading 

Value 

Validity 

S > 0,5 
 No Indicator 

Outer Loading 

Value 

Validity 

S > 0,5 

75 X2.2.8 0,817 valid  158 X3.7.2 0,843 valid 

76 X2.2.9 0,759 valid  159 X3.7.3 0,841 valid 

77 X2.3.1 0,761 valid  160 X3.7.4 0,757 valid 

78 X2.3.2 0,736 valid  161 Y1.1.1 0,913 valid 

79 X2.3.3 0,785 valid  162 Y1.1.2 0,933 valid 

80 X2.3.4 0,765 valid  163 Y1.1.3 0,933 valid 

81 X2.3.5 0,708 valid  164 Y1.1.4 0,764 valid 

82 X2.3.6 0,704 valid  165 Y1.2.1 0,961 valid 

83 X2.3.7 0,770 valid  166 Y1.2.2 0,969 valid 

 

Table A2. Cronbach’s Alpha, Composite Reliability, and Average Variance Extracted (AVE) 

This table summarizes the reliability and validity statistics for each latent construct. All constructs 

demonstrate Cronbach’s Alpha and Composite Reliability values ≥0.70, and AVE ≥0.50, confirming 

internal consistency and convergent validity. 

  
  

Cronbach’s 

Alpha 
rho_A 

Composite 

Reliability 

Average 

Variance 

Extracted 

(AVE) 

ARCHITECTURE ENGINEER 

CONSTRUCTION Architecture 

Engineering Construction (AEC)_(X3) 

0,982 0,983 0,983 0,615 

Automated Planning and 

Scheduling_(X3.3) 
0,927 0,939 0,945 0,744 

COST_(Y) 0,924 0,926 0,941 0,726 

Computer Vision_(X3.2) 0,913 0,924 0,933 0,700 

Construction_(X1.4) 0,963 0,966 0,967 0,620 

Contract Tender_(X1.2) 0,866 0,879 0,904 0,654 

Energy Efficiency_(X2.1) 0,914 0,915 0,928 0,566 

External_(Y2.2) 0,926 0,933 0,964 0,931 

GREEN INDUSTRY_(X2) 0,986 0,986 0,986 0,517 

Green Features and Innovations_(X2.5) 0,934 0,936 0,943 0,562 

Internal_(Y1.1) 0,909 0,917 0,937 0,790 

Knowledge-based systems_(X3.5) 0,870 0,880 0,906 0,659 

Machine Learning_(X3.1) 0,896 0,903 0,921 0,661 

Natural Language processing_(X3.6) 0,791 0,794 0,865 0,615 

Operational & Maintenance_(X1.5) 0,941 0,943 0,948 0,532 

Optimisation_(X3.7) 0,830 0,842 0,887 0,662 

PALM OIL MILL_(X1) 0,985 0,986 0,986 0,549 

Planning_(X1.1) 0,936 0,940 0,945 0,592 

Project Management_(X1.3) 0,897 0,904 0,922 0,664 

Robotics_(X3.4) 0,945 0,950 0,957 0,790 
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Cronbach’s 

Alpha 
rho_A 

Composite 

Reliability 

Average 

Variance 

Extracted 

(AVE) 

Smart and Healthy Building_(X2.4) 0,953 0,953 0,958 0,577 

Sustainable Construction 

&_Management_(X2.3) 
0,947 0,948 0,953 0,544 

Water Efficiency_(X2.2) 0,909 0,911 0,926 0,581 

  

 

 

Table A3. Coefficient of Determination (R²) and Adjusted R² for Latent Variables 

This table provides the coefficient of determination (R²) and adjusted R² values for each latent variable 

in the structural model, reflecting the model’s explanatory power. 

 


