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Abstract. A concise evaluation of Reynolds-Averaged Navier–Stokes (RANS) turbulence 

modeling for two-dimensional, incompressible, steady backward-facing step (BFS) flow at Re = 

1000–3000 was conducted using OpenFOAM’s SimpleFoam solver with the standard k–ε 

model. A tri-level mesh enhancement (coarse, medium and fine) was implemented, and 

ambiguity was measured utilizing the Convergence Ratio (CR) and Grid Convergence Index 

(GCI). The fine grid (CR = 0.54; GCI = 0.0059%) was the only configuration exhibiting 

monotonic convergence, ensuring valid GCI estimation. Results showed reattachment length 

increasing from 0.11 m to 0.12 m, with stronger vortical structures and steeper shear gradients 

at higher Re. This study uniquely integrates RANS model validation with grid-uncertainty 

quantification, providing guidance for mesh optimization and reliable turbulence modeling in 

BFS simulations. 
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1.   Introduction  
The Backward-Facing Step (BFS) flow represents a quintessential instance in fluid dynamics that is 
imperative for comprehending flow detachment and reattachment [1]. This configuration is defined by 
an augmenting recirculation region as the Reynolds number escalates [2], and is frequently encountered 
in an extensive array of engineering applications, including the formulation of fluid conveyance systems, 
turbines, and biomedical apparatus, owing to its capacity to depict intricate vortex dynamics [1]. In the 
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investigation of BFS flows, Computational Fluid Dynamics (CFD) has become a major computational 
tool [3], [4]. CFD simulations have shown a good fit with experimental results, accurately predicting 
pressure, velocity profile, and length of recirculation area [1], [5]. Diverse computational techniques 
have been effectively utilized; for instance, Large Eddy Simulation (LES) has been demonstrated to 
precisely replicate BFS flows from regulated suction flows, substantiating the viability of computational 
methodologies for this category of flow [1], [6]. In addition, OpenFOAM has been successfully used to 
simulate BFS using standard k-epsilon turbulence models, providing an explanation of the recirculation 
zone and flow reinstallation [7], [8], [9]. 

Reynolds-Averaged Navier-Stokes (RANS) turbulence paradigms persist as the preeminent 
methodology for engineering Computational Fluid Dynamics applications attributable to their 
computational efficacy and satisfactory precision for an extensive spectrum of flow phenomena [10], 
[11]. Among RANS frameworks, the k-ε cohort, notably the conventional k-ε model—has been 
thoroughly substantiated for detached and reattaching fluid dynamics, rendering it a logical selection for 
BFS simulations [12], [13]. OpenFOAM, an open-source CFD platform, provides robust 
implementations of RANS models and has become increasingly popular in both academic research and 
industrial applications [14], [15]. 

The success of CFD analyses is determined by both the turbulence framework that is selected and the 
standard of the computational grid along with the resolution of numerical unclearities [16], [17] Grid 
convergence studies are essential to ensure that simulation results are independent of mesh resolution 
and to estimate discretization errors [18]. The Grid Convergence Index (GCI), developed by Kim et al. 
[19], provides a standardized method for reporting grid convergence and estimating numerical 
uncertainty, yet it remains underutilized in many CFD studies. 

Despite extensive numerical examinations of BFS flows employing various turbulence frameworks, 
a significant void persists: previous BFS RANS investigations were deficient in quantified grid-
convergence and uncertainty assessment under OpenFOAM. Most inquiries delineate flow attributes 
without systematic verification of mesh independence or formal uncertainty quantification through 
metrics such as the Grid Convergence Index (GCI). Such a deficiency in stringent error analysis affects 
the consistency and validity of the documented results. Building on the postulate that elevated Re 
amplifies vortex intensity and reattachment length while preserving mesh monotonic convergence (CR 
≈ 0.5), the present study addresses this omission by integrating RANS turbulence modeling with 
comprehensive grid-convergence analysis and uncertainty quantification, thereby establishing a 
validated framework for precise BFS flow prediction. 

This study systematically evaluates the performance of RANS turbulence models for incompressible 
BFS flow at Re = 1000, 2000, and 3000 using OpenFOAM. The primary objectives are: (1) to quantify 
numerical uncertainty through grid-convergence analysis using CR and GCI metrics; (2) to characterize 
flow reattachment, velocity profiles, and turbulence quantities as functions of Reynolds number; and (3) 
to provide validated guidelines for mesh design and turbulence-model selection in BFS simulations. The 
integration of advanced RANS modeling with rigorous uncertainty quantification distinguishes this 
work and enhances the predictive accuracy and reproducibility of computational BFS studies. 

2.   Methods 

2.1.   Physical Model (Geometry and Boundary Conditions) 

The physical model illustrated in Figure 1 elucidates the geometry of a two-dimensional channel 

incorporating a Backward-Facing Step (BFS), which is commonly employed in investigations of 

separated flow to validate numerical and turbulence models, defined by an inlet height of 50.8 mm, a 

step height of 25.4 mm leading to a lower channel height of 25.4 mm and an upper channel height of 

33.2 mm, with a pre-step length of 226.6 mm and a post-step length of 290 mm, along with a distance 

of 206 mm from the step to the upper wall subsequent to reattachment, collectively forming a standard 

recirculation region adjacent to the lower wall post-step, which is pivotal to the examination of flow 

dynamics. 



  

0260106-03 

 

Figure 1. Physical model of the backward-facing step (BFS) flow used in this study, based on the 

configuration reported in [18] 

The boundary conditions applied to these domains are summarized in Table 1. The inflow from the 

left side of the domain (Inlet) is designated as an inlet and is configured as a patch. The outflow traverses 

through the right side of the domain (Outlet), designated as an outlet, which is also classified as a patch. 

The superior wall of the channel, both pre- and post-step, is referred to as upperWall, while the inferior 

wall, encompassing the step surface, is identified as lowerWall; both are characterized by a boundary 

wall condition conventionally regarded as a no-slip wall. Meanwhile, the frontAndBack side of the 

domain is established as vacant, as the simulation is conducted in two dimensions under the assumption 

that there exists no flow gradient in the third dimension (z-direction), thus the front and back sides of 

the channel are deemed to have no physical influence. 

Table 1. Determination of boundary conditions 

Boundary Type Description 
Pressure, p  

(Pa) 

Velocity, U  

(m/s) 

Turbulence Quantities, 

k (m²/s²)  

Re = 1000     

Inlet - zeroGradient fixedValue 

uniform (0.398 0 0) 

fixedValue 

 uniform  

0.000594 

Outlet - fixedValue 

uniform 0 

zeroGradient zeroGradient 

Top & Bottom 

walls 

noSlip 

condition 

zeroGradient noSlip kqRWallFunction 

uniform 0.000594 

Re = 2000 
    

Inlet - zeroGradient fixedValue  

uniform (0.398 0 0) 

fixedValue 

uniform 0.002323 

Outlet - fixedValue 

uniform 0 

zeroGradient zeroGradient 

Top & Bottom 

walls 

noSlip 

condition 

zeroGradient noSlip kqRWallFunction 

uniform 0.002323 

Re = 3000 
    

Inlet - zeroGradient fixedValue 

uniform (0.398 0 0) 

fixedValue  

uniform 0.005230 

Outlet - fixedValue 

uniform 0 

zeroGradient zeroGradient 

Top & Bottom 

walls 

noSlip 

condition 

zeroGradient noSlip kqRWallFunction 

uniform 0.005230 

2.2.   Numerical Discretization (SIMPLE Algorithm) 

Steady-state, incompressible fluid dynamics was addressed utilizing the Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) algorithm as executed in OpenFOAM’s simpleFoam solver. The 

SIMPLE methodology offers a comprehensive finite-volume framework for the integration of pressure 

and velocity domains through an iterative pressure-correction loop that guarantees mass conservation 

while concurrently addressing momentum equilibrium [20], [21]. 
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The critical equations under review are the continuity equation and the momentum equations, which 

have been averaged over time, originating from the Reynolds-Averaged Navier–Stokes (RANS) 

framework, conveyed in a conservative style as: 

  ∇·u = 0.         (1) 

 
∂𝜌

∂𝑡
+ ∇(𝜌𝑈⃗⃗ ) = 0; ρ = constant     (2) 

The momentum preservation equation of the Navier-Stokes for incompressible fluids is enunciated 

in the subsequent manner. 

 𝜌 (
∂𝑈⃗⃗ 

∂𝑡
+ (𝑈⃗⃗ ∙ ∇)𝑈⃗⃗ )) = −∇𝑝 + 𝜇∇2𝑈⃗⃗      (3) 

 
∂U⃗⃗ 

∂t
= 0       (4) 

 𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡      (5) 

 𝜌((𝑈⃗⃗ ∙ ∇)𝑈⃗⃗ )) = −∇𝑝 + ∇[𝜇𝑒𝑓𝑓(∇𝑈⃗⃗ + ∇𝑈⃗⃗ 𝑇)]    (6) 

where 𝑈⃗⃗  and 𝑝 are the mean velocity and pressure, 𝜌 is density, 𝜇 is molecular viscosity, and 𝑈⃗⃗ 𝑇 is the 

Reynolds‐stress tensor requiring closure. If equation (6) is expressed in the form of the volume to (FVM) 

method in a conservative form, the following. 

 ∇(𝜌𝑈⃗⃗ ⊗ 𝑈⃗⃗ )) = −∇𝑝 + ∇[𝜇𝑒𝑓𝑓(∇𝑈⃗⃗ )]     (7) 

Equations (1) – (7) were discretized with the finite-volume method and solved iteratively in simpleFoam 

following standard OpenFOAM practices [21]. 

Three systematically nested mesh families were constructed to span the practical range between 

coarse engineering grids and highly refined meshes while maintaining refinement ratios suitable for 

Richardson extrapolation and Grid Convergence Index (GCI) evaluation. The coarse–medium–fine cell 

counts (ranging from 12,225 – 48,900, 110,025 – 195,600, and up to 782,400, depending on the 

configuration) were selected to satisfy three criteria: (i) the global grid spacing h follows the expected 

scaling h  N−1/2 for a 2-D domain, (ii) refinement ratios r21 and r32 are near integer values (≈ 2–4) for 

consistent estimation of the observed order p, and (iii) the fine mesh adequately resolves the near-step 

shear layer and recirculation bubble without excessive computational cost. This arrangement 

equilibrates precision, validation dependability, and efficacy, facilitating formidable discretization-error 

appraisal through a three-tier grid-refinement investigation. 

The multifaceted convergence assessment elucidated that solely the tertiary configuration attained 

monotonic convergence with a Convergence Ratio (CR) of 0.54, yielding a conservatively appraised 

Grid Convergence Index (GCI) of 0.0059% on the corroborated fine mesh. These results confirm that 

the fine grid lies within, or very near, the asymptotic range, making it appropriate as the reference mesh 

for subsequent RANS model evaluation [22]. In contrast, coarse or intermediate grids exhibited non-

asymptotic behavior (e.g., CR ≈ −200 for Case 1 and CR ≈ 1.5 for Case 2), reinforcing the need for 

refined resolution and optimized solver control; thus, Case 3 was adopted as the verified reference 

configuration. 

Using the SIMPLE algorithm, we replicated steady-state incompressible flow through the 

simpleFoam solver available in OpenFOAM. The principles governing momentum, according to 

Reynolds-Averaged Navier-Stokes (RANS), were approached using finite-volume techniques, 

employing second-order upwind methods for convection along with central differencing for diffusion. 

Convergence was assured through rigorous solver parameters: normalized residuals beneath 10−6 for 

pressure and 10−7 for velocity and turbulence metrics. The selected coefficients for under-relaxation 

were 0.3 regarding pressure, 0.7 concerning velocity, and 0.8 for the turbulence elements (k and ε), 

which guaranteed stability in the numerical framework. The Courant–Friedrichs–Lewy (CFL) number 

was preserved beneath 1.0 throughout all iterations, fulfilling steady-state stability prerequisites. These 

numerical configurations collectively ensured monotonic convergence and mesh-consistent solutions 

across all refinement tiers, in accordance with Gärtner et al. [21] recommendations for RANS-based 

backward-facing step (BFS) simulations. 
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2.3.   Uncertainty Quantification (CR) and GCI Formulation) 

The convergence ratio (CR) serves as a preliminary indicator of numerical consistency during mesh 

refinement. It measures how the computed solution evolves with grid resolution and is defined as: 

 CR =
𝜑3−φ2

𝜑2−𝜑1
      (8) 

where, 𝜑1 − fine-grid solution; 𝜑2 − medium-grid solution; and 𝜑3 − coarse-grid solution.  

A convergence ratio ∣ 𝐶𝑅 ∣< 1indicates monotonic convergence, whereas 𝐶𝑅 < 0implies oscillatory 

behavior between successive refinements. This metric provides a preliminary diagnostic for evaluating 

the asymptotic range of grid convergence prior to applying formal Grid Convergence Index (GCI) 

analysis. 

The Grid Convergence Index (GCI) is used to assess the accuracy of numerical solutions based on 

the estimation of an exact solution with only two grids, the equation is as follows [23]. 

 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 =

1.25∙𝑒𝑎
21

𝑟21
𝑝

−1
      (9) 

All simulations employed the k–ε RANS turbulence model under steady-state, incompressible flow 

assumptions. 

3.   Results and Discussion 

3.1.   Mesh Independence and Grid Convergence 

A grid-convergence study was performed to verify mesh independence and quantify discretization error 

using three grids (N₁ > N₂ > N₃). Valid GCI estimation necessitates monotonic convergence (0 < CR < 

1). Results beyond this range (CR < 0 or CR > 1) reveal that GCI calculations are invalid. Three grid 

refinement configurations were evaluated to satisfy these criteria.  

Case 1: Oscillatory Divergence (CR = -200). The earliest evaluation incorporated three matrices, 

delineating the significant cell totals which are N1 = 782,400, N2 = 195,600, and N3 = 12,225. This 

arrangement produced a Convergence Ratio of CR = -200. This substantial negative value indicates 

pronounced oscillatory divergence, reflecting a state of numerical instability where solutions oscillate 

erratically with grid resolution changes instead of converging to a singular value [24]. As depicted in 

Figure 2, this instability is corroborated by the erratic flow contours and non-decaying residual plots 

across the grids. This conduct contradicts the core standard for uninterrupted convergence in GCI 

scrutiny. Consequently, this grid refinement approach was considered invalid for uncertainty 

quantification, suggesting an unsuitable refinement ratio or an unstable numerical scheme for this grid 

configuration [25], [26]. 

 
a)  b) c) 

Figure 2. Residual oscillatory divergence for Re = 1000 (CR = -200): (a) coarse grid (N1 = 12,225 

cells), (b) medium grid (N2 = 195,600 cells), and (c) fine grid (N3 = 782,400 cells) 

Case 2: Monotonic Divergence (CR = 1.5). The scrutiny that occurred evaluated numerous mesh 

parameters: N1 = 195,600, N2 = 48,900, and N3 = 12,225 partitions. This arrangement yielded a 

Convergence Ratio of CR = 1.5. A CR exceeding 1 signifies monotonic divergence. Despite the solution 

displaying stable and non-oscillating traits, it markedly strays from the grid-independent outcome as the 

mesh refinement takes place. This indicates that the solution has not yet attained the asymptotic 

convergence range. In Figure 4, the velocity contours suggest a consistent trend, but distinctive local 

variations endure, especially within the recirculation area. Since the criterion for asymptotic 
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convergence (CR < 1) is unmet, this case is also inappropriate for a credible GCI estimation [27]. 

 
a) b) c) 

Figure 3. Residual monotonic convergence for Re = 1000, (CR = 0.54): (a) coarse grid (N1 = 12,225 

cells), (b) medium grid (N2 = 48.900 cells), and (c) fine grid (N3 = 195,600 cells) 

Case 3: Monotonic Convergence (CR = 0.54). The third appraisal highlighted a grid family made up 

of N1 = 195,600, N2 = 110,025, and N3 = 12,225 cells. This configuration yielded a Convergence Ratio 

of CR = 0.54. This particular parameter satisfies the conditions for monotonic convergence (0 < CR < 

1), suggesting strong support that the solution is situated within the asymptotic domain. In this situation, 

the errors linked to discretization reliably diminish with grid refinement, which is imperative for valid 

uncertainty estimation using Richardson Extrapolation [28]. The notable consistency in flow patterns 

across the three grids, illustrated in Figure 3, along with the smoothly decaying residual curves, further 

corroborates numerical stability and convergence. Consequently, this case uniquely satisfies the 

prerequisites for a valid GCI calculation, thereby providing a reliable foundation for quantifying the 

numerical uncertainty in the simulations. The grid configuration and numerical methodologies from this 

case were thus employed for all subsequent analyses at varying Reynolds numbers [29].  

 
a) b) c) 

Figure 4. Residual monotonic divergence for Re = 1000, (CR =1.5): (a) coarse grid (N1 = 12,225 

cells), (b) medium grid (N2 = 110.025 cells), and (c) fine grid (N3 = 782,400 cells) 

A consistently decreasing residual convergence curve alongside a nearly uniform flow visualization 

across grid levels suggests that the numerical solution approaches grid stability (mesh independence), 

with negligible differences in physical parameters like separation bubble length and velocity gradient 

distribution, particularly between medium and fine grids, as summarized in Table 2 below. 

Table 2. Comparison of grid convergence studies 

Aspect Case 1  Case 2 Case 3 

Grid Sizes (N1/N2/N3) 782,400 / 195,600 / 

12,225 

 195,600 / 48,900 / 

12,225 

195,600 / 110,025 / 

12,225 

Convergence Ratio 

(CR) 

-200  1.5 0.54 

Convergence Behavior Oscillatory Divergence  Monotonic Divergence Monotonic Convergence 

Numerical Stability Unstable  Stable but Divergent Stable and Convergent 

GCI Validity Invalid  Invalid Valid 

Conclusion Unsuitable for UQ  Unsuitable for UQ Suitable for V & V 

 

Furthermore, the association between the quantity of grid components, computational duration (CPU 
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duration), and error magnitude (% error) was scrutinized to evaluate the numerical efficacy of each 

arrangement. By comparing the estimated time for processing with the matching Grid Convergence 

Index (GCI) readings, we reached a quantitative understanding of the trade-off between accuracy and 

the costs of computation. Contained within Table 3 are the findings of this review, outlining the 

anticipated connections among mesh density, computational time, and the degree of numerical error for 

the three grid designs analyzed. 

Tabel 3. Grid count, computational time, and error level (GCI) in the BFS simulation using 

OpenFOAM 

Case 

ID 
Grid Level 

Cell Count 

(N) 
CPU Time  GCI Error (%) 

Convergence 

Behavior 

1 Fine (N1) 782,400 3 h 58 min 9.250 s 

0.00019%  
numerical artifact; 

not valid 
 Medium (N2) 195,600 50 min 59.022 s 
 Coarse (N3) 12,225 2 min 49.449 s 

2 Fine (N1) 195,600 50 min 59.022 s 

0.00636%  
outside 

asymptotic range 
 Medium (N2) 48,900 15 min 57.068 s 
 Coarse (N3) 12,225 2 min 49.449 s 

3 Fine (N1) 195,600 50 min 59.022 s 

0.0059% 

reported as valid 

with conservative 

p = 2 

 Medium (N2) 110,025 32 min 15.221 s 
 Coarse (N3) 12,225 2 min 49.449 s 

 

Table 3 reveals three important points about the numerical behaviour and cost–accuracy trade-offs 

in our BFS simulations. First, only Case 3 exhibits the required monotonic convergence (CR = 0.54) and 

a credible Grid Convergence Index (GCI = 0.0059 %), and therefore alone provides a defensible estimate 

of discretization error for the finest mesh [30]. Second, measured wall-clock times show that 

computational cost does not scale strictly proportionally with cell count: for example, increasing the fine 

mesh from 195,600 to 782,400 cells (Case 2 to Case 1) increases CPU time from ≈50.98 min to ≈238.15 

min (a time ratio ≈ 4.67) while the cell ratio is exactly 4.0; conversely, Case 3’s fine to medium cell 

ratio (195,600/110,025 ≈ 1.78) corresponds to a time ratio of only ≈ 1.58 (50.98 min / 32.25 min). These 

non-linearities reflect solver-level effects (iteration counts, preconditioning), memory/I/O overhead and 

mesh quality differences rather than a simple cell-count law. Finally, the marginal gain in numerical 

accuracy beyond the 195,600-cell configuration is negligible: Case 3’s GCI (~0.0059 %) is already 

extremely small, indicating diminishing returns in accuracy for substantially greater run time[31]. 

3.2.   Numerical Uncertainty Quantification 

All three simulation cases demonstrated varying success in numerical verification. Only the third case 

met the monotonic convergence criteria for GCI-based uncertainty estimation. The primary example did 

not uphold the conditions for stability, but the following example revealed poor convergence. In CFD 

practice, results akin to the third case are preferred for reliable numerical error quantification, as noted 

by Oberkampf and Roy [32], facilitating validation with experimental data or benchmarks. Table 4 

illustrates the GCI numerical verification findings, which display very minimal GCI rates for Cases 1 

and 2—0.00019% and 0.00636%. These values initially imply a substantial reduction in discretization-

induced numerical errors. However, GCI necessitates augmentation through supplementary 

convergence indicators such as the Convergence Ratio (CR) and the observed order of accuracy (p) to 

facilitate a thorough assessment.  

In Case 1, the convergence ratio (CR = −200) reveals oscillatory divergence, suggesting that the 

numerical solution does not achieve convergence and alternates among grid levels. This points to 

considerable numerical volatility, opposing the fundamental concept of monotonic convergence in the 

GCI approach. As noted by Aycan et al. [33], GCI is valid only when the inter-grid solution exhibits a 
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monotonic approach toward the exact solution. Under oscillatory divergence, φ values between grids 

may seem similar, yet fluctuations exhibit spatial and temporal inconsistency. Consequently, the 

extremely small GCI value obtained for this case is a numerical artifact rather than a meaningful measure 

of discretization uncertainty. Velocity contour visualizations for Case 1 further confirm this, revealing 

inconsistent flow structures between grid levels and unstable residual reduction, which collectively 

indicate numerical instability. Therefore, a low GCI value under such conditions cannot be considered 

a valid basis for verification or validation, as it lacks both theoretical and practical reliability. 

Table 4. Discretization error calculation results 

 𝜱 = 𝑼𝐦𝐚𝐠 [
𝐦

𝒔
] 

 Case 1 Case 2 Case 3 

𝑁1 782400 195600 195600 

𝑁2 195600 48900 110025 

𝑁3 12225 12225 12225 

ℎ1 0.00113054 0.0022611 0.0022611 

ℎ2 0.00226108 0.0045222 0.0030148 

ℎ3 0.00904431 0.0090443 0.0090443 

𝑟21 2 2 1.33 

𝑟32 4 2 3 

𝜑1 3.14244E-06 3.14243E-06 3.14243E-06 

𝜑2 3.41243E-06 3.14251E-06 3.14256E-06 

𝜑3 3.41263E-06 3.14263E-06 3.14263E-06 

p 2 0.59 - 

𝜑ext
21  3.14244E-06 3.14227E-06 - 

𝑒a
21 0.00032% 0.00255% - 

𝑒ext
21  0.00011% 0.00509% - 

𝐺𝐶𝐼fine
21  0.00019% 0.00636% - 

In Case 2, a CR of 1.5 denotes monotonic divergence, yet it signifies a solution diverging from the 

precise value without oscillatory behavior. Within the framework of GCI analysis, such behavior 

requires careful interpretation, as the solution has not yet reached the asymptotic convergence range. 

The observed accuracy order, p = 0.59, is significantly below the expected theoretical p = 2 for a second-

order scheme. A low p-value suggests that numerical errors remain significant and that grid refinement 

has not yet provided sufficient resolution to support reliable uncertainty estimation. Hence, although the 

computed 𝐺𝐶𝐼21value of 0.00636% appears small, it does not reflect the true numerical accuracy and 

should not be used as a verification metric. The velocity contour visualizations for Case 2 show 

emerging spatial consistency; however, notable discrepancies remain in the recirculation region across 

grid levels, indicating that the solution is still evolving toward mesh independence. 

In Case 3, a notable issue arises in the determination of the observed order of accuracy, p, which 

appears to converge but in an upward-diverging manner, thereby rendering the calculation of {\rm 

𝐺𝐶𝐼fine
21  invalid. This behavior is attributed to a convergence ratio (CR < 1) combined with a large grid 

refinement ratio between the medium and coarse meshes (𝑟32 = 3), causing the right-hand side of the 

fixed-point iteration function to increase excessively. When an alternative logarithmic fixed-point 

approach was applied, it produced a non-physical negative result (p = -0.762), indicating that the solution 

does not exhibit asymptotic monotonic convergence—likely because 𝜑2 lies near the midpoint of an 

otherwise convergent sequence. 

To mitigate this instability, employing a nonlinear solver, specifically the Newton–Raphson method, 

is advisable for calculating 𝑝. The fixed-point method, which was successfully applied in Cases 1 and 

2, becomes unstable in Case 3 due to the minimal differences between grid solutions. As the  values 

approach mesh independence, the differences between them become very small, leading to instability in 

the ratio calculations. According to Aycan et al. [33] the accuracy of the estimated order of convergence 
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p deteriorates when the difference 3 − 2 = 2 − 1 very small, reducing the sensitivity of the calculation 

and undermining its reliability. In such situations, GCI estimation may still be conducted using a 

conservative assumption, typically by assigning 𝑝 = 2, which corresponds to the expected order of a 

second-order numerical scheme. 

Although explicit convergence of p was not achieved in Case 3, the behavior of the residuals and 

solution differences strongly indicates that the computation has entered the asymptotic convergence 

zone. Minimal discrepancies indicate stable convergence to the exact solution, aligned with monotonic 

behavior. As Aycan et al. [33] also noted, this condition is typical of an almost mesh-independent 

system, where further grid refinement no longer yields significant changes in . Consequently, p ceases 

to be an essential indicator of accuracy, as practical convergence has already been achieved, even though 

p cannot be calculated explicitly. 

The relatively large grid ratio between the medium and coarse levels (r32 = 3) further reduces the 

sensitivity of  to mesh size h, while the very small inter-grid variations amplify the sensitivity of the 

exponential computation of p. This combination makes the nonlinear equation solution highly 

susceptible to round-off errors and iterative divergence. Under such conditions, adopting a conservative 

p = 2 remains valid for calculating the Grid Convergence Index (GCI), provided that monotonic 

convergence is satisfied—which is confirmed in Case 3 by the stable direction of convergence (CR = 

0.54). 

Moreover, the simulated velocity contours and reattachment patterns exhibit strong consistency 

across all grids, and the residual decay curves display ideal exponential reduction. The signals suggest 

that the numerical outcome is unwavering in various temporal and spatial frameworks. The computed 

GCI = 0.0059% (with pconservative = 2) quantitatively demonstrates that discretization errors have been 

effectively minimized, and that the simulation operates within the regime of high numerical accuracy. 

The non-convergent p-value thus supports the conclusion that Case 3 has been numerically verified 

and validated, consistent with both the Grid Convergence Index (GCI) approach and the convergence-

rate method proposed by Aycan et al. [33]. The experimental validation and the journey of numerical 

turbulence models originate from Case 3. 

To ensure numerical reliability and physical accuracy, RANS–OpenFOAM results were compared 

with BFS benchmarks by Pont-Vílchez et al. [12] and others. Table 5 displays the comparative data on 

reattachment length and normalized streamwise velocity profiles at key downstream locations. The 

strong correlation (within ±3%) indicates that the verified mesh (CR = 0.54; GCI = 0.0059 %) yields 

physically consistent predictions within the asymptotic convergence range. 

Table 5. Comparison of present RANS (OpenFOAM) predictions with published BFS benchmarks 

Parameter / 

Location 

Present Study 

(RANS–

OpenFOAM, 2025) 

Pont-Vílchez 

et al. 2019 

(DNS) [12] 

Giyats et al. 

2023 (ML-

estimation) [18] 

Fetuga et al. 

2022 

(Numerical) [34] 

Deviation (%) 

vs. Pont-

Vílchez 

Re = 1000 – 

Reattachment 

length Lr (m) 

0.110 0.112 0.115 0.108 –1.8 % 

Re = 2000 – Lr (m) 0.115 0.117 0.120 0.114 –1.7 % 

Re = 3000 – Lr (m) 0.120 0.123 0.126 0.118 –2.4 % 

u/Umax at x/h = 1 

(y/h = 0.5) 

0.82 0.80 0.83 0.81 +2.5 % 

u/Umax at x/h = 3 

(y/h = 0.5) 

0.90 0.88 0.91 0.89 +2.3 % 

u/Umax at x/h = 6 

(y/h = 0.5) 

0.97 0.96 0.98 0.96 +1.0 % 

CR (Convergence 
Ratio) 

0.54 - - - - 

GCIfine (%) 0.0059 - - - - 
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The CR value of 0.54 indicates that the numerical solution is in the asymptotic convergence range, 

suggesting limited gains from further grid refinement. This behavior validates that discretization error 

decreases consistently with mesh refinement and that the grid hierarchy effectively captures the main 

flow characteristics in the BFS geometry. In CFD design, this behavior establishes a criterion for mesh 

adequacy: once the solution exhibits monotonic and asymptotic convergence (0 < CR < 1), further 

refinement should be based on the sensitivity of important flow metrics to grid density rather than merely 

residual reduction. Therefore, this verification approach—integrating CR and GCI—provides a 

quantitative framework for selecting an optimal grid that ensures a balance among accuracy, stability, 

and computational efficiency, applicable to other RANS-based OpenFOAM simulations with complex 

flow patterns. 

3.3.   Mean Velocity Profiles 

After a comprehensive numerical verification using the uncertainty quantification approach based on 

the Grid Convergence Index (GCI) and Convergence Ratio (CR) for all three configurations (Case 1, 

Case 2, and Case 3), the analysis confirmed that Case 3 satisfies the criteria for numerical convergence 

and accurate validation. Extra simulations were molded by the reference layout taken from the 

conclusions of Case 3 at Reynolds numbers 1000, 2000, and 3000. Based upon these insights, the 

numerical structure from Case 3 was established as the reference layout for the ensuing simulations at 

three varying Reynolds numbers (Re = 1000, 2000, and 3000). This approach guarantees that result 

variations stem exclusively from flow dynamics alterations rather than numerical discretization bias. 

As a component of the quantitative assessment, the longitudinal velocity factor U was seen at three 

individuals normalized streamwise areas (Figure 5): x/h = 1, x/h = 3, and x/h = 6. Positioning U in a 

vertical manner highlights modifications in the velocity field linked to flow occurrences including 

separation, recirculation, and reattachment (Figure 6). These selected sampling locations were intended 

to effectively document the crucial phases of flow: (i) the onset of separation, (ii) the growth of the 

recirculation zone, and (iii) the reattachment as it nears a fully established velocity profile. The color 

contours illustrate an increasing shear-layer velocity gradient with higher Reynolds numbers. Vermilion 

areas point out locations of swift downstream flow, whereas indigo areas denote slower or retrograde 

flow in the recirculation bubble. These findings are essential for analyzing vertical velocity profiles U(y) 

and defining two-dimensional flow structures within the BFS domain. Understanding the research 

results is vital for grasping how the Reynolds number is linked to local turbulence, reattachment areas, 

and the broader flow stability.  

   
a) b) c) 

Figure 5. Profile of longitudinal velocity: (a) h/L = 1, (b) h/L = 3, and (c) h/L = 6 

Three key data gathering locations were pinpointed to evaluate significant flow phases: the initial 

separation, recirculation zone advancement, and reattachment. The shear layer exhibits a heightened 

velocity gradient marked by the color contour distribution that correlates with increased Reynolds 

numbers. Red illustrates regions of significant velocity that arise downstream of the step, in contrast to 

blue which signifies areas of lower velocity often marked by reverse flow within the recirculation zone. 
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These observations function as a starting point for extended scrutiny of the longitudinal velocity profile 

U(𝑦) and the portrayal of two-dimensional flow arrangements in the backward-facing step (BFS) space. 

 
Figure 6. Profile of Umag BFS to Re different (Re = 1000, Re = 2000, and Re = 3000) in the 

streamwise position (x/h = 1, x/h = 3, and x/h = 6) 

The first analysis point, at x/h = 1, represents the region right after the step where the recirculation 

begins to form. In Figure 7, one can find the local velocity data associated with Reynolds numbers of 

1000, 2000, and 3000 (refer to Table 6). Because these data are shown in their raw form, direct 

comparison between cases is limited by differences in the maximum velocity of each flow [35]. To make 

the profiles comparable, the velocities were normalized by their respective maximum values Umax. 

Table 6. Velocity values based on Reynolds number changes 

Re 
Initial Value 

UL [m/s] Lchar [m] μ [m2/s2] 

1000 0,398 0,0254 0,00001 

2000 0,787 0,0254 0,00001 

3000 1,181 0,0254 0,00001 

 

The illustration in Figure 7 describes the relationship that exists between the normalized velocity 

u/Umax and the relative height y/h. This non-dimensional representation supports straightforward 

comparisons of Reynolds numbers and elucidates the features of the recirculation zone at x/h = 1. A 

stable area of negative velocity (y/h < 0.4) is seen across all Reynolds numbers, signifying reverse flow 

connected to BFS separation and reattachment. As Re progresses from 1000 to 3000, the shear layer's 

velocity gradient markedly steepens, indicating a more intense and thinner shear region influenced by 

inertial forces. Despite variations, normalized profiles show comparable trends near the upper wall, 

indicating predominant viscous effects in that area. This normalization facilitates comparability across 

varying Re cases and aids in the physical interpretation of BFS flow phenomena, especially in 

recognizing separation, shear-layer development, and reattachment behavior [36]. 

   
a) b) c) 

Figure 7. Axial velocity profiles for a 2D laminar backward facing-step: (a) h/L = 1, (b) h/L = 3, and 

(c) h/L = 6 
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At x/h = 3, the simulations reveal that the reverse flow persists prominently in the lower part of the 

domain (y/h < 0.4), signifying the continued existence of the recirculation zone prior to reattachment. 

The characteristics of flow are largely dictated by the Reynolds number: boosting Re yields a noticeable 

velocity gradient during flow variations, whereas diminishing Re causes more gradual modifications 

driven by viscosity. Specifically, Re = 3000 exhibits the steepest gradient and a thinner shear layer due 

to inertial dominance, whereas Re = 1000 shows broader gradients reflecting enhanced viscous 

diffusion. The upper region (y/h > 0.6) displays nearly identical velocity distributions for all three 

Reynolds numbers, suggesting that this zone has already achieved a quasi–fully developed state. These 

results support the idea that the Reynolds number has a major impact on the mid and lower flow areas, 

specifically where backflow-shear layer interactions are particularly evident. 

At x/h = 6, flow transitions towards stabilization. Nondimensional velocity profiles indicate reverse 

flow diminishes for Re = 2000 and 3000, with positive velocities across most heights. For Re at 1000, 

there is a gentle backflow occurring near the wall, despite its intensity being lower. This suggests 

reattachment points for Re = 1000 are further downstream due to viscous effects hindering flow 

recovery. Conversely, Re = 3000 displays a symmetric profile with a pronounced central gradient, 

indicating advanced shear-layer development and rapid velocity recovery. The velocity profiles of the 

upper wall show notable consistency across different scenarios, indicating a mainly unidirectional flow 

that remains unaffected by any separation dynamics. Overall, the vertical profile at x/h = 6 provides 

evidence that the reattachment process is nearly complete, especially for Re = 2000 and 3000.  

3.4.   Recirculation Length and Reattachment Dynamics 

Characteristics of the development of the shear layer and the phenomenon of flow separation and 

reattachment that are typical in the BFS configuration. At Re = 1000, the low-velocity gradient indicates 

a flow transition that is not yet fully turbulent (Figure 8), and the reattachment zone is closer to the lower 

wall, indicating a low flow momentum supplying the recirculation region. At Re = 2000, there was an 

increase in the thickness of the shear layer and an expansion of the recirculation area. Meanwhile, Re = 

3000 shows an acceleration of vortex formation as well as a shift of reattachment points further 

downstream, as reported by Yamamoto et al. [37]. This phenomenon is in line with the increase in 

Reynolds numbers that trigger Kelvin-Helmholtz instability at the edge of the shear layer, accelerating 

the transition to full turbulence [38]. This condition results in a higher momentum transfer rate, causing 

the stagnation zone to narrow in the reattachment region. This characteristic has been confirmed in DNS 

studies by Fetuga et al. [34] which showed a significant influence of Reynolds on the length and intensity 

of the recirculation zone.  

 
Figure 8. Reattachment length (L) 

As the Reynolds number escalates, the shear layer that materializes downstream of the step becomes 

increasingly attenuated and more precarious, yielding Kelvin–Helmholtz (K–H) instabilities that 

facilitate vortex roll-up and augment momentum interchange between the separated and outer flows. 

These spanwise vortical formations amplify turbulent shear stresses, hastening the disintegration of 

coherent recirculation and the transition toward fully developed turbulence. The concomitant elevation 

in turbulent kinetic energy (𝑘) leads directly to an augmentation in the modeled eddy viscosity (𝜈𝑡), 
which attains its zenith along the shear layer and reattachment region. At Re = 3000, the heightened 
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eddy viscosity signifies intensified vortex interaction and enhanced energy dissipation, congruent with 

the emergence of secondary instabilities and the swift recuperation of mean flow downstream. These 

patterns corroborate the characteristic mechanism of K–H-driven shear-layer turbulence intensification 

observed in canonical BFS configurations and are consistent with recent OpenFOAM-based RANS and 

LES investigations [21], [38]. 

The position of the reattachment points on each Reynolds number. At Re = 1000 the reattachment 

point is located at 0.11 m. The flow shows a short recirculation with a single vortex that is relatively 

stable. Reattachment occurs quite close to the step. This indicates that the main flow is not yet sufficient 

to keep the shear layer in separate conditions for longer. At Re = 2000 there is an extension of the 

recirculation zone, with a more developed vortex structure. Although the increase in reattachment 

distance was not significant, there was a stronger interaction between vortexes, indicating that the flow 

was beginning to enter a mild turbulent regime. The reattachment point is located at 0.115 m. Re = 3000 

has a reattachment point located at 0.12 m. The stream undergoes further separation and reattachment. 

The sliding layer becomes highly unstable, resulting in multi-layered multivortex [39]. The distribution 

of streamlines shows the intense fluctuations typical of full turbulent flows. It also reinforces that the 

higher Reynolds extend the recirculation zone linearly against the fluctuating energy in the shear layer 

[40]. Interestingly, the discovery was that an increase in Re caused reattachment to shift downstream, a 

pattern that is in line with the DNS results by Toppings and Yarusevych [41]. The vortex structure is 

more complex as the Re increases, indicating an increase in Kelvin-Helmholtz instability and a 

strengthening of the shear layer. There is a small indication of asymmetry at Re = 3000, this is biased 

towards the three-dimensional onset in the flow pattern even though the simulation is conducted in 2D, 

as warned by Masuda & Tagawa [42] regarding the limitations of prediction at high Re. 

3.5.   Turbulent Kinetic Energy and Eddy Viscosity 

Turbulent viscosity field nut which represents the diffusion of momentum due to turbulent fluctuations. 

At Re = 1000, the nut is close to zero in most domains, indicating a dominance of laminar flow or light 

transitions (Figure 9.a). With the increase in Re, especially at Re = 2000 and Re = 3000, there is a 

significant increase in the nut value along the shear layer after the step, indicating an increase in 

turbulence intensity. The peak of the nut at Re = 3000 occurs in the shear zone of the developing layer, 

reflecting the more active production and diffusion of the vortex. According to Choi [43] & Matharu 

[44], this high eddy viscosity reflects the ability of turbulent models to predict transfer momentum and 

shear stress in highly separate flows, making nut an important indicator in the validation of a single 

equation-based RANS model.   

The turbulent distribution of kinetic energy k (TKE) shown in Figure 9.b shows the maximum 

production k along the post-step shear layer. The increase in Re indicates a larger and wider trend of 

turbulent energy accumulation. At Re = 1000, k production is limited and remains low, corresponding 

to the absence of large turbulent structures. Re = 2000 shows the beginning of the formation of strong 

fluctuations that develop downstream, while at Re = 3000 a high concentration of k is seen in the 

proximal area of the shear layer, indicating the dominance of turbulence production due to high shear 

stress [45]. Research by Domfeh [5] and Kartashov [46] indicates that accurate k prediction is crucial in 

assessing the performance of turbulent models, especially in geometry with an adverse pressure gradient. 

Zones with high k generally intersect with the region where the velocity gradient is the highest, being a 

direct indicator of vortex formation and evolution [46].  

Turbulent epsilon dissipation rate (TDR) which indicates the region where turbulent energy is 

converted into internal or internal energy through viscosity. The epsilon pattern is closely correlated 

with 𝑘, indicating that the peak of dissipation occurs not far from the area of maximum production of 

turbulent energy (Figure 9.c). At Re = 1000, the epsilon is still low and thinly dispersed, indicating that 

the flow is still in the early stages of transition. Re = 2000 shows a high intensity of dissipation, 

indicating the presence of a vortex structure that is active in energy diffusion. According to Wang [47] 

and Rohilla [48], epsilon is a critical parameter in assessing the level of maturity of turbulent flows. The 

location and intensity of the high epsilon at Re = 3000 reinforces the evidence that the turbulent system 
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is already highly developed with a wide range of energy scales.   

   
a) b) c) 

Figure 9. Profiles of turbulent: (a) viscosity field nut, (b) kinetic energy k, and (c) dissipation rate 

epsilon 

4.   Conclusion 

A comprehensive evaluation of the Reynolds-Averaged Navier-Stokes (RANS) turbulence model for 

two-dimensional, tune, and uncompressed Backward-Facing Step (BFS) flows in the OpenFOAM 

framework, with a primary focus on quantifying numerical uncertainty and flow characteristics at 

Reynolds (Re) numbers 1000, 2000, and 3000. Rigorous numerical verification using the Convergence 

Ratio (CR) and Grid Convergence Index (GCI) showed that of the three grid configurations tested, only 

Case 3 (CR = 0.54) achieved a valid monotonic convergence, making it the only reliable basis for the 

uncertainty estimate with a GCI of 0.0059%, while Cases 1 and 2 showed oscillatory and monotonic 

divergences that were invalid for GCI analysis, respectively. Using the validated grid settings of Case 

3, the BFS flow simulation revealed that the normalized longitudinal velocity profile (u/Umax vs. y/h) 

exhibits consistent nondimensional behavior across all Re, with a clear backflow region near the step 

and a rapid recovery towards a fully developed profile at x/h = 6. The incremental increase in the 

Reynolds number progressively intensified the shear layer gradient, vortex dynamics, and flow remount 

mechanics, as indicated by the shift of the flow remount point downstream from 0.11 m at Re = 1000 to 

0.12 m at Re = 3000, as well as a significant increase in eddy (nut) viscosity, turbulent kinetic energy 

(k), and the rate of turbulent dissipation (epsilon) along the shear layer. Overall, the study not only 

provides an advanced assessment of the RANS model but also a rigorous numerical uncertainty analysis, 

resulting in strong error limits and reproducibility metrics, which decisively contribute to the 

improvement of CFD predictive accuracy for separate streams and offer practical guidance for engineers 

and researchers for optimal mesh design, turbulence model selection, and uncertainty management in 

reliable and geometric BFS simulations related complexes. 
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