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Abstract. The increasing demand for renewable energy highlights the need for sustainable
materials in wind turbine blade design. Conventional fiberglass blades, while effective, present
environmental and disposal challenges, motivating the exploration of bio-composites as greener
alternatives. This study aims to develop and validate an integrated framework that combines
experimental validation, Finite Element Method (FEM) pre-screening, Artificial Neural
Networks (ANN), and Rule of Mixtures (RoM) validation to evaluate the feasibility of bio-fibre
wind turbine blades Mechanical properties of flax, hemp, sisal, jute, pineapple fiber, and resin
are obtained from previously published experimental studies available in the literature, with resin
content fixed at 90% and permutations generated for ANN training. Experimental tensile testing
on a 90% resin—-10% pineapple fiber composite yields 131 MPa, closely matching the
permutation prediction of 118.6 MPa, confirming dataset reliability. FEM simulations are then
employed to pre-screen potential maximum performance values within the dataset range,
ensuring the physical feasibility of ANN input properties. Using these validated inputs, the ANN
predicts feasible bio-composite compositions, which are further compared against RoM
estimations. The results show that ANN predictions remain within a 7% deviation from RoM
values, demonstrating consistency with micromechanical theory. This integrated framework
highlights that FEM-based input screening enhances ANN prediction reliability, and pineapple-
based bio-composites can serve as sustainable and technically viable alternatives for wind
turbine blade applications.
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1. Introduction

The global push for renewable energy aims to mitigate fossil fuel depletion and climate change, with
wind energy playing a pivotal role. As turbine blades grow in size, structural efficiency and material
sustainability become critical design factors. Conventional fiberglass-based composites pose
environmental and end-of-life recycling challenges, prompting the need for more sustainable
alternatives [1].

Fiberglass-reinforced composites are difficult to recycle due to energy-intensive processes like
pyrolysis [2] and mechanical recycling [3], compounded by complex environmental impacts [4] and
recycling constraints [5], which often result in blades ending up in landfills as large-scale recycling
remains limited. Life-cycle assessments indicate that carbon fiber production largely drives the global
warming potential of blades, while natural fiber alternatives like flax and hemp may reduce emissions
by around 6-8% [1].

Bio-composites, using natural fibers such as flax, hemp, jute, sisal, and pineapple leaf fiber, offer
reduced environmental impact and improved biodegradability [6]. However, their variable mechanical
properties, moisture sensitivity, and fatigue behavior pose technical challenges.

Previous studies either conduct FEM-based structural analysis of composite blades or investigate
natural fiber feasibility for turbine components [7-9]. Yet, these often lack integrated predictive
modeling and experimental validation. Current ANN approaches for composite materials rarely include
pre-screening of input values via structural feasibility, reducing their practical reliability.

This study bridges that gap by integrating structural screening via FEM with ANN-based
compositional prediction, backed by experimental tensile testing. Mechanical property permutations
(with fixed 90% resin and varying fibers) are first vetted with FEM using high-performance values
within the ANN training range. The ANN predicts optimal compositions, which are then subject to FEM
analysis for deformation and stress verification. This integrated methodology enhances prediction
credibility and demonstrates pineapple fiber—based bio-composites as a viable, sustainable alternative
to fiberglass for wind turbine blades.

2. Methods

This study integrates experimental testing, finite element method (FEM) pre-screening, and artificial
neural network (ANN) prediction to evaluate bio-composite wind turbine blades. The research begins
with dataset generation through permutation of mechanical property data for flax, jute, hemp, sisal, and
pineapple fiber combined with 90 percent resin content. Mechanical properties include tensile strength,
tensile modulus, density, and fatigue strength, which are sourced from literature [10]. Experimental
tensile testing is performed on a pineapple fiber-resin composite (90 percent resin and 10 percent
pineapple fiber) to validate the permutation dataset. FEM pre-screening uses potential maximum
performance values within the range of the ANN training dataset to ensure structural feasibility. The
ANN predicts optimal fiber compositions, which are validated using the Rule of Mixtures. The overall
methodology is illustrated in Figure 1.

; Permutation of . - .
Literature i e O Experimental FEM ANN Training Validation using Rule Conclusion
Data Collection i Validation Pre-Sereening and Prediction of Mixtures

Figure 1. Flow Diagram of the Methodology.

2.1. Experimental Testing (Validation of Permutation Dataset)

The initial mechanical properties of the base materials are collected from literature [10], including flax,
jute, hemp, sisal, pineapple fiber, and polyester resin. These properties, which consist of tensile strength,
Young’s modulus, density, and fatigue strength, are summarized in Table 1.
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Table 1. Basic Mechanical Properties of Bio-Based Materials [10].

Tensile Tensile . Fatigue

No Material Strength Modulus DeHSlgy Stl;ength at
[MPa] [GPa] [g/cm”) 10° Cycles

[Mpa]

1 Flax 343 - 1035 28 — 100 1.45-1.55 115

2 Jute 393 -773 25-55 1.35-1.45 85

3 Hemp 310-900 32 -60 1.45-1.55 83

4 Sisal 248 — 483 9-28 1.40—1.45 101

5 Pineapple 118 — 466 4-27 1.44 - 1.56 68

6 Resin 60 — 85 2.5-4.0 1.1-14 35

Based on these properties, a dataset is generated through permutation by combining 90 percent resin
with 10 percent fiber for each material. The resulting values are presented in Table 2, which provides
the training dataset for the artificial neural network (ANN).

Table 2. A Dataset That Contains Several Data Points For Training An Acrtificial Neural Network
(ANN) That Has Already Been Permuted.

Tensile Tensile Densit Fatigue
No Material Percentages Strength Modulus ( /cmg Strength
(MPa) (GPa) & (MPa)
1 Flax, 10, 90 106.30 5.68 1.2070 43.00
Resin
2 Jute, 10, 90 111.30 538 1.1970 40.00
Resin
3 Hemp, 10, 90 103.00 6.08 1.2070 39.80
Resin
4 Sisal, 10, 90 106.70 3.78 1.2020 41.60
Resin
5 Pineapple, 1 9 118.60 5.58 1.2180 38.30
Resin
Flax, Jute,
Hemp, 14 0.0, 0
3205 Sisal, 5 106.34 5.49 1.2065 42.86
: 0, 90
Pineapple,
Resin

To ensure the validity of the permutation dataset, an experimental tensile test is performed on a
pineapple fiber—resin composite with 90 percent resin and 10 percent pineapple fiber. The experimental
testing serves as a benchmark to confirm that the dataset generated from literature-based permutations
is consistent with real composite behavior, thereby reinforcing its suitability for ANN training.

2.2. FEM Pre-Screening

Finite Element Method simulations are commonly used in the structural analysis to evaluate stress
distribution and deformation under loading [11]. Finite Element Method (FEM) simulation in this study
is conducted to pre-screen the dataset and ensure that the input values used for training the Artificial
Neural Network (ANN) remain within a physically reasonable range. The simulation is performed using
ANSYS Workbench (Static Structural module). The turbine blade is designed based on the Clark-Y foil,
and the main geometric parameters are summarized in Table 3. This configuration is adapted from small-
scale wind turbine blade designs reported in the literature [12].
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Table 3. Turbine Blade Design Parameters

Parameter Value
Airfoil profile Clark-Y
Blade span 24m
Chord length root 0.445 m
Chord length tip 0.15m
Winglet Angle 30°

The turbine blade geometry is illustrated in Figure 2a, while the meshed model prepared for the
simulation is shown in Figure 2b. The geometry is discretized using a tetrahedral mesh with adaptive
sizing, medium resolution, and fine span angle control. The adopted mesh configuration is summarized
in Table 4.

s

Figure 2. a. Turbine blade geometry before meshing; b. Meshed turbine blade model

The determination of aerodynamic loads begins with the calculation of the Tip Speed Ratio (TSR),

which relates the tangential speed at the blade tip to the incoming wind velocity. The TSR is defined in
Equation (1) [13]:

A=2% (1)

14

where w is the angular velocity (rad/s), R is the blade length, and V is the free-stream wind speed.
Once the TSR is known, the relative velocity along the blade span, Vi, can be determined and
subsequently used to calculate the lift and drag forces. The lift force is obtained using Equation (2) [14]:

1
F, =pV7CLeR )
while the drag force is determined using Equation (3) [15]:
1 2
Fp = 5pViuCpcR 3

where p is the air density, C; and C, are the lift and drag coefficients, and c is the chord length.
The centrifugal force is applied as a distributed body load and is calculated using Equation (4):

Feent = pmAcrosssz “4)

where p,, is the material density, A..ss IS the average cross-sectional area, w is the angular velocity,
and R is the blade length. The blade’s self-weight is considered using Equation (5):

W=mxg (5)
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where m is the blade mass obtained from the geometry and material density, and g is the gravitational
acceleration (9.81 m/s?).

Table 4. Mesh settings for FEM simulation

Parameter Value

Adaptive Sizing Yes

Resolution 5 (medium)
Transition Fast

Span angle center Fine

Minimum edge length 7.6681 x 10"-2 m
Average surface area 2.4072 x 10"-2 m?
Bounding box diagonal 0.60949 m

The material properties assigned in the FEM simulation are chosen as potential maximum values that
still fall within the dataset range derived from literature-based permutations used for ANN training.
These values include a density of 1.218 g/cm?, Young’s modulus of 6050 MPa, Poisson’s ratio of 0.003,
bulk modulus of 2.03 x 10° Pa, shear modulus of 3.02 x 10° Pa, tensile yield strength of 118 MPa, and
fatigue strength of 42.5 MPa at 10° cycles. Since all parameters remain within the ANN dataset
boundaries, the FEM setup ensures that the input data for ANN training are technically valid and avoid
extreme or non-physical assumptions.

Boundary conditions are applied to represent the actual operating state of the blade. The blade root
is constrained as a fixed support to simulate its attachment to the hub. The aerodynamic forces, namely
the lift force F; (Equation 2) and drag force F (Equation 3), are applied as surface pressures acting
normal and tangential to the blade surface, respectively. The centrifugal force F,.,; (Equation 4) is
applied as a body force distributed radially along the blade span. In addition, the blade self-weight W
(Equation 5) is applied as a gravitational load acting uniformly on the entire geometry.

2.3. Artificial Neural Network (ANN) Modeling and Prediction

Artificial Neural Networks (ANN) are computational models inspired by the human brain that are widely
used in engineering for modeling complex relationships between input and output variables [16]. In the
context of wind turbine blade analysis, ANN can learn from experimental or simulated data to predict
material properties or performance metrics with high accuracy, even when nonlinearities and
interactions among variables are present [17]. Artificial Neural Network (ANN) in this study is designed
to predict the composition percentage of bio-composite materials for wind turbine blades. To ensure
quality and consistency in model training, normalization is first applied to the input features [18]. This
step equalizes the scale of different mechanical properties preventing any single attribute from
disproportionately influencing the learning process.

The network architecture consists of an input layer with four neurons representing tensile strength,
Young’s modulus, density, and fatigue strength. Two hidden layers with 64 neurons each are applied to
capture nonlinear relationships between the mechanical properties and the material composition.
Rectified Linear Unit (ReLU) activation functions are employed in the hidden layers to enhance learning
efficiency, while a linear activation function is used in the output layer. The ReLU activation is
mathematically defined in Equation (6) [19] as:

f(x) = max (0, x) (6)
The output layer contains five neurons, corresponding to the predicted percentage of flax, jute, hemp,
sisal, and pineapple fibers. The overall structure of the ANN is presented in Figure 3.
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Figure 3. The structure of ANN

The model is trained using the Adam optimizer with Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as the evaluation metrics. These metrics provide a comprehensive assessment of the
model’s prediction accuracy by quantifying the gap between predicted and actual values. MSE
highlights larger deviations through squaring, while MAE represents the average error magnitude [20].
Training is performed over sufficient epochs with an appropriate batch size to ensure convergence while
maintaining computational efficiency. To improve the robustness of the model evaluation, a five-fold
cross-validation strategy is applied [21]. Furthermore, the ANN predictions are validated against the
Rule of Mixtures to ensure consistency with established composite material theory.

24. Rule of Mixtures Validation

To further validate the performance of the Artificial Neural Network (ANN) model, the predicted
mechanical properties of bio-composites are compared with theoretical estimations obtained from the
Rule of Mixtures (ROM). The Rule of Mixtures (RoM) is a widely adopted micromechanical model that
provides first-order estimations of composite properties based on fiber and matrix volume fractions [22].
Although RoM has limitations in capturing factors such as fiber orientation, voids, and misalignments
[23], it remains a useful benchmark for validating ANN predictions. In this study, RoM serves as a
theoretical reference to ensure that the ANN-predicted compositions yield physically reasonable
properties within an acceptable engineering margin. Specifically, it is applied to calculate tensile
strength, Young’s modulus, density, and fatigue strength of the bio-composites, as shown in Equation

(7) [24]:

where P, is the composite property, Vy and V;,, are the volume fractions of the fiber and matrix,
respectively, and Py and B, are the correspondmg material properties.

The ANN-predicted values are subsequently compared with the ROM-estimated values to evaluate
their consistency. A close agreement between the two approaches indicates that the ANN model is
capable of generating predictions that align with established micromechanical theory, thereby
reinforcing the reliability of the proposed method.
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3. Results and Discussion

This section presents the outcomes of experimental validation, finite element method (FEM) pre-
screening, artificial neural network (ANN) prediction, and Rule of Mixtures (ROM) validation. The
results are discussed sequentially to ensure the reliability of the dataset, the feasibility of FEM inputs,
and the consistency of ANN predictions with established micromechanical theory.

3.1 Experimental Results and Validation

The experimental validation is conducted to confirm the reliability of the permutation-based dataset used
for ANN training. Among the tested specimens, the 90% resin + 10% pineapple fiber composition is
selected as the benchmark for validation, since it directly corresponds to the dataset permutation. All
specimens are prepared according to ASTM D638 standards, ensuring consistent geometry and
comparability.

Figure 4a shows the dog-bone specimens prepared for tensile testing, including fiberglass—resin,
braided pineapple fiber—resin, and unbraided pineapple fiber-resin. Although several types are
fabricated, the validation focuses specifically on the pineapple—resin composite with a 1:9 fiber-to-resin
ratio. The post-test condition is presented in Figure 4b, where the pineapple—resin specimens exhibit
ductile failure patterns, reflecting the influence of natural fibers.

a. b.
Figure 4. a. Dog-bone specimens for tensile testing; bottom to top: fiberglass—resin, unbraided
pineapple—resin, braided pineapple—resin; b. Post-tensile test specimens showing failure patterns;
bottom to top: fiberglass—resin, braided pineapple—resin, unbraided pineapple—resin

The tensile strength predicted by the permutation dataset for the pineapple-resin composition is
118.60 MPa, while the experimental result yields 131 MPa. Table 5 presents the comparison.

Table 5. Comparison between dataset prediction and experimental testing.

Material Tensile Strength  Tensile Strength
Composition (Dataset) (Experimental)
90% Resin + 10% Pineapple  118.60 MPa 131.00 MPa

The difference between dataset prediction and experimental testing is approximately 10.5%. This
deviation is acceptable, given the natural variability of bio-based fibers and testing uncertainties. Figure
5 illustrates this comparison, highlighting that the permutation-based dataset provides a sufficiently
accurate approximation of real composite behavior.

This validation confirms that the dataset construction approach is robust and reliable, providing a
sound basis for ANN training in predicting the performance of bio-composite materials for wind turbine
blade applications.
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Comparison of Tensile Strength
(90% Resin + 10% Pineapple Fiber)

131.00

140
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120 7
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]

20

o Permutation Dataset Experimental Result
Figure 5. Tensile strength comparison between dataset prediction and experimental testing for 90%
resin + 10% pineapple fiber composite.

3.2 FEM Pre-Screening

The FEM simulation is conducted by applying the boundary conditions formulated in Section 2.2. The
computed values for aerodynamic and structural loads are: lift force FL =~ 714.16 N, drag force
Fo~8.18 N, centrifugal force Feent = 110.18N, and blade self-weight W =~ 3.65N. These loads are applied
as surface pressures (for F. and Fp), a distributed body force (for Fcent), and gravitational load (for W).

The structural response shows a maximum total deformation of 0.45042 m and a maximum
equivalent von Mises stress of 1.1241 x 108 Pa. The deformation contour is presented in Figure 6a, while
the von Mises stress distribution is shown in Figure 6b. The deformation predominantly occurs at the
blade tip, whereas stress concentration is highest at the blade root, which aligns with the expected
mechanical behavior of rotating blades under aerodynamic and centrifugal loading.

0 Min 0,000 0,150 0,300 (m)
0,075 0,225

I 3748e7
b 249937
1,2505e7
17702 Min 0,000 0,150 0300 (m) - %

0,075 0,225

b.
Figure 6. a. Total deformation contour of turbine blade; b. Von Mises stress distribution of turbine
blade

0260109-08



The pre-screening FEM yields a tip deformation of 0.450 m and a peak von Mises stress of 1.12x108
Pa. Relative to Ahmed et al. (2023) [25], who report 0.635 m deformation and 43.7 MPa stress for a
composite blade (0.876 m and 39 MPa for aluminium), our deformation is ~29% lower whereas the peak
stress is ~2.6x higher. The discrepancy is attributable to differences in blade geometry, boundary-
condition implementation (surface pressure vs. point/distributed loads), and material parameters.
Despite these differences, the results remain within a physically plausible range for small-scale blades
and are therefore suitable as pre-screening inputs to ANN.

3.3. Artificial Neural Network (ANN) Prediction Results

The artificial neural network (ANN) is trained using the permutation-based dataset introduced in Section
2.1, with prior screening by FEM to ensure realistic input values. The model performance is evaluated
using mean squared error (MSE) and mean absolute error (MAE), as shown in Figure 7. The training
and validation curves indicate a stable convergence, with the validation error closely following the
training error, confirming that the model generalizes well without significant overfitting.

Model MSE Model MAE

—— Train —— Train
Validation 1.0+ Validation

e
[
L

1.5

e
o
L

1.0

Mean squared Error
o
b
1

Mean Absolute Error

0.5

0.2

0.0 - 0.0

0 20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch

Figure 7. Training and validation loss curves of the ANN model evaluated using mean squared error
(MSE) and mean absolute error (MAE), indicating stable convergence and good generalization.

Using the input properties obtained from FEM pre-screening (tensile strength = 118 MPa, Young’s
modulus = 6050 MPa, density = 1.218 g/cm?, fatigue strength = 42.5 MPa), the ANN predicts the
corresponding material composition. The results are summarized in Table 6, which presents the weight
percentages of each fiber and resin. The prediction demonstrates the ability of the ANN to function as
an inverse design tool, where validated mechanical properties from FEM are mapped back into feasible
bio-composite compositions.

Table 6. Predicted material composition from ANN based on FEM pre-screened properties
Flax (%) Jute (%) Hemp (%) Sisal (%) Pineapple (%) Resin (%)
6.27 0.00 0.00 0.00 3.73 90.00

34. Rule of Mixture Validation

The ANN predictions are validated by comparing the corresponding material properties with theoretical
estimations obtained using the Rule of Mixtures (RoM), as described in Section 2.4. Table 7 summarizes
the comparison between the FEM input values and RoM re-estimations for tensile strength, Young’s
modulus, density, and fatigue strength. The deviations between the FEM input and the RoM validation
are calculated using Equation (7):

Deviation (%) = lh"g_—h‘g’"l x 100 (7)
FEM
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Table 7. Comparison between ANN prediction and RoM validation

Property FEM Input RoM Validation  Deviation (%)
Tensile Strength 118 MPa 110.89 MPa 6.0
Young’s Modulus 6.05 GPa 5.64 GPa 6.7
Density 1.218 g/em? 1.21 g/em? 0.6
Fatigue Strength 42.5 MPa 41.24 MPa 3.0

The results show that the RoM-based values closely follow the FEM input properties, with deviations
remaining below ~7%. This agreement indicates that the compositions predicted by the ANN produce
material properties that are consistent with micromechanical theory. Consequently, the validation
confirms that the ANN not only provides numerically reliable predictions but also maintains physical
feasibility, reinforcing its suitability for bio-composite applications in wind turbine blade design.

4. Conclusion

This study establishes a comprehensive methodology for designing and assessing bio-composite wind
turbine blades by integrating experimental validation, Finite Element Method (FEM) pre-screening,
Artificial Neural Network (ANN) prediction, and Rule of Mixtures (RoM) validation. The framework's
robustness is demonstrated as experimental tensile tests on a 10% pineapple fiber composite validate
the dataset for ANN training, showing only a 10.5% deviation, while FEM pre-screening ensures the
physical plausibility of all input properties, such as a max tip deformation of 0.45 m and a peak von
Mises stress of 1.12x108 Pa. The trained ANN subsequently proves effective as an inverse design tool,
accurately mapping desired mechanical properties back to feasible bio-composite compositions. The
physical meaningfulness of these predictions is confirmed by their strong alignment with established
RoM micromechanical theory, with all deviations remaining below 7%. Therefore, this integrated
approach provides a reliable and comprehensive framework for exploring sustainable material
alternatives, confirming ANN as a powerful tool for inverse design in renewable energy systems.
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