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Abstract. The increasing demand for renewable energy highlights the need for sustainable 

materials in wind turbine blade design. Conventional fiberglass blades, while effective, present 

environmental and disposal challenges, motivating the exploration of bio-composites as greener 

alternatives. This study aims to develop and validate an integrated framework that combines 

experimental validation, Finite Element Method (FEM) pre-screening, Artificial Neural 

Networks (ANN), and Rule of Mixtures (RoM) validation to evaluate the feasibility of bio-fibre 

wind turbine blades Mechanical properties of flax, hemp, sisal, jute, pineapple fiber, and resin 

are obtained from previously published experimental studies available in the literature, with resin 

content fixed at 90% and permutations generated for ANN training. Experimental tensile testing 

on a 90% resin–10% pineapple fiber composite yields 131 MPa, closely matching the 

permutation prediction of 118.6 MPa, confirming dataset reliability. FEM simulations are then 

employed to pre-screen potential maximum performance values within the dataset range, 

ensuring the physical feasibility of ANN input properties. Using these validated inputs, the ANN 

predicts feasible bio-composite compositions, which are further compared against RoM 

estimations. The results show that ANN predictions remain within a 7% deviation from RoM 

values, demonstrating consistency with micromechanical theory. This integrated framework 

highlights that FEM-based input screening enhances ANN prediction reliability, and pineapple-

based bio-composites can serve as sustainable and technically viable alternatives for wind 

turbine blade applications.  
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1.   Introduction  

The global push for renewable energy aims to mitigate fossil fuel depletion and climate change, with 

wind energy playing a pivotal role. As turbine blades grow in size, structural efficiency and material 

sustainability become critical design factors. Conventional fiberglass-based composites pose 

environmental and end-of-life recycling challenges, prompting the need for more sustainable 

alternatives [1]. 

Fiberglass-reinforced composites are difficult to recycle due to energy-intensive processes like 

pyrolysis [2] and mechanical recycling [3], compounded by complex environmental impacts [4] and 

recycling constraints [5], which often result in blades ending up in landfills as large-scale recycling 

remains limited. Life-cycle assessments indicate that carbon fiber production largely drives the global 

warming potential of blades, while natural fiber alternatives like flax and hemp may reduce emissions 

by around 6–8% [1]. 

Bio-composites, using natural fibers such as flax, hemp, jute, sisal, and pineapple leaf fiber, offer 

reduced environmental impact and improved biodegradability [6]. However, their variable mechanical 

properties, moisture sensitivity, and fatigue behavior pose technical challenges. 

Previous studies either conduct FEM-based structural analysis of composite blades or investigate 

natural fiber feasibility for turbine components [7–9]. Yet, these often lack integrated predictive 

modeling and experimental validation. Current ANN approaches for composite materials rarely include 

pre-screening of input values via structural feasibility, reducing their practical reliability. 

This study bridges that gap by integrating structural screening via FEM with ANN-based 

compositional prediction, backed by experimental tensile testing. Mechanical property permutations 

(with fixed 90% resin and varying fibers) are first vetted with FEM using high-performance values 

within the ANN training range. The ANN predicts optimal compositions, which are then subject to FEM 

analysis for deformation and stress verification. This integrated methodology enhances prediction 

credibility and demonstrates pineapple fiber–based bio-composites as a viable, sustainable alternative 

to fiberglass for wind turbine blades. 

2.   Methods 

This study integrates experimental testing, finite element method (FEM) pre-screening, and artificial 

neural network (ANN) prediction to evaluate bio-composite wind turbine blades. The research begins 

with dataset generation through permutation of mechanical property data for flax, jute, hemp, sisal, and 

pineapple fiber combined with 90 percent resin content. Mechanical properties include tensile strength, 

tensile modulus, density, and fatigue strength, which are sourced from literature [10]. Experimental 

tensile testing is performed on a pineapple fiber–resin composite (90 percent resin and 10 percent 

pineapple fiber) to validate the permutation dataset. FEM pre-screening uses potential maximum 

performance values within the range of the ANN training dataset to ensure structural feasibility. The 

ANN predicts optimal fiber compositions, which are validated using the Rule of Mixtures. The overall 

methodology is illustrated in Figure 1. 

 

 
Figure 1. Flow Diagram of the Methodology. 

 

 

2.1.   Experimental Testing (Validation of Permutation Dataset) 

The initial mechanical properties of the base materials are collected from literature [10], including flax, 

jute, hemp, sisal, pineapple fiber, and polyester resin. These properties, which consist of tensile strength, 

Young’s modulus, density, and fatigue strength, are summarized in Table 1. 
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Table 1. Basic Mechanical Properties of Bio-Based Materials [10]. 

No Material 

Tensile 

Strength 

[MPa] 

Tensile 

Modulus 

[GPa] 

Density 

[g/cm3] 

Fatigue 

Strength at 

106 Cycles 

[Mpa] 

1 Flax 343 – 1035 28 – 100 1.45 – 1.55 115 

2 Jute 393 – 773 25 – 55 1.35 – 1.45 85 

3 Hemp 310 – 900 32 – 60 1.45 – 1.55 83 

4 Sisal 248 – 483 9 – 28 1.40 – 1.45 101 

5 Pineapple 118 – 466 4 – 27 1.44 – 1.56 68 

6 Resin 60 – 85 2.5 – 4.0 1.1 – 1.4 35 

 

Based on these properties, a dataset is generated through permutation by combining 90 percent resin 

with 10 percent fiber for each material. The resulting values are presented in Table 2, which provides 

the training dataset for the artificial neural network (ANN). 

 

Table 2. A Dataset That Contains Several Data Points For Training An Artificial Neural Network 

(ANN) That Has Already Been Permuted. 

No Material Percentages 

Tensile 

Strength 

(MPa) 

Tensile 

Modulus 

(GPa) 

Density 

(g/cm³) 

Fatigue 

Strength 

(MPa) 

1 
Flax, 

Resin 
10, 90 106.30 5.68 1.2070 43.00 

2 
Jute, 

Resin 
10, 90 111.30 5.38 1.1970 40.00 

3 
Hemp, 

Resin 
10, 90 103.00 6.08 1.2070 39.80 

4 
Sisal, 

Resin 
10, 90 106.70 3.78 1.2020 41.60 

5 
Pineapple, 

Resin 
10, 90 118.60 5.58 1.2180 38.30 

… … … ... ... ... ... 

3205 

Flax, Jute, 

Hemp, 

Sisal, 

Pineapple, 

Resin 

10, 0, 0, 0, 

0, 90 
106.34 5.49 1.2065 42.86 

 

To ensure the validity of the permutation dataset, an experimental tensile test is performed on a 

pineapple fiber–resin composite with 90 percent resin and 10 percent pineapple fiber. The experimental 

testing serves as a benchmark to confirm that the dataset generated from literature-based permutations 

is consistent with real composite behavior, thereby reinforcing its suitability for ANN training. 

 

2.2.   FEM Pre-Screening 

Finite Element Method simulations are commonly used in the structural analysis to evaluate stress 

distribution and deformation under loading [11]. Finite Element Method (FEM) simulation in this study 

is conducted to pre-screen the dataset and ensure that the input values used for training the Artificial 

Neural Network (ANN) remain within a physically reasonable range. The simulation is performed using 

ANSYS Workbench (Static Structural module). The turbine blade is designed based on the Clark-Y foil, 

and the main geometric parameters are summarized in Table 3. This configuration is adapted from small-

scale wind turbine blade designs reported in the literature [12]. 
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Table 3. Turbine Blade Design Parameters 

Parameter Value 

Airfoil profile Clark-Y 

Blade span 2.4 m 

Chord length root 0.445 m 

Chord length tip 0.15 m 

Winglet Angle 30° 

 

The turbine blade geometry is illustrated in Figure 2a, while the meshed model prepared for the 

simulation is shown in Figure 2b. The geometry is discretized using a tetrahedral mesh with adaptive 

sizing, medium resolution, and fine span angle control. The adopted mesh configuration is summarized 

in Table 4.  

 

  
     a.                 b. 

Figure 2. a. Turbine blade geometry before meshing; b. Meshed turbine blade model 

 

The determination of aerodynamic loads begins with the calculation of the Tip Speed Ratio (TSR), 

which relates the tangential speed at the blade tip to the incoming wind velocity. The TSR is defined in 

Equation (1) [13]: 

 

  =
𝜔𝑅

𝑉
  (1) 

 

where 𝜔 is the angular velocity (rad/s), 𝑅 is the blade length, and 𝑉 is the free-stream wind speed. 

Once the TSR is known, the relative velocity along the blade span, Vrel, can be determined and 

subsequently used to calculate the lift and drag forces. The lift force is obtained using Equation (2) [14]: 

 

 𝐹𝐿 =
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝐶𝐿𝑐𝑅  (2) 

 

while the drag force is determined using Equation (3) [15]: 

 

 𝐹𝐷 =
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝐶𝐷𝑐𝑅  (3) 

 

where 𝜌 is the air density, 𝐶𝐿 and 𝐶𝐷 are the lift and drag coefficients, and 𝑐 is the chord length. 

The centrifugal force is applied as a distributed body load and is calculated using Equation (4): 

 

 𝐹𝑐𝑒𝑛𝑡 = 𝜌𝑚𝐴𝑐𝑟𝑜𝑠𝑠𝜔
2𝑅  (4) 

 

where 𝜌𝑚 is the material density, 𝐴𝑐𝑟𝑜𝑠𝑠 is the average cross-sectional area, 𝜔 is the angular velocity, 

and 𝑅 is the blade length. The blade’s self-weight is considered using Equation (5): 

 

 𝑊 = 𝑚 × 𝑔  (5) 
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where 𝑚 is the blade mass obtained from the geometry and material density, and 𝑔 is the gravitational 

acceleration (9.81 m/s²). 

 

Table 4. Mesh settings for FEM simulation 

Parameter Value 

Adaptive Sizing Yes 

Resolution 5 (medium) 

Transition Fast 

Span angle center Fine 

Minimum edge length 7.6681 × 10^-2 m 

Average surface area 2.4072 × 10^-2 m² 

Bounding box diagonal 0.60949 m 

 

The material properties assigned in the FEM simulation are chosen as potential maximum values that 

still fall within the dataset range derived from literature-based permutations used for ANN training. 

These values include a density of 1.218 g/cm³, Young’s modulus of 6050 MPa, Poisson’s ratio of 0.003, 

bulk modulus of 2.03 × 10⁹ Pa, shear modulus of 3.02 × 10⁹ Pa, tensile yield strength of 118 MPa, and 

fatigue strength of 42.5 MPa at 10⁶ cycles. Since all parameters remain within the ANN dataset 

boundaries, the FEM setup ensures that the input data for ANN training are technically valid and avoid 

extreme or non-physical assumptions. 

Boundary conditions are applied to represent the actual operating state of the blade. The blade root 

is constrained as a fixed support to simulate its attachment to the hub. The aerodynamic forces, namely 

the lift force 𝐹𝐿 (Equation 2) and drag force 𝐹𝐷 (Equation 3), are applied as surface pressures acting 

normal and tangential to the blade surface, respectively. The centrifugal force 𝐹𝑐𝑒𝑛𝑡 (Equation 4) is 

applied as a body force distributed radially along the blade span. In addition, the blade self-weight 𝑊 

(Equation 5) is applied as a gravitational load acting uniformly on the entire geometry. 

 

2.3.   Artificial Neural Network (ANN) Modeling and Prediction 

Artificial Neural Networks (ANN) are computational models inspired by the human brain that are widely 

used in engineering for modeling complex relationships between input and output variables [16]. In the 

context of wind turbine blade analysis, ANN can learn from experimental or simulated data to predict 

material properties or performance metrics with high accuracy, even when nonlinearities and 

interactions among variables are present [17]. Artificial Neural Network (ANN) in this study is designed 

to predict the composition percentage of bio-composite materials for wind turbine blades. To ensure 

quality and consistency in model training, normalization is first applied to the input features [18]. This 

step equalizes the scale of different mechanical properties preventing any single attribute from 

disproportionately influencing the learning process. 

The network architecture consists of an input layer with four neurons representing tensile strength, 

Young’s modulus, density, and fatigue strength. Two hidden layers with 64 neurons each are applied to 

capture nonlinear relationships between the mechanical properties and the material composition. 

Rectified Linear Unit (ReLU) activation functions are employed in the hidden layers to enhance learning 

efficiency, while a linear activation function is used in the output layer. The ReLU activation is 

mathematically defined in Equation (6) [19] as: 

 

 𝑓(𝑥) = max⁡(0, 𝑥)  (6) 

The output layer contains five neurons, corresponding to the predicted percentage of flax, jute, hemp, 

sisal, and pineapple fibers. The overall structure of the ANN is presented in Figure 3. 
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Figure 3. The structure of ANN 

 

The model is trained using the Adam optimizer with Mean Squared Error (MSE) and Mean Absolute 

Error (MAE) as the evaluation metrics. These metrics provide a comprehensive assessment of the 

model’s prediction accuracy by quantifying the gap between predicted and actual values. MSE 

highlights larger deviations through squaring, while MAE represents the average error magnitude [20]. 

Training is performed over sufficient epochs with an appropriate batch size to ensure convergence while 

maintaining computational efficiency. To improve the robustness of the model evaluation, a five-fold 

cross-validation strategy is applied [21]. Furthermore, the ANN predictions are validated against the 

Rule of Mixtures to ensure consistency with established composite material theory. 

 

2.4.   Rule of Mixtures Validation 

To further validate the performance of the Artificial Neural Network (ANN) model, the predicted 

mechanical properties of bio-composites are compared with theoretical estimations obtained from the 

Rule of Mixtures (ROM). The Rule of Mixtures (RoM) is a widely adopted micromechanical model that 

provides first-order estimations of composite properties based on fiber and matrix volume fractions [22]. 

Although RoM has limitations in capturing factors such as fiber orientation, voids, and misalignments 

[23], it remains a useful benchmark for validating ANN predictions. In this study, RoM serves as a 

theoretical reference to ensure that the ANN-predicted compositions yield physically reasonable 

properties within an acceptable engineering margin. Specifically, it is applied to calculate tensile 

strength, Young’s modulus, density, and fatigue strength of the bio-composites, as shown in Equation 

(7) [24]: 

 

 𝑃𝑐 = 𝑉𝑓𝑃𝑓 + 𝑉𝑚𝑃𝑚  (7) 

 

where 𝑃𝑐 is the composite property, 𝑉𝑓 and 𝑉𝑚 are the volume fractions of the fiber and matrix, 

respectively, and 𝑃𝑓 and 𝑃𝑚 are the corresponding material properties. 

The ANN-predicted values are subsequently compared with the ROM-estimated values to evaluate 

their consistency. A close agreement between the two approaches indicates that the ANN model is 

capable of generating predictions that align with established micromechanical theory, thereby 

reinforcing the reliability of the proposed method. 
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3.   Results and Discussion 

This section presents the outcomes of experimental validation, finite element method (FEM) pre-

screening, artificial neural network (ANN) prediction, and Rule of Mixtures (ROM) validation. The 

results are discussed sequentially to ensure the reliability of the dataset, the feasibility of FEM inputs, 

and the consistency of ANN predictions with established micromechanical theory. 

3.1.   Experimental Results and Validation 

The experimental validation is conducted to confirm the reliability of the permutation-based dataset used 

for ANN training. Among the tested specimens, the 90% resin + 10% pineapple fiber composition is 

selected as the benchmark for validation, since it directly corresponds to the dataset permutation. All 

specimens are prepared according to ASTM D638 standards, ensuring consistent geometry and 

comparability. 

Figure 4a shows the dog-bone specimens prepared for tensile testing, including fiberglass–resin, 

braided pineapple fiber–resin, and unbraided pineapple fiber–resin. Although several types are 

fabricated, the validation focuses specifically on the pineapple–resin composite with a 1:9 fiber-to-resin 

ratio. The post-test condition is presented in Figure 4b, where the pineapple–resin specimens exhibit 

ductile failure patterns, reflecting the influence of natural fibers. 

 

  
a.        b. 

Figure 4. a. Dog-bone specimens for tensile testing; bottom to top: fiberglass–resin, unbraided 

pineapple–resin, braided pineapple–resin; b. Post-tensile test specimens showing failure patterns; 

bottom to top: fiberglass–resin, braided pineapple–resin, unbraided pineapple–resin 

 

The tensile strength predicted by the permutation dataset for the pineapple–resin composition is 

118.60 MPa, while the experimental result yields 131 MPa. Table 5 presents the comparison. 

 

Table 5. Comparison between dataset prediction and experimental testing. 

Material 

Composition 

Tensile Strength 

(Dataset) 

Tensile Strength 

(Experimental) 

90% Resin + 10% Pineapple 118.60 MPa 131.00 MPa 

 

The difference between dataset prediction and experimental testing is approximately 10.5%. This 

deviation is acceptable, given the natural variability of bio-based fibers and testing uncertainties. Figure 

5 illustrates this comparison, highlighting that the permutation-based dataset provides a sufficiently 

accurate approximation of real composite behavior. 

This validation confirms that the dataset construction approach is robust and reliable, providing a 

sound basis for ANN training in predicting the performance of bio-composite materials for wind turbine 

blade applications. 
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Figure 5. Tensile strength comparison between dataset prediction and experimental testing for 90% 

resin + 10% pineapple fiber composite. 

 

3.2.   FEM Pre-Screening 

The FEM simulation is conducted by applying the boundary conditions formulated in Section 2.2. The 

computed values for aerodynamic and structural loads are: lift force FL ≈ 714.16 N, drag force 

FD ≈ 8.18 N, centrifugal force Fcent ≈ 110.18N, and blade self-weight W ≈ 3.65N. These loads are applied 

as surface pressures (for FL  and FD), a distributed body force (for Fcent), and gravitational load (for W). 

The structural response shows a maximum total deformation of 0.45042 m and a maximum 

equivalent von Mises stress of 1.1241 × 10⁸ Pa. The deformation contour is presented in Figure 6a, while 

the von Mises stress distribution is shown in Figure 6b. The deformation predominantly occurs at the 

blade tip, whereas stress concentration is highest at the blade root, which aligns with the expected 

mechanical behavior of rotating blades under aerodynamic and centrifugal loading. 

 

 
a. 

 

       
b. 

Figure 6. a. Total deformation contour of turbine blade; b. Von Mises stress distribution of turbine 

blade 

 



  

0260109-09 

 

The pre-screening FEM yields a tip deformation of 0.450 m and a peak von Mises stress of 1.12×10⁸ 

Pa. Relative to Ahmed et al. (2023) [25], who report 0.635 m deformation and 43.7 MPa stress for a 

composite blade (0.876 m and 39 MPa for aluminium), our deformation is ~29% lower whereas the peak 

stress is ~2.6× higher. The discrepancy is attributable to differences in blade geometry, boundary-

condition implementation (surface pressure vs. point/distributed loads), and material parameters. 

Despite these differences, the results remain within a physically plausible range for small-scale blades 

and are therefore suitable as pre-screening inputs to ANN. 

 

3.3.   Artificial Neural Network (ANN) Prediction Results 

The artificial neural network (ANN) is trained using the permutation-based dataset introduced in Section 

2.1, with prior screening by FEM to ensure realistic input values. The model performance is evaluated 

using mean squared error (MSE) and mean absolute error (MAE), as shown in Figure 7. The training 

and validation curves indicate a stable convergence, with the validation error closely following the 

training error, confirming that the model generalizes well without significant overfitting. 

 

 
Figure 7. Training and validation loss curves of the ANN model evaluated using mean squared error 

(MSE) and mean absolute error (MAE), indicating stable convergence and good generalization. 

 

Using the input properties obtained from FEM pre-screening (tensile strength = 118 MPa, Young’s 

modulus = 6050 MPa, density = 1.218 g/cm³, fatigue strength = 42.5 MPa), the ANN predicts the 

corresponding material composition. The results are summarized in Table 6, which presents the weight 

percentages of each fiber and resin. The prediction demonstrates the ability of the ANN to function as 

an inverse design tool, where validated mechanical properties from FEM are mapped back into feasible 

bio-composite compositions. 

 

Table 6. Predicted material composition from ANN based on FEM pre-screened properties 

Flax (%) Jute (%) Hemp (%) Sisal (%) Pineapple (%) Resin (%) 

6.27 0.00 0.00 0.00 3.73 90.00 

 

 

3.4.   Rule of Mixture Validation 

The ANN predictions are validated by comparing the corresponding material properties with theoretical 

estimations obtained using the Rule of Mixtures (RoM), as described in Section 2.4. Table 7 summarizes 

the comparison between the FEM input values and RoM re-estimations for tensile strength, Young’s 

modulus, density, and fatigue strength. The deviations between the FEM input and the RoM validation 

are calculated using Equation (7): 

 

 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡(%) =
|𝑃𝑅𝑜𝑀−𝑃𝐹𝐸𝑀|

𝑃𝐹𝐸𝑀
× 100  (7) 
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Table 7. Comparison between ANN prediction and RoM validation 

Property FEM Input RoM Validation Deviation (%) 

Tensile Strength 118 MPa 110.89 MPa 6.0 

Young’s Modulus 6.05 GPa 5.64 GPa 6.7 

Density 1.218 g/cm³ 1.21 g/cm³ 0.6 

Fatigue Strength 42.5 MPa 41.24 MPa 3.0 

 

The results show that the RoM-based values closely follow the FEM input properties, with deviations 

remaining below ~7%. This agreement indicates that the compositions predicted by the ANN produce 

material properties that are consistent with micromechanical theory. Consequently, the validation 

confirms that the ANN not only provides numerically reliable predictions but also maintains physical 

feasibility, reinforcing its suitability for bio-composite applications in wind turbine blade design. 

 

4.   Conclusion 

This study establishes a comprehensive methodology for designing and assessing bio-composite wind 

turbine blades by integrating experimental validation, Finite Element Method (FEM) pre-screening, 

Artificial Neural Network (ANN) prediction, and Rule of Mixtures (RoM) validation. The framework's 

robustness is demonstrated as experimental tensile tests on a 10% pineapple fiber composite validate 

the dataset for ANN training, showing only a 10.5% deviation, while FEM pre-screening ensures the 

physical plausibility of all input properties, such as a max tip deformation of 0.45 m and a peak von 

Mises stress of 1.12×108 Pa. The trained ANN subsequently proves effective as an inverse design tool, 

accurately mapping desired mechanical properties back to feasible bio-composite compositions. The 

physical meaningfulness of these predictions is confirmed by their strong alignment with established 

RoM micromechanical theory, with all deviations remaining below 7%. Therefore, this integrated 

approach provides a reliable and comprehensive framework for exploring sustainable material 

alternatives, confirming ANN as a powerful tool for inverse design in renewable energy systems. 
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