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Abstract. Academic stress classification is a significant challenge in education, as previous
approaches often rely on opaque models or require large training datasets. This study develops
a hybrid expert system for academic stress classification using forward chaining and Certainty
Factor (CF) score fallback. The system was tested on 100 student cases with the following label
distributions: Mild (48), Moderate (37), and High (13), classified independently by three experts.
Label validity was tested using pairwise Cohen's kappa, yielding a mean value of 0.8280. The
system achieved 100% accuracy, a 32% improvement over the classical forward chaining
baseline (68%). Statistical evaluation using Wilson score intervals demonstrated high
consistency across all key metrics (accuracy, precision, recall, F1-score) with a 95% CI of
[96.4%, 100%]. The system is designed with an explicit and auditable rule structure, enabling
deterministic classification based on symptoms. Although validation results are high, the
unbalanced label distribution opens up the potential for spectrum bias. Going forward, the system
is planned to be tested across institutions, assessed for integration with counseling services, and
compared with other hybrid approaches.
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1. Introduction
Student mental health is a critical issue in higher education, both globally and in Indonesia. Students are
undergoing a complex life transition, where academic demands, social pressures, and uncertainty about
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the future often lead to significant stress [1]. Unfortunately, many students are unaware of the severity
of their stress and thus do not seek help until their condition worsens. Furthermore, the persistent stigma
surrounding mental health counseling services discourages students from consulting professionals [2].
Early intervention is crucial to prevent more serious psychological impacts.

Unaddressed academic stress has been shown to directly impact student performance and academic
success [3]. High levels of stress can reduce learning motivation, impair concentration, and make it
difficult to complete academic assignments, including theses or final projects [4]. In many cases,
increasing psychological stress without adequate support leads to burnout, delayed graduation, and even
the decision to drop out of college [5]. National data highlights that psychological and academic factors
are the dominant causes of high student dropout rates in Indonesia, with hundreds of thousands of cases
annually [6]. This underscores the urgent need for an early detection system that can help students
recognize their stress levels before they develop into more serious problems [7].

To address these challenges, expert systems have emerged as a promising technological solution [8],
[9]. These systems enable an automated, knowledge-based diagnostic process [10], supporting the early
detection and systematic reporting of psychological conditions [11]. In recent years, various studies have
developed forward chaining-based expert systems to aid diagnostic and decision-making processes in
various domains. For example, an expert system for detecting potassium deficiency in cocoa plants
achieved 88% accuracy in leaf image classification based on RGB color channels [12], with outputs in
the form of specific fertilizer dosage recommendations (Urea, SP-36, MOP) for plant recovery. In the
health sector, forward chaining was used in the diagnosis of leptospirosis with 91.3% accuracy and an
average inference time of 0.8 seconds [13], producing outputs in the form of severity classifications and
medical follow-up recommendations. A heart disease diagnosis system combining forward chaining
with fuzzy logic achieved 94.6% accuracy [14], with outputs in the form of risk classifications (low,
high, risky) and therapy recommendations. In the FITTER Forum, expert systems play a role in
providing guidance on injection site rotation, lipodystrophy detection, and appropriate injection device
selection, with a structured, best-practice, education-based approach. [15]. Forward chaining is also
considered superior in terms of privacy and auditability for medical expert systems, with a data breach
risk of <1% compared to black-box models [16], making it a safe and transparent option for clinical
applications. In education, the combination of forward and backward chaining has improved students'
metacognitive scores by 18% through adaptive intelligent tutoring [17], with personalized learning
strategies based on student responses. Meanwhile, in the financial domain, a forward chaining-based
expert system can predict stock market trends with 89.2% accuracy and an RMSE of 0.034 [18],
producing buy/sell signals and investment risk analysis.

While the forward chaining approach has proven effective in various contexts, these systems
typically focus on domains with relatively stable and deterministic symptom structures. In contrast,
expert systems for diagnosing student stress face more complex and dynamic challenges. Stress
symptoms are often multidimensional and overlapping, influenced by psychosocial factors that are not
always explicit [19]. Therefore, developing an expert system for this domain requires an inference
approach that is not only rule-based but also accounts for symptom weighting, ambiguity, and the
possibility of non-deterministic combinations. The system developed in this study integrates forward
chaining with a score-based or certainty factor approach to handle the complexity of stress symptoms
more flexibly and adaptively.

Several expert system studies have incorporated scoring, weighting, or certainty factors. For instance,
[20] developed a rule-based system with CF to differentiate Bipolar Disorder and Major Depressive
Disorder, using 17 clinical symptoms with an accuracy of 93.33%. [21] combined CF with spatial
weighting to evaluate geological disaster vulnerability, resulting in a more accurate and interpretable
evaluation. In another medical domain, [22] designed a web-based expert system to diagnose abdominal
colic in infants using a combination of FC, CF, and interpolation, achieving 96% accuracy, higher than
the Dempster-Shafer method. Meanwhile, [23] used Case-Based Reasoning (CBR) for lung cancer
diagnosis, achieving 94.47%-100% accuracy on two different datasets. These studies demonstrate that
incorporating weighting and CF can enhance the accuracy and flexibility of expert systems in handling
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variations in psychological symptoms, strengthening their role as initial screening tools.

However, while these studies show the effectiveness of scoring and weighting, they still have
limitations in addressing the complexity of non-deterministic and overlapping symptoms common in
student academic stress. The systems developed by [20], [21], and [22] rely on direct matching, and [23]
uses a similarity-based approach dependent on historical data. None of these studies explicitly combines
a rule-based inference mechanism with a score-based fallback mechanism to dynamically handle input
mismatches.

This is the novelty of our study: by integrating a rule-based forward chaining engine with a
confidence-based score weighting mechanism, our expert system can provide a flexible diagnosis of
stress levels even when user input does not explicitly meet the rules' premises. This hybrid approach not
only improves the accuracy and transparency of the inference process but also allows the system to
remain operational and reliable under ambiguous or partial input conditions.

Based on this background, the purpose of this study is to design and evaluate an expert system based
on forward chaining and adaptive belief-based score weighting to diagnose student stress levels. This
system was developed to fill the gap in previous research by offering a hybrid approach that is more
responsive to the multidimensional, overlapping, and often non-explicit nature of stress symptoms.

2. Methods

This expert system is designed using a hybrid approach that combines a rule-based forward chaining
inference engine with a certainty factor (CF)-based score-weighting fallback mechanism. The primary
goal of this approach is to improve diagnostic accuracy and flexibility, particularly when dealing with
non-explicit, overlapping, or partial symptom input.

2.1. Symptoms and Weight

a. Symptom Collection

A total of 60 symptoms of academic stress were collected through a literature review and interviews
with psychologists (experts), field observations, and open-ended interviews with students. The list of
symptoms covered four main domains: physiological (e.g., muscle pain, nausea, sleep disturbances),
emotional (e.g., anxiety, frustration, loss of motivation), cognitive (e.g., difficulty thinking,
forgetfulness, time disorientation), and behavioral (e.g., procrastination, avoidance, pacing) [24].

b. Number and Qualifications of Experts
The assessment was conducted by three experts:
* Experts 1 and 2: Clinical psychologists with >5 years of experience in student counseling.
* Expert 3: Student affairs expert with >8 years of experience in academic guidance and observing
student behavior.

c. Determination of Trust Score (Certainty Factor)

Each expert assigned a certainty factor (CF) value to each symptom [25], which is the level of
confidence that the symptom indicates mild (T1), moderate (T2), or severe (T3) stress. The CF value
assessment in this study refers to an expert-based heuristic approach as described by [26]. To maintain
uniformity of perception among experts, the CF value guideline shown in Table 1 was used. This
guideline explains the level of confidence regarding the relevance of the symptom to academic stress
and provides a clinical description for each value range.

Table 1. Certainty Factor (CF) Value Guide Table
Nilai  Expert Confidence Level Clinical Description of Symptoms

CF

0.9 Very confident Symptoms are very distinctive, dominant, and almost
always present in cases of severe stress

0.8 Confident Symptoms are strong and frequent, highly relevant to

academic stress
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Nilai  Expert Confidence Level
CF

Clinical Description of Symptoms

0.7 Moderately confident

Symptoms are common and relevant, but not exclusive to
academic stress

0.6 Uncertain positive

Symptoms may be relevant, but may occur in other
conditions or are inconsistent

0.4 Weak/atypical

Symptoms are nonspecific, occur infrequently, or do not
sufficiently support a strong inference

Note: CF values <0.4 were not used as they were deemed insufficient to support expert system inference.
This guideline was communicated to all experts prior to the assessment process to ensure consistency

of perception and system validity.

CF values were determined through: independent assessment by each expert, aggregation of values
(average), and consensus discussion for symptoms with significant differences. Initial CF values from
each expert were compiled and analyzed using an average aggregation approach. For symptoms with

significant differences, consensus discuss

ion was conducted to harmonize perceptions. The final CF

values were used as the basis for inference in the expert system. Table 2 below shows examples of ten
of the 60 representative symptoms, along with the CF values from each expert, the aggregation results,

and the final consensus scores. This table
perception alignment process.

Table 2. Ten Representative Symptoms

explicitly demonstrates the variation in assessments and the

of the Results of Aggregation and Consensus of Certainty

Factor (CF) Values

Code Symptoms

CF CF CF Average Consensus
Expert 1 Expert?2 Expert3 CF CF

Sudden and intense feelings of

J1 anxiety 0.8 0.9 0.8 0.83 0.8
J5  Loss of motivation to study 0.9 0.9 0.8 0.87 0.9
J13  Frequent muscle aches/headaches 0.6 05 0.7 0.60 0.6
118 Efﬁgﬂ%éggeg g‘éggl‘g’he” 0.9 0.8 0.9 087 09
J25  Reluctant to talk about your thesis 0.4 0.5 0.4 0.43 0.4
134 Cold sweats while working on your 0.9 0.9 0.9 0.90 0.9
thesis
J43  Decreased quality of work done 0.8 0.9 0.8 0.83 0.8
J52  Suicidal thoughts 0.4 0.5 0.4 0.43 0.4
J55  Feeling tense 0.9 0.8 0.9 0.87 0.9
J60 Constant procrastination 0.6 0.7 0.6 0.63 0.6

Note: Consensus CF values were determined through averaging and discussion for symptoms with

significant differences.

d. Inter-Expert Agreement

To measure the consistency of classification between experts, a Cohen's kappa (k) analysis was
conducted on 60 academic stress symptoms. The results showed a k value of 0.839, indicating a very
high level of agreement and reliable classification validity. The calculation was based on the distribution

of T1/T2/T3 classifications from each exp

ert, with an actual agreement proportion of 90%.
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The Cohen's kappa (k) calculation in this study refers to the approach described by [27], which
emphasizes that k is a measure of inter-rater reliability for categorical data. The k value is calculated
based on the proportion of actual agreement and random expectations, as formulated by Cohen (1960)
and developed in recent studies. Interpretation of the k value follows international standards, where a
value >0.75 indicates a very high level of agreement.

To provide a concrete illustration of the assessment process and classification results between
experts, Table 3 displays the ten most representative symptoms of academic stress. These symptoms
were selected based on their domain variation (physiological, emotional, cognitive, and behavioral),
severity, and distribution of certainty factor (CF) values.

Table 3. Representative: CF Assessment and Inter-Expert Classification

Code Symptoms flxpert ;Expert glxpert Consensus zcl;)re
J1 Sudden and intense feelings of anxiety Tl T1 Tl T1 0.8
J5 Loss of motivation to study T3 T3 T3 T3 0.9
J13  Frequent muscle aches/headaches T1 T3 T1 T1/T3 0.6
J18  Feeling lonely even when surrounded by people T3 T3 T3 T3 0.9
J25  Reluctant to talk about your thesis T2 T2 T2 T2 0.4
J34  Cold sweats while working on your thesis T3 T3 T3 T3 0.9
J43  Decreased quality of work done T2 T2 T2 T2 0.9
J52  Suicidal thoughts T3 T3 T3 T3 0.4
J55  Feeling tense T1 T1 T1 T1 0.9
J60  Constant procrastination T1 T1 T1 T1 0.6

e. Distribution of Consensus Classifications Among Experts

To provide a quantitative overview of the expert system's scope, a summary of the final
classifications of 60 academic stress symptoms was conducted. This classification reflects the consensus
among experts following the assessment and discussion process. The following table 4 shows the
number of symptoms categorized as mild (T1), moderate (T2), severe (T3), and mixed classifications
due to differences in perception among experts. This classification distribution indicates that the expert
system has balanced coverage across varying levels of academic stress intensity. The proportion of
symptoms with mixed classifications also demonstrates the system's flexibility in handling ambiguity
and differences in perception between experts.

Table 4. Distribution of Consensus Classification Among Experts

Consensus Classification g;nT[?t?)rng Percentage (%0)
T1 11 18.3%

T2 17 28.3%

T3 23 38.3%

T1/T2 2 3.3%

TL/T3 1 1.7%

T2/T3 3 5.0%

T1/T2/T3 3 5.0%

Total 60 100%

02504036-05



2.1. Knowledge Base

The knowledge base consists of 35 active rules, compiled based on the classification results and
distribution of CF values from three experts (two psychologists and one student affairs expert), as well
as references from academic psychology literature. Each rule consists of a validated combination of
symptoms associated with stress levels (T1, T2, T3). The rules are structured in a forward chaining
format, but the system does not rely entirely on explicit matching. The following table shows 10
representative rules out of the 35 active rules used in the expert system, including the resulting
combinations of symptoms and stress levels. A complete list is available on (https://github.com/adhika-
pramita/rule-stress-level/blob/main/rules-stress-level.xlsx).

Table 5. Ten representative rules in expert systems

No Stress
Rule Rule (If And Then) Level

1 J1,7J2,J3 Mild

5 J6, J9, J10, J15, J16, J21, J23 Moderate
10 J10, J24, J36, J40, J43 High

11 J16, J45, J4,J7, J9, J14, J18, J20, J22, J37, J40, J56 High

21 J9, J16, J26 Mild

22 J2,J36, J44 Mild

23 J4,36,J7,J15, J18, J23, J41, J53 Moderate
31 J1,J2,J3,J6,J11, J13, J16 High

32 J4,J17,J22, J36 Mild

35 J13,J21, 71, J2, J16, J23, J29 Moderate

Conlflict resolution occurs when more than one rule is met, with the system selecting a diagnosis based
on the priority of intensity or number of matching symptoms. In a hybrid approach, conflicts are resolved
through a CF scoring mechanism. Knowledge base maintenance is performed periodically through rule
audits, structural revisions, and the addition of new rules based on actual case data and expert input.

2.2. Forward Chaining Inference Mechanism

This expert system uses a forward chaining approach as its primary inference pathway, a reasoning
process that moves from user-provided facts (in the form of symptoms) to a conclusion (stress level).
Rule premises are combinations of symptoms confirmed by educational psychology experts and serve
as the knowledge base, while their consequences are classifications of stress levels: mild, moderate, or
severe. These rules form the primary basis of the system's reasoning process.

When a user selects a set of symptoms, the system searches for rules whose premises match the
combination of symptoms. If a matching rule is found, the system immediately assigns a stress level
based on the consequences of that rule. If no explicit match is found, the system resorts to a fallback
mechanism based on certainty factor (CF) score weighting, which is explained in the next subsection.

2.3.  Score-Weighted Fallback Mechanism
If no identically matching rule is found in the forward chaining process, the system will resort to a score-
weighted fallback mechanism using Certainty Factor (CF) values. This mechanism is designed to handle
cases where the symptom input does not fully satisfy the rule's premises but remains relevant to the
expert-defined stress classification. Each symptom in the knowledge base has a CF value between 0.4
and 0.9, determined by consensus of three experts. This value reflects the symptom'’s contribution to
each stress level: mild, moderate, or severe. Scoring Steps:
1. Selected Symptom Identification

The system collects all symptoms selected by the user:
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[G={9_.1,9.2, ..,9.n}] 1)
2. Summing CF Scores per Domain
For each stress level (D\in {T1, T2, T3} ), the system calculates a total CF score as follows:
[ CF_D =\sum_{g_i\in D} CF(g_i) ] 2
Where:
( CF_D) is the total score for level (D)
('g_i) is the i-th symptom belonging to level (D)

3. Diagnosis Determination

The system assigns a stress level based on the level with the highest total CF score:

[ \text{Stress Level} =\arg\max_{D \in {T1, T2, T3}} CF_D ] 3)

4. Resolution: No Diagnosis

if there are no relevant symptoms If no symptoms are detected or inputted or selected, the system

outputs: [ \text{Stress Level} = \text{No diagnosis} ]
5. Ambiguity Resolution

If two levels have the same CF score, the system selects the lower stress level first.

This approach follows the principle of clinical caution, where initial intervention should begin with

the mildest level. If the condition does not improve, intervention can be gradually increased.

The priority order used is:

[ \text{Mild} > \text{Moderate} > \text{High} ] (G))

Case Study Resolution
A user selects the following six symptoms (Table 6):
Table 6. Case Study

Symptoms Stress Level Score CF

J2 Mild 0.7
J9 Moderate 0.8
J16 Moderate 0.6
J22 Mild 0.5
J28 High 0.9
J40 High 0.8

Stress Score Calculation:

 Mild (T1):

[CF {T1}=0.7+05=1.2]

* Moderate (T2):

[CF {T2}=08+0.6=14]

« High (T3):

[CF {T3}=09+08=17]

Diagnosis Results:

Because the highest score is at the High level (1.7), the system determines:
[ \text{Stress Level} = \text{High} ]

Ambiguity Case Example

If the user selects symptoms that result in a score of:
*MildCF=1.5

* Moderate CF = 1.5

*HighCF=1.2

Then the system will choose: [ \text{Stress Level} = \text{Mild} ]
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Because the system follows the precautionary principle and chooses the lower stress level when the
score is tied

The inference flow of the developed expert system is visually explained through the diagram in
Figure 1. It begins with forward chaining rule matching and continues with a fallback scoring
mechanism if no identical matching rule is found. This diagram illustrates the integration between the
deterministic approach and score-based weighting in the system's reasoning process.

Input
*
Rule Matching
(Forward Chaining)

Score V\‘/eighting
(Fallback)
+
Compute scores
-

v

Stress Level —

Figure 1. The Steps of the Hybrid Forward Chaining and Score

2.4, Data and Participants

a. Inclusion and Exclusion Criteria

This study involved participants recruited using a purposive sampling technique, with the following
inclusion criteria:

* Active students of STT Ronggolawe from the Informatics, Mechanical Engineering, Civil

Engineering, and Electrical Engineering study programs

* Alumni who have graduated within the past year

» Aged between 18 and 30 years

» Willing to complete the questionnaire in full
Exclusion criteria included:

* Respondents who did not complete the questionnaire

* Duplicate or invalid data

b. Participant Demographics
A total of 100 respondents participated in this study, with the following demographic distribution
(Table 7):
Table 7. Demographic Distribution

Characteristics Category Number (n) Percentage (%)
Gender Male 68 68%
Female 32 32%
Study Program Informatics 31 31%
e S
Age Range Civil Engineering 29 29%
Characteristics Electrical Engineering 13 13%
Gender 18-30 years old 100 100%
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c. Ethics Procedures and Approval

This research has obtained official permission from STT Ronggolawe through an institutional
research permit. Participants were recruited voluntarily and provided access to the online questionnaire
link without coercion, with the assumption that completing the questionnaire indicated implicit consent
to participate. Before completing the questionnaire, all respondents received an informal explanation of
the research objectives and procedures through an introduction in a Google Form. The Student Stress
Symptoms Questionnaire was accessed through the Google Form link
(https://forms.gle/8ardaEtyz4qURRSHA). The collected data was then exported and input into a web-
based hybrid expert system, which combines forward chaining and weighted scoring mechanisms.
Before being processed by the system, all responses were pre-assessed by an educational psychology
expert. The collected data is kept confidential and will only be used for academic analysis purposes.

d. Handling Missing Data

All incoming data was checked for completeness and validity. Data that was incomplete, duplicate,
or did not meet the inclusion criteria was excluded from the analysis. This study found no significant
missing data, so all 100 respondents were deemed valid and used in the expert system inference process.

2.5.  Validation

Expert system validation was conducted through a functional verification approach, focusing on the
conformity of the system's decisions to expert classifications and auditing the inference logic. The
system did not undergo a statistical training process like machine learning models (k-fold, training set,
test set, or model fitting are irrelevant for expert systems); the knowledge base was pre-established
through expert consensus, and inference was performed deterministically based on rules and certainty
factor (CF) values.

A total of 100 cases from respondents were first assessed by three independent experts. Each expert
assigned a stress level classification (mild, moderate, high) or (T1, T2, T3) based on the combination of
symptoms selected by the respondents. After the expert assessments were completed, all cases were run
through the hybrid expert system. The system's classification results were then compared with the
classifications from the three experts. Validation was conducted based on the majority agreement
principle, namely:

» If the system's output matches at least two of the three experts, the case is declared valid.
» If the system's output differs from the majority of experts, the case is declared invalid, and an audit
was conducted of:
* Rules active in inference
» Distribution of certainty factor (CF) values

2.6.  Evaluation

Expert system performance evaluation is conducted by measuring the conformity of the system's output
to expert classifications, using standard classification metrics adapted for the context of functional
verification. Although the system does not undergo statistical training, these metrics are still used to
provide a quantitative overview of the system's accuracy and consistency.

a. Evaluation Metrics
Evaluation metrics are calculated based on a tabulation of valid and invalid cases, with reference to
the classification results of three experts. Validation is performed based on the majority principle (at
least two experts agree), and the metrics are calculated as follows:
* Accuracy
The proportion of total cases where the system's output agrees with the majority of experts.
* Precision
The proportion of the system's correct classifications among all classifications provided by the
system for a given stress level.
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* Recall
The proportion of cases that should have been classified as a given stress level that were
successfully recognized by the system.

* F1 Score
The harmonic mean of precision and recall, used to assess the balance between classification
accuracy and completeness.

b. Confidence Interval

To provide a statistical estimate of the stability of a metric, a Confidence Interval (CI) is calculated.
The range of accuracy, precision, recall, and F1 score values with a specific confidence level (e.g., 95%),
using the Wilson score interval approach.

3. Results and Discussion

3.1 Expert Assessment and Distribution of Stress Levels

Before testing the hybrid system, which combines a rule-based forward chaining mechanism with a
certainty factor (CF) fallback scoring mechanism, 100 cases were manually assessed by three
independent experts. Each expert assigned a stress level based on the symptoms present in each
respondent. Decisions were made through majority classification (>2 experts agreeing on the same
level). The results of these decisions were used as the primary reference in the system validation process.
Figure 2 below presents the distribution of expert classifications for the 100 cases based on stress level.

60
48

50

20 37

30

20 13

0 e

MILD MODERATE HIGH NO DIAGNOSIS

Figure 2. Distribution Graph of Initial Classification by Experts Based on Stress Level

The visualization shows that the majority of cases were classified as Mild (48%), followed by
Moderate (37%), and High (13%). Two cases did not meet the diagnostic criteria because no symptoms
were reported or selected, and were therefore classified as “No Diagnosis.” Table 8 below presents five
examples from 100 cases to demonstrate how majority agreement classification was determined based
on individual expert assessments.

Table 8. Expert Assessment and Majority Agreement Results on Five Representative Cases

Id Majority

case Stress symptoms Expert1 Expert2 Expert3 Agreement
J10, J13, J15, J17, J21,

1 J26, J36, J56 Moderate Mild Mild Mild

9 J2,J10,J12,J32,J36,J51  High High Moderate High

30  J56,J32, J54, J57 Moderate Moderate Moderate Moderate

No No No No
39 - diagnosis diagnosis diagnosis diagnosis
88  J36,J44 Mild Mild Mild Mild
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3.2. Expert Validation of System Diagnosis Results

To ensure the accuracy and reliability of the developed diagnostic system, a validation process was
conducted by three independent experts, namely by comparing the system diagnosis and the expert
assessment of 100 cases (respondents). Table 9 presents five of the 100 cases, which showed symptoms,
the system diagnosis, the expert diagnosis (majority agreement results), and the final validation status.

Table 9. Expert Validation of System Diagnosis (5 Case Examples)

Id System Expert
case Stress symptoms Diagnosis Diagnosis Conclusion
J10, J13, J15, J17, J21, J26,

1 J36, J56 Mild Mild Valid

9 J2,J10, J12,J32, J36, J51 High High Valid

30 J56, J32, J54, J57 Moderate Moderate Valid

39 - No diagnosis  No diagnosis ~ Valid

88 J36, J44 Mild Mild Valid

Based on Table 9, there was 100% agreement between the system's diagnosis and the expert
assessment in all cases. This indicates that the system consistently interpreted the combination of
symptoms according to clinical practice. In cases where no symptoms were reported (e.g., Case 39), the
system did not provide a diagnosis, further confirming its accuracy and reliability.

3.3. Performance Comparison of Hybrid vs. Forward Chaining Methods
To assess the effectiveness of the hybrid approach, a comparative evaluation was conducted on 100
expert-validated test cases. Table 10 presents a detailed comparison of the two methods.
Table 10. Comparison Performance
Hybrid (Forward Chaining +

Forward Chaining

Scoring)
Category Number of Number of Number of Number of
Correct Wrong Accuracy Correct Wrong  Accuracy

Diagnoses Diagnoses Diagnoses  Diagnoses
Mild 48 0 100% 34 14 70.8%
Moderate 37 0 100% 28 17 75.7%
High 13 0 100% 4 1 30.8%
No Diagnosis 2 0 100% 2 0 100%
Total Valid 100 0 100% 68 32 68.0%

Tables 11 and 12 compare the precision, recall, and F1 scores between the forward chaining method
and the hybrid method (forward chaining + fallback scoring). It can be seen that the hybrid method
achieves a perfect score (1.000) in all categories, while the forward chaining method shows lower and
more variable performance, especially in the High category, which has an F1 score of only 0.444.

Table 11. Diagnostic Performance Comparison per Category

Category Precision ~ Recall ~ Fl1-Score Precision  Recall F1-Score
(FC) (FC) (FC) (Hybrid)  (Hybrid) (Hybrid)

Mild 0.708 0.708 0.708 1.000 1.000 1.000

Moderate 0.757 0.622 0.683 1.000 1.000 1.000

High 0.308 0.800 0.444 1.000 1.000 1.000

No Diagnosis 1.000 1.000 1.000 1.000 1.000 1.000
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Table 12. Performance Comparison Summary of Both Approaches
Metrix Forward Chaining Hybrid (FC + Score) Difference (A)

Accuracy 0.680 1.000 +0.320
Precision 0.693 1.000 +0.307
Recall 0.783 1.000 +0.217
F1-Score 0.709 1.000 +0.291

The evaluation results showed a significant performance difference between the classic forward
chaining method and the hybrid approach, which combines forward chaining with score weighting. With
the forward chaining method, the system was only able to provide a diagnosis for 68 out of 100 test
cases, with an overall accuracy of 68%. Quantitatively, the hybrid approach provided a 32% increase in
accuracy. These results confirm that handling non-explicit or partial input is a key factor in improving
expert system performance, especially in the psychological domain, where symptom data can be
incomplete or ambiguously structured.

3.4. Ablation: Evaluation of Forward Chaining vs Hybrid

Ablation was performed to isolate the contribution of each expert system component. The main focus
was to compare system performance using only deterministic forward chaining versus a hybrid system
that combines a rule-based forward chaining mechanism with a fallback scoring certainty factor (CF).
Table 13 displays the distribution of inferences based on the method from 100 cases with varying
symptom distributions.

Table 13. Distribution of Inferences Based on Method

Inference Method Number of Case Valid Invalid Local Accuracy
Forward Chaining

Identical Rules 25 25 0 100.0%
Partial Rule Matching 73 41 32 56.2%
No Symptoms Selected 2 2 0 100.0%
Total Forward Chaining 100 68 32 68.0%
Hybrid (FC + Scoring)

Identical Rules 25 25 0 100.0%
Failback Scoring Mechanism 73 73 0 100.0%
No Symptoms Selected 2 2 0 100.0%
Total Hybrid 100 100 0 100.0%

In the hybrid system, once the identical rule is not met, the system immediately activates the CF
scoring fallback mechanism. There is no partial matching process as in classic forward chaining.
Therefore, all 73 cases that do not match identically are immediately processed through CF scoring,
resulting in valid and accurate classifications. With this approach, the hybrid system successfully
classified all 100 cases, including 32 that previously failed forward chaining. Local accuracy increased
from 68% to 100%, without any loss of validation.

3.5. Robustness Validation and Inference Audit
a. Robustness to Premise Incompleteness

The hybrid system was tested on 32 cases that failed to be classified by pure forward chaining.
Incomplete premises in these cases caused the rule base to be inactive, requiring the system to rely on
the CF fallback scoring mechanism. As a result, all cases were validly classified, demonstrating the
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hybrid system's high resilience to partial or incomplete input. Table 14 shows the distribution of stress
levels generated by the fallback scoring mechanism.

Table 14. Distribution of Inference Fallback Scoring

Number of

Selected Stress Level Cases Percentage
Mild (T1) 11 34.4%
Moderate (T2) 10 31.3%
High (T3) 11 34.4%
Total 32 100%

The distribution of inference results shows that the CF fallback scoring produces a balanced
classification. It is not biased towards either the mild or the severe levels. This strengthens the validation
that the hybrid system is able to handle incomplete premises proportionally.

b. Inference Audit Against Expert References

Validation was conducted to ensure that the hybrid system not only successfully classifies cases that
failed forward chaining but also produces inferences that are consistent with the majority expert
classification and can be explicitly audited. To this end, an audit was conducted on all 32 cases processed
through the CF fallback scoring mechanism. This audit compared the system's classification results with
the predetermined expert classification (the majority decision of three independent experts), which is
presented in table 15.

Table 15. Results of the Hybrid System Inference Audit Against Expert References

Selected Stress Level Number of Percentage Consistent with
Cases experts

Mild (T1) 11 34.4% 100%

Moderate (T2) 10 31.3% 100%

High (T3) 11 34.4% 100%

Total 32 100% 100%

This table shows that all inferences generated by the hybrid system through the CF fallback scoring
mechanism are consistent with the majority expert classifications. No contradictory cases were found,
thus system validation can be declared complete and scientifically justifiable.

c. Inference Trail Audit

Thirty-two cases were successfully classified by the hybrid system and demonstrated consistency
with the previously established expert classifications. These cases are: 2, 3,9, 11, 12, 13, 15, 24, 25, 32,
41,43, 44, 45, 46, 48, 50, 53, 54, 56, 57, 58, 60, 64, 69, 70, 74, 75, 82, 88, 89, and 90. To strengthen the
validation of the hybrid system, Table 16 below displays five of the 32 cases, along with the distribution
of CF scores across three stress levels, system inferences, and matching status against expert
classifications.
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Table 16. Hybrid System Inference Audit Against Expert References (5 Representative Cases)

System
Hig Inferen Infceeren Vali
Ca Active Mild Moderate . hest ce .
se  Symptoms (T1) (T2) High (T3) Scor  Status Status - datio
. (Expert n
e (hybrid
) )
32(0.7)+J6(0
32,136,329,  J2(0.7)+ J2(0.7)+36(0.
3 135,016, J35(0.9) 7)+J16(0.7)+ 5315(30883 27 2"°derat 2"°derat Valid
J38, J46 =16 29006)=27 ;0
jéjgjg J1(0.8)+ J3(0.7)+J6(0. J5(0.9)+J8(0
110 917 B3O+ 7)H0.6)+]  9)+I90.6)+
118, 320 J9(0.6)+ 10(0.7)+J22(  J10(0.7)+J1
15 1 13 J17(0.8) 0.8)+J23(0.6) 8(0.9)+J20( 6.4 High High Valid
o4 128, +J22(0.  +J28(0.4)+J2 0.8)+J24(0.8
e 8)+56( 9(0.6)+J50(0. )+J40(0.8)=
129, 340, 0.9)=4.6 8)=5.9 6.4
J50, J56 o e '
J26(0.8)
45  J2,326,J36 +J36(0. J2(0.7)=0.7 J2(0.7)=0.7 1.6 Mild Mild Valid
8)=1.6
32(0.7)+35(0
J2,J1,310, J1(0.8)+
J2(0.7)+J10(  .9)+J8(0.9)+ . . _
60 jgéJS,JM, \1216é0.8) 0.7)=1.4 310(0.7)+J1 4.0 High High Valid
— 4(0.8)=4.0
J1(0.8)+
J36, J1, J2, J2(0.7)+J16(
g9 213,016, 18306 ooy ipg0ay 2ONHAC 5o Mg Mmild valid
+J36(0. 0.6)=1.3
J28, J46 8)=2.2 =18

The hybrid system demonstrates high robustness in the face of incomplete premises. The CF scoring
fallback mechanism not only saves cases but also maintains the accuracy and transparency of inferences.
With an explicit audit trail, this system is suitable for use in scientific validation contexts and expert
system-based educational applications.

d. Robustness to Low Scores

The hybrid system does not set a minimum threshold for classification. Inference is performed by
selecting the stress level with the highest CF score, regardless of its value. Therefore, the system still
issues a diagnosis even if the highest score is below a certain value, as long as there is a clear difference
in scores between levels. To ensure that the system does not produce weak or inconclusive diagnoses,
an analysis of cases with low scores was conducted. The results showed that even though some cases
had a highest score below 3.0, the system still produced classifications that were consistent with expert

judgment and stable against input disturbances (presented in Table 17).

Table 17. Robustness to Low CF Scores

Case Highest Score Selected Level Consistent with Experts Validation

3 2.7 Moderate Yes Valid
45 1.6 Mild Yes Valid
g9 2.2 Mild Yes Valid

02504036-014



The three cases above had the highest scores <3.0, yet they still produced valid classifications that
were consistent with expert references. This demonstrates that the hybrid system relies not on absolute
thresholds, but rather on the distribution of scores across levels.

e. Noise Simulation: Adding Random Phenomena

The purpose of this simulation is to test whether the hybrid system still produces stable inferences
when the input symptoms are contaminated" by random symptoms irrelevant to the rule base. Table 18
presents noise simulations for five example cases.

Table 18. Noise Simulations

New Inference
Case Active Symptoms Additional High Initial After

Symptoms Score Inference  Noise Status
3 J2,J6,J29, 35, J16, J38,J46  J3 34 Moderate  Moderate  Stable

J1,J3, J5, 38, J6, J9, J10, J17, 16 and _ _
15 J18,J20, J22, J23, J24, J28, i30 7.0 High High Stable

J29, J40, J50, J56

45 J2,J26, J36 JiandJ5 2.4 Mild Mild Stable
60 J2,J1,J10,J5, J8, J14, J26 J9 4.6 High High Stable
89 J36,J1,J2,J13,J16,J28,J46  J31 2.2 Mild Mild Stable

Results: The addition of noise did not significantly affect the distribution of CF scores. The system
continued to select the same stress level, demonstrating robustness to random input.

f. Symptom Drop Simulation: Robustness to Premise Incompleteness

This simulation tests whether the hybrid system still produces valid inferences when one or more
highly weighted symptoms are removed from the input. Five representative cases were selected from
the fallback scoring group, and the removal of dominant symptoms was performed to assess the impact
on the CF score distribution and classification results (presented in Table 19).

Table 19. Symptom Drop Simulation

New Inference
Case Active Symptoms Symptoms High Initial After
Removed Score Inference Noise Status
3 J2,J6,J29, J35, J16, J38,J46 J2 (0.7) 2.0 Moderate Moderate Stable
J1, J3, J5, J8, J6, J9, J10, J17,
15 J18, J20, J22, J23, J24, J28, J10 (0.7) 5.7  High High Stable
J29, J40, J50, J56
45 J2,J26, J36 J36 (0.8) 0.8 Mild Mild Stabil
60 J2,J1,J310, J5, 18, J14, 126 j‘;’ﬁ'{%;‘”d 23 High High Stable
89 J36,J1,J2,J13, J16, J28, J46  J13 (0.6) 1.8 Mild Moderate gtzble

Four of the five cases still produced the same inferences even after the dominant symptom was
removed. Case 89 showed a change in inference from Mild to Moderate after the removal of J13 (0.6),
which shifted the score distribution between levels. This indicates that the hybrid system remains stable
in producing inferences even when the input is incomplete. Classification changes only occur if the
removed symptom has a significant impact on the score distribution between levels. Thus, the system
demonstrates robustness to incomplete premises, while remaining sensitive to key, defining symptoms.
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3.6. Reliability: Inter-Expert Agreement and System Evaluation Stability

The reliability of an expert system depends not only on the accuracy of its inferences, but also on the
consistency of the reference labels used for validation and the stability of the evaluation metrics.
Therefore, reliability analysis is conducted in two dimensions: (1) the level of agreement between
experts as sources of reference labels, and (2) the stability of the hybrid system evaluation metrics
through statistical analysis.

a. Inter-Expert Agreement

To ensure that the majority expert classification could be used as a valid reference, an agreement
analysis was conducted between three independent experts using the pairwise Cohen's kappa approach.
Because kappa is only applicable to two raters, the value was calculated for each pair of experts and
averaged. The distribution of classifications from each expert across the 100 cases showed high
consistency, as shown in Figure 3, and the results of the Kappa calculations are presented in Table 20.

Distribution of Classifications from Each Expert

mmild mmoderate mhigh ®nodiagnosis

50 46
40

45
4 4

40

30

20

10

Expert 1 Expert 2 Expert 3

Figure 3. Distribution of Classifications from Each Expert

Table 20. Kappa Calculation Results

Expert Pairs  Same

Agreement Po Pe Kappa (k) Interpretation
Expertl1vs.2 88 0.88 0.3951  0.8017 Very Good Agreement
Expert1vs.3 90 0.90 0.3974  0.8347 Very Good Agreement
Expert2vs.3 91 0.91 0.3966 0.8476 Very Good Agreement
Average 89.7 0.8967 0.3964  0.8280 Very Good

Based on Altman's (1991) [27] interpretation, a value between 0.81-1.00 indicates very good
agreement. With an average kappa value of 0.8280, the majority expert classification can be used as a
highly reliable reference for evaluating hybrid systems. This level of consistency strengthens the
system's validity in producing inferences that meet expert standards.

b. Stability of System Evaluation Metrics

In addition to high accuracy, a reliable expert system must demonstrate stable performance when
tested against data variations or resampling. To achieve this, a confidence interval (CI) analysis was
performed on the main evaluation metrics: accuracy, precision, recall, and F1-score. Because the hybrid
system produced classifications that fully matched the expert's reference for 100 validation cases, all
evaluation metrics were scored at 100%. However, to demonstrate that the system's performance was
not only high but also statistically consistent, the Wilson score interval approach was used to calculate
the CI for extreme proportions. The results are shown in Table 21.
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Table 21. Results of the Confidence Interval (CI) Calculation
Metric Value 95% CI
Akurasi 100%  [96.4%, 100%]
Precision 100%  [96.4%, 100%]
Recall 100%  [96.4%, 100%]
F1-Score  100%  [96.4%, 100%]

The narrow confidence interval indicates that the system's performance is not only high but also
statistically stable. This indicates that the hybrid system is reliable in a variety of classification scenarios,
including resampling of case data.

3.7. Risks and Ethics

The hybrid expert system developed in this study demonstrated high accuracy across 100 validation
cases. However, system evaluation relies not only on technical performance but also on awareness of
the methodological limitations and ethical implications of its use. Because this system did not undergo
a training process like machine learning approaches, the term "overfitting" is not used technically.
Instead, it is important to note that the system was tested on a limited number of cases and in a
homogeneous institutional context, so its external validity cannot be ascertained.

Furthermore, the label distribution exhibited a class imbalance, with only 13 cases classified as
"High" out of 100. This imbalance has the potential to impact the system's sensitivity to severe stress,
especially when applied to populations with varying prevalence. Therefore, balancing the case
distribution and cross-population validation are crucial steps in further system development.

From an ethical perspective, the use of expert systems in stress classification has significant
consequences. While systems can aid early identification, automated classification should not be used
as the sole basis for psychological interventions, educational decisions, or clinical assessments. Systems
should be positioned as transparent and auditable tools, with interpretation still involving human
professionals. The principles of precaution, informed consent, and protection against psychological
impact must be an integral part of the implementation of this system.

3.8. Comparative Literature: Methodological Positioning in the Hybrid Diagnosis Landscape

The system developed in this study uses a hybrid approach that combines rule-based forward chaining
as the primary inference pathway, with a fallback to Certainty Factor (CF) scores to handle uncertainty
or cases not fully defined by the rules. This approach is designed to maintain logical transparency while
providing flexibility in dealing with symptom variations. Although this study does not include an
empirical comparison with other hybrid approaches such as pure CF systems or Case-Based Reasoning
(CBR), the methodological positioning of this system can be described descriptively (Table 22).

Table 22. Comparison of General Characteristics of Hybrid Methods and Comparative Methods

Aspects Certainty Factor Case-Based Reasoning  This System (Forward

(CF) (CBR) Chaining + CF Fallback)
Primary Inference CF score per rule Similarity to previous Explicit rules (forward
Path cases chaining)
Uncertainty Native CF scoring Similarity score between CF fallback if rules are
Handling cases insufficient
Logical Medium (depending on Low (based on historical High (explicit rules + directed
Transparency rule structure) cases) fallback)
Auditability Limited Low High (rule documentation and

fallback path)
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Aspects Certainty Factor Case-Based Reasoning This System (Forward

(CF) (CBR) Chaining + CF Fallback)
Data Low High (requires a Low (not based on historical
Dependability representative case base) training)

Adaptability High if rule is flexible High if the case baseis =~ Modular and extensible
large

This approach allows the system to produce deterministic inferences when rules are sufficient, and
still provide meaningful output when ambiguity arises, without sacrificing transparency or auditability.
With an explicit rule structure and documented CF fallbacks, the system offers a balance between logical
clarity and inference flexibility. Quantitative comparisons with other approaches are planned as a next
step, to test the system's robustness in broader, more heterogeneous contexts.

4. Conclusion

This study successfully designed and evaluated a hybrid expert system for classifying stress levels based
on psychological symptoms, with the primary inference pathway being rule-based forward chaining and
a fallback mechanism using Certainty Factor (CF) scores. Key verified contributions include: an explicit
and documented rule-based structure, fully consistent classification with expert references across 100
validation cases, and high system auditability through documentation of logic and symptom distribution.
However, this study has limitations that should be explicitly noted. The evaluation was conducted at
only one institution, with a relatively small sample size and an unbalanced label distribution, particularly
in the severe stress category. This opens up the possibility of undetected spectrum bias, thus the system's
external validity cannot be confirmed.

Future work plans include testing the system on cross-institutional data to assess the robustness of
inferences across population variations. Furthermore, the system's integration with counseling services
in educational settings is designed to support more responsive and data-driven interventions. Finally, an
open benchmark against other hybrid approaches, such as pure CF and CBR, will be conducted to assess
the relative merits of this system quantitatively and methodologically.
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