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Abstract. Accurate state of charge (SOC) estimation is essential for the safety, performance, and 

longevity of lithium-ion batteries. Physics-based models such as equivalent circuit models 

(ECMs) are computationally efficient but struggle under nonlinear and time-varying conditions, 

whereas purely data-driven approaches often lack interpretability. This study proposes a hybrid 

framework that integrates a physics-informed neural network (PINN) with a first-order Thevenin 

ECM for dynamic SOC estimation using only terminal voltage and current inputs. The method 

incorporates physically derived parameters including open-circuit voltage (OCV), polarization 

resistance, and capacitance identified through pulse testing. An eighth-order OCV–SOC 

polynomial regression optimized with a genetic algorithm (GA) enables nonlinear mapping, 

while the Newton–Raphson (NR) method is applied for final SOC estimation. Experimental 

validation was performed on 18 Ah lithium iron phosphate (LFP) cells over 300 charge–

discharge cycles at 20 °C, extended up to 2000 cycles under 1C/2C rates with cut-off voltages 

of 3.7 V and 2.7 V. Comparative analysis with extended kalman filters (EKF) and standard neural 

networks (NN) demonstrates the superiority of the proposed method, achieving a root mean 

squared error (RMSE) of 0.103, mean absolute percentage error (MAPE) of 0.702%, and 

coefficient of determination (R²) of 0.998. By embedding physical constraints into the learning 

process, the PINN enhances accuracy, robustness, and generalizability, while reducing 

estimation uncertainty, thereby offering a scalable and interpretable solution for real-time battery 

management systems (BMS) in electric vehicles (EVs) and battery energy storage systems 

(BESS). 
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1.   Introduction  

The growing use of lithium-ion batteries in BESS necessitates precise models to estimate battery states 

like state of charge (SOC). SOC, a key operational parameter, indicates the remaining battery energy 

and is crucial for managing energy, ensuring safety, and optimizing performance [1]. Estimating SOC 

in real-world scenarios is challenging due to the dynamic, nonlinear battery behavior affected by 

electrical, thermal, and aging factors [2-3]. These complexities have motivated diverse approaches to 

SOC estimation that can broadly be categorized into physics-based, data-driven, and hybrid frameworks. 

Electrochemical models and equivalent circuit models (ECMs) are the most established physics-

based approaches. Electrochemical models provide high fidelity by explicitly representing reaction 

kinetics, ion transport, and diffusion processes inside the cell [4–5]. Their interpretability and accuracy 

are strong advantages, but their reliance on numerous hard-to-measure parameters and high 

computational demand restricts their practical use in embedded and real-time systems [6]. In contrast, 

ECMs such as the Thevenin and partnership for a new generation of vehicles (PNGV) models 

approximate cell dynamics with resistors, capacitors, and voltage sources, striking a balance between 

simplicity and predictive ability [7–11]. ECMs are widely used because of their ease of parameterization 

and compatibility with onboard battery management systems. Yet, they struggle with long-term 

nonlinear effects such as hysteresis, temperature sensitivity, and degradation [12]. 

Model-based estimation techniques have been introduced to extend ECM applicability under 

uncertain operating conditions. The kalman filter (KF) and its extensions remain widely adopted. The 

extended kalman filter (EKF) improves performance in nonlinear settings through local linearization, 

while the unscented kalman filter (UKF) addresses linearization errors by propagating sigma points [13–

18]. Particle filters (PF) further generalize to non-Gaussian distributions using sequential monte carlo 

(MC) techniques [19]. These methods are robust under moderate dynamics and measurement noise. 

However, their performance is highly sensitive to initialization and model assumptions. For example, 

the EKF introduces linearization errors when nonlinearities are pronounced, while PFs require 

significant computational resources and can diverge if resampling strategies are inadequate [17,19,20]. 

Thus, while physics-based approaches provide interpretability, their accuracy degrades under highly 

dynamic conditions or when physical parameters shift due to aging. 

Advances in machine learning (ML) and deep learning have introduced purely data-driven 

alternatives for SOC estimation. Classical ML methods such as decision tree, random forest (RF) and 

extreme gradient boosting (XGBoost) have proven effective at modeling nonlinear input–output 

relationships based on current, voltage, and temperature features [21–23]. These ensemble approaches 

mitigate overfitting and are relatively robust for static or semi-dynamic operation. However, they lack 

the ability to capture sequential dependencies intrinsic to battery cycling [24]. 

Deep learning methods, including convolutional neural network (CNN) and recurrent neural network 

such as long short-term memory (LSTM) have addressed this limitation by modeling temporal features 

[25–29]. CNNs extract localized patterns such as transient responses, while LSTMs capture long-term 

temporal dependencies and well suited for dynamic charge–discharge cycles. Nevertheless, these 

models require vast labeled datasets, are computationally intensive, and operate as black-box systems, 

limiting physical interpretability and raising concerns about generalization to unseen conditions [30–

31]. 

Probabilistic data-driven methods, such as gaussian process regression (GPR), have been proposed 

to enhance safety by quantifying predictive uncertainty [32]. While they provide valuable insights into 

estimation confidence, their scalability to large datasets and high sampling rates is limited, restricting 

real-time use. In general, data-driven methods excel in adaptability but remain constrained by their 

dependence on large-scale training data and their lack of physical consistency [33–35]. 

To reconcile the trade-offs between interpretability and adaptability, hybrid approaches have been 

developed by embedding physical knowledge into data-driven models. These frameworks leverage the 

simplicity of ECMs while exploiting the pattern-recognition strength of neural networks [36]. Previous 

studies combining ECMs with shallow neural networks have shown improved accuracy over standalone 

approaches, but often at the cost of increased sensor requirements or limited ability to generalize under 
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varying conditions [37–38]. Physics-informed machine learning pipelines have further advanced the 

field by constraining model training with electrochemical or circuit dynamics, thereby improving 

physical consistency and robustness [39]. 

Recent progress includes embedding ECM dynamics directly into differential equation-informed 

neural networks (DENNs) or augmenting ECMs with machine learning to improve SOC estimation 

accuracy [40–42]. While these models represent an important step toward interpretable and accurate 

estimation, they often require multiple features beyond current and voltage, or involve complex 

parameter tuning that hinders practical deployment. A persistent challenge remains in designing hybrid 

methods that achieve high accuracy, robustness, and generalizability under dynamic conditions, while 

keeping sensor requirements minimal for real-time systems. 

In summary, physics-based models are interpretable but limited under uncertain conditions, while 

data-driven models are flexible but often opaque and data-hungry. Hybrid approaches provide a 

promising balance, but existing works have yet to deliver a framework that simultaneously (i) embeds 

ECM parameters into a neural learning process, (ii) requires only essential measurements such as 

terminal voltage and current, and (iii) remains computationally efficient for real-time operation. 

This study addresses this gap by proposing a physics-informed neural network (PINN) integrated 

with a first-order Thevenin equivalent circuit for dynamic SOC estimation. The objectives are: (i) to 

design a hybrid estimation framework that combines physically derived parameters with neural network 

learning, (ii) to validate its performance experimentally under dynamic load and extended cycling 

conditions, and (iii) to benchmark the approach against widely used estimators, including EKF and pure 

NN models. The novelty lies in embedding physical constraints directly into loss function of NN, 

thereby improving interpretability, robustness, and accuracy while reducing estimation uncertainty. This 

contribution offers scalable and practical solution for real-time battery management in electric vehicles 

and energy storage applications. 

 

Table 1. Literature review on SOC Estimation approaches 

 

Method Approach 

Type 

Model Type Strengths Limitations 

Electrochemic

al Model [4-

5] 

Physics-

Based 

Electrochemical 

Equations 

High accuracy; 

physically interpretable 

High computational 

cost; requires precise 

parameters 

Electrical 

ECMs [8-11] 

Physics-

Based 
RC Networks (e.g., 

Thevenin, PNGV) 

Real-time compatible; 

easy to parameterize 

Inaccurate for 

nonlinear or 

longterm behavior 

KF [13] Model-

Based 
Statistical 

Estimation 

Effective for linear 

systems; efficient 

not optimal for 

nonlinear dynamics 

EKF [16] Model-

Based 
Linearized 

Estimation 

Handles moderate 

nonlinearity; widely 

adopted 

Suffers from 

linearization errors 

UKF [18] Model-

Based 

Nonlinear 

Estimation 

Accurate without 

linearization 

Higher computational 

demand 

PF [19] Model-

Based 
Monte Carlo 

Bayesian (MCB) 

Works for nonlinear, 

non-Gaussian systems 

Computationally 

expensive 

RF [22] Data-

Driven 

Ensemble Learning Robust, interpretable Limited temporal 

modeling 

XGBoost [23] Data-

Driven 

Boosted Trees High accuracy; fast 

training 

Lacks time-sequence 

modeling 
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CNN [26] Data-

Driven 

Deep Learning Learns short-term 

patterns 

Poor for longterm 

dependencies 

LSTM [28] Data-

Driven 

RNN Captures long-term 

trends 

Requires large data; 

low interpretability 

GPR [32] Data-

Driven 
Probabilistic 

Regression 

Predictive uncertainty; 

good accuracy 

Poor scalability 

Hybrid ECM 

- ANN [38] 

Hybrid Physical - ML Balanced accuracy and 

interpretability 

Unable to interpret 

dynamic patterns of 

the battery 

Proposed 

Method 

Hybrid Physics-Informed 

NN 

Accurate, interpretable; 

needs only V, I 

Needs physical 

parameters; training 

complexity 

 

2.   Methods 

The overall process conducted in this research to develop SOC estimation algorithm is as illustrated in 

the flowchart in Fig. 1 below. 

 
Figure 1. Research flow framework 

2.1.   Experiment and Data Preparation 

Constructing a NN model requires a dataset with key battery parameters, notably terminal voltage and 

current. To achieve this, controlled experiments were conducted on lithium iron phosphate (LiFePO₄, 

LFP) 18650 cells with a nominal capacity of 18 Ah, developed by the Lithium Battery Research and 

Technology Centre, Universitas Sebelas Maret, Indonesia. These cylindrical cells were designed for 

high-power applications, capable of continuous charge and discharge at elevated current rates. 

Experiments were performed in a chamber with temperature maintained at 20 ± 1 °C to ensure stable 

ambient conditions. 

The battery cycle comprised two main stages: charging and discharging. During charging, the cell 

was charged in constant current (CC) mode with 1C rate until the target voltage was achieved, then 

maintained at constant voltage (CV) until the current reduced to zero. In the discharging phase, cell was 

discharged in CC mode with 2C discharging rate until the voltage cut-off limit was reached. This cycle 

was repeated 300 times, with a 20-minute rest between cycles. Data collected included 
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charging/discharging current, terminal voltage, cycle count, and SOC or capacity that was calculated 

using coulomb counting method.  

 

The experimental materials and equipment employed in this study consisted of: 

• LFP 18650 cells supplied by the UNS Lithium Battery Research and Technology Excellence Centre, 

• a NEWARE battery testing unit, and 

• NEWARE data acquisition software. 

These equipment and materials are illustrated in Fig. 2. 

In addition, extended cycling tests were carried out for up to 2000 consecutive charge–discharge 

cycles without resting intervals, applying a constant current protocol. The cut-off voltages were set at 

3.7 V for charging and 2.7 V for discharging. The cycling rates were established at 2C for discharge and 

1C for charge, where 1C corresponds to current rate necessary to fully discharge or charge the cell within 

one hour.  

The primary objective of these experiments was to generate a comprehensive dataset that captures 

the battery dynamic behavior under repeated charge–discharge cycles. Key parameters, including 

terminal voltage, current, and capacity, were systematically recorded to reflect both short-term dynamics 

and long-term degradation pattern. This dataset will be used for training and validating the proposed 

neural network framework. To minimize sampling bias and ensure representative coverage of the 

operating conditions, the collected data was randomly partitioned into two subsets. A total of 80% of 

the samples were allocated for training the PINN enabling the model to learn the underlying relation 

between voltage, current and SOC. The remaining 20% was reserved exclusively for independent testing 

and validation, ensuring that model performance was assessed on unseen data. This randomized splitting 

strategy improves the robustness of the evaluation and enhances the generalizability of the proposed 

method across varying cycling conditions. 

 

 

Figure 2. Experiment tools and materials 

2.2.   ECM modeling 

In this work, a Thevenin equivalent circuit model (first-order) was adopted due to the simplicity and 

satisfactory accuracy. The model represents the electrical behavior of the battery by combining an open-

circuit voltage (OCV) source in series with a resistor (internal resistance) and a parallel resistor and 

capacitor (R-C) network, as illustrated in Fig. 3. 
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Figure 3. The first-order thevenin equivalent circuit model 

 

𝑉𝑡 is terminal voltage of the battery that can be expressed mathematically as: 

𝑉𝑡 = 𝑉𝑜𝑐 − 𝐼𝑏 . 𝑅𝑖 − 𝑉𝑅𝐶 (1) 

 

𝑉𝑜𝑐 is open circuit voltage, 𝐼𝑏 is current accross the battery, 𝑅𝑖 is internal resistance, and 𝑉𝑅𝐶 is the 

voltage in the R-C branch. The R-C branch is modeled as a parallel network consist of a resistor and a 

capacitor. The voltage 𝑉𝑅𝐶 across this branch follows a first-order differential equation: 
𝑑𝑉𝑅𝐶(𝑡)

𝑑𝑡
=

𝐼𝑏(𝑡)

𝐶𝑝(𝑡)
−

𝑉𝑅𝐶(𝑡)

𝑅𝑝(𝑡).𝐶𝑝(𝑡)
                                                                                                                          (2) 

 

𝑅𝑝 and 𝐶𝑝 are the resistance and capacitance in the parallel R-C branch. For modeling implementation, 

this form is discretized with sampling time 1 s. The discretized RC model is:  

  

𝑉𝑅𝐶(𝑘 + 1) = 𝑒
−∆𝑡(

1

𝑅𝑃𝐶𝑃
)
𝑉𝑅𝐶(𝑘) + 𝑅𝑝(1 − 𝑒

−∆𝑡(
1

𝑅𝑃𝐶𝑃
)
)𝐼𝑏(𝑘)             (3) 

 

In SOC estimation, the parameters 𝑉𝑜𝑐 , 𝑅𝑝, and 𝐶𝑝 are vital. They can vary with temperature, current 

rate, and battery health. When accurately identified, these parameters effectively represent the battery's 

internal behavior and allow precise SOC tracking. 

2.3.   OCV-SOC Mapping 

The OCV dynamic from the ECM aids in real-time and online SOC estimation. The derived 𝑉𝑜𝑐 is related 

to SOC through an 8th-order polynomial regression. This approach is popular for its adaptability in 

fitting the OCV–SOC curve, particularly for Li-ion batteries like LFP or NMC. As detailed in (4), the 

polynomial fitting uses estimated OCV values. 

𝑉𝑂𝐶(𝑆𝑂𝐶) = 𝛼0 + 𝛼1𝑆𝑂𝐶 + 𝛼2𝑆𝑂𝐶2 + 𝛼3𝑆𝑂𝐶3 + ⋯ + 𝛼8𝑆𝑂𝐶8                          (4) 

𝛼0, 𝛼1, …, 𝛼8 are the polynomial coefficients obtained through least squares fitting. Higher-order fitting 

is often required for LiFePO₄ and NMC chemistries because their OCV–SOC curves exhibit nonlinear 

plateaus and inflection points that cannot be captured accurately with low-order polynomials. In this 

study, orders from 4 to 8 were tested, and while 4th- and 6th-order regressions showed larger residuals 

near the flat plateau region, the 8th-order polynomial achieved the lowest root mean squared error 

(RMSE) without introducing noticeable overfitting, as verified through cross-validation. 
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To further refine the coefficients and avoid local minima, a genetic algorithm (GA) was employed. 

GA hyperparameter was set with a population size of 50, mutation probability of 0.05 and crossover 

probability of 0.8. The fitness function minimized the mean squared error between measured and 

estimated OCV values. The algorithm was terminated either after 200 generations or if the fitness 

improvement remained below 10−6 for 20 consecutive generations, whichever occurred first. 

The resulting polynomial equation was solved iteratively using the Newton–Raphson (NR) method 

to obtain SOC from a given 𝑉𝑜𝑐. The initial SOC guess is set to 0.5 (50%) which represents a neutral 

midpoint that improves convergence stability across charge–discharge cycles. A convergence tolerance 

of 10−6 was applied to the residual error, with a maximum of 100 iterations permitted. In practice, the 

method consistently converged within fewer than 10 iterations for all tested cases.  

2.4.   Neural Network Model 

A NN was employed to estimate the time-varying battery parameters 𝑉𝑜𝑐 ,  𝑅𝑖, 𝑅𝑝 and 𝐶𝑝, which are 

essential for estimating SOC. The model receives terminal voltage 𝑉𝑡 and current 𝐼𝑏 as input features, 

and the outputs are the internal parameters used to derive SOC through an OCV–SOC mapping. To train 

the model, the time-series dataset generated in the previous step was used. The architecture of the ANN 

is illustrated in Fig. 4. The inputs 𝑥1 and 𝑥2 correspond to 𝑉𝑡 and 𝐼𝑏, while the outputs 𝑦̂1, 𝑦̂2, 𝑦̂3, and 

𝑦̂4 represent 𝑉𝑜𝑐 ,  𝑅𝑖, 𝑅𝑝 and 𝐶𝑝, respectively. The ANN architecture consisted of one input layer with 

two nodes corresponding to terminal voltage and current, two fully connected hidden layers, and one 

output layer with four nodes representing outputs 𝑉𝑜𝑐 ,  𝑅𝑖 , 𝑅𝑝 and 𝐶𝑝. Each hidden layer contained 32 

neurons with rectified linear unit (ReLU) activation functions, which provided efficient training and 

mitigated vanishing gradient issues. The output layer used linear activation to predict continuous 

parameter values. Model training was performed using the Adam optimizer. The initial learning rate is 

set to 1 × 10−3 and batch size is set to 128 for 200 training epochs. Early stopping was applied to avoid 

overfitting, with validation performance monitored during training. The detail of the NN 

hyperparameters used in this research is shown in Table 2.  

 

Figure 4. ANN architeture 
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Table 2.  ANN hyperparameters setting 

Parameter Specification 

Input layer 2 nodes 

Output layer 4 nodes 

Hidden layers 2 layers, 32 neurons each 

Activation function (hidden layer) ReLU 

Activation function (output layer) Linear 

Batch size 128 

Epochs 200 (with early stopping) 

Optimizer Adam 

Learning rate 1 × 10−3 

Since this approach incorporates domain knowledge, a PINN framework was implemented. The 

ANN training is not only aimed to minimize the data training loss but also to comply with the governing 

physical equations of the Thevenin model. The total loss is a weighted sum of three components: 

• Output loss (ℒ𝑜𝑢𝑡); ensures the predicted terminal voltage matches the measured values. 

• RC dynamics constraint (ℒ𝑅𝐶); enforces consistency with the RC branch differential equation. 

• SOC consistency loss (ℒ𝑆𝑂𝐶); ensures that the predicted 𝑉𝑜𝑐 corresponds to SOC using OCV–

SOC mapping. 

These loss functions are given by: 

 

ℒ𝑜𝑢𝑡 =
1

𝑁
∑|𝑉𝑡(𝑡)𝑡𝑟𝑢𝑒 − 𝑉𝑡(𝑡)𝑝𝑟𝑒𝑑|

2
𝑁

𝑖=1

 (5) 

ℒ𝑅𝐶 =
1

𝑁
∑ |

𝑑𝑉𝑅𝐶

𝑑𝑡
+

1

𝑅𝑝𝐶𝑝

𝑉𝑅𝐶 −
0.01

𝐶𝑝 
|

2𝑁

𝑖=1

 (6) 

ℒ𝑆𝑂𝐶 =
1

𝑁
∑|𝑆𝑂𝐶(𝑡)𝑡𝑟𝑢𝑒 − 𝑆𝑂𝐶(𝑡)𝑝𝑟𝑒𝑑|

2
𝑁

𝑖=1

 (7) 

 

In (12), 𝑆𝑂𝐶(𝑡)𝑡𝑟𝑢𝑒 is the measured SOC from Coulomb counting, and 𝑆𝑂𝐶(𝑡)𝑝𝑟𝑒𝑑 is the corresponding 

SOC derived from the predicted 𝑉𝑜𝑐 using the OCV–SOC relation. The total loss is given by: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼. ℒ𝑜𝑢𝑡 + 𝛽. ℒ𝑅𝐶 + 𝛾. ℒ𝑆𝑂𝐶                                             (8) 

Where α, β, and γ are weighting coefficients. In this study, values of α=0.5, β=0.3, and γ=0.2 were 

selected after preliminary tuning to balance data fidelity, dynamic consistency, and SOC accuracy. This 

weighting ensures that the model prioritizes accurate reproduction of measured terminal voltage while 

still enforcing the RC dynamics and SOC consistency constraints. By training under these physics-based 

constraints, the NN can learn the dynamic behavior of the battery parameters and accurately estimate 

SOC in real time, ensuring both robustness and physical consistency. 

2.5.   Model Evaluation 

The performance of the proposed PINN in estimating the battery’s internal parameters and SOC was 

assessed using three statistical metrics: root mean square error (RMSE), mean absolute percentage error 

(MAPE), and the coefficient of determination (𝑅2). These metrics assess prediction accuracy by 
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comparing the model's estimated terminal voltage and SOC to the ground truth values. RMSE gives the 

average size of errors in the same units as the target variable, while MAPE shows the error as a 

percentage. The 𝑅2 value indicates how well the model captures data variance, with values near 1 

suggesting a better fit. 

3.   Results and Discussion 

This section displays the experiment outcomes and the processes of parameter identification, parameter 

dynamics modeling, and model simulation for real-time SOC estimation of the battery system. The 

experiment supplied crucial measurement data under varying conditions, and the parameter 

identification aimed at identifying essential model parameters affecting battery behavior. These 

parameters were integrated into the model to accurately simulate battery dynamics. The model's efficacy 

in estimating real-time SOC is assessed via simulation results, detailed in subsequent subsections. 

3.1.   Parameter Dynamics 

The training of the proposed PINN model facilitated the discovery of crucial battery parameters, the 

main focus of the learning stage. These parameters align with the equivalent circuit model elements, 

such as the OCV (𝑉𝑜𝑐), polarization voltage (𝑉𝑝), and internal resistance (𝑅𝑖). By deriving these from the 

data, the model precisely models the battery's internal dynamics during charging. 

Among these parameters, the OCV (𝑉𝑜𝑐) is crucial as it reliably estimates the SOC. Likewise, the 

internal resistance (𝑅𝑖) offers insights into the battery's condition, revealing both immediate response 

and long-term degradation effects, enhancing SOC estimation accuracy. The polarization voltage (𝑉𝑝) 

complements the model by addressing transient voltage behavior from electrochemical processes. 

The ability of the model to learn battery behavior was assessed by comparing the estimated values 

of 𝑉𝑜𝑐 and 𝑅𝑖. from the training with reference data from experiments. This comparison facilitates an in-

depth analysis of the battery system's dynamic response. Fig. 5 presents the estimation results for OCV 

and internal resistance over the training cycles, showing the ability of the model to accurately capture 

the dynamics of battery. The findings confirm that this method effectively derives key parameters from 

voltage-current data during charging, enhancing SOC estimation accuracy and supporting battery health 

monitoring and reliability. 

 

 

Figure 5. The dynamic estimation of OCV and internal resistance  

3.2.   OCV-SOC Relationship 

As explained in the proposed method, the OCV parameter obtained from NN training is used to estimate 

SOC of the battery through polynomial regression. As shown in Fig. 5, the estimated OCV has a 

polynomial relationship with the actual SOC of the battery. Therefore, an eighth-order polynomial 

regression method is employed to obtain an equation representing the relation between estimated OCV 
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and actual SOC. To complete equation (4), the values of the coefficients were determined using least 

square fitting and the result is shown in the following equation: 

 

𝑉𝑜𝑐𝑣(𝑆𝑜𝐶)  =  2.76 +  5.38 𝑆𝑂𝐶 −  17.28 𝑆𝑂𝐶2  +  33.96 𝑆𝑂𝐶3 
+ 2.17 𝑆𝑂𝐶4  −  188.17 𝑆𝑂𝐶5  +  406.46 𝑆𝑂𝐶6 − 350.29 𝑆𝑂𝐶7 + 109.6 𝑆𝑂𝐶8               (9) 

 Battery SOC can be approached by solving equation (9). To solve it, the NR method was utilized by 

inputting 𝑉𝑜𝑐 obtained from PINN training. The initial guess for SOC is set to 0. The SOC prediction 

result is then compared to the actual SOC obtained from experimental data to validate model accuracy, 

as shown in Fig. 6. 

 

Figure 6. The relationship between actual SOC and estimated open circuit voltage 

3.3.   Hyperparameter Sensitivity Analysis 

Fig. 7 presents the results of the sensitivity analysis for two parameters including the number of hidden 

layers and the number of neurons per hidden layer. As shown in Neurons vs RMSE sensitivity analysis 

plot, increasing the number of neurons from very small values initially leads to a sharp reduction in 

RMSE for both training and testing sets, indicating improved representational capacity of the network. 

However, beyond about 32 neurons the improvement becomes more gradual, and the curves begin to 

fluctuate around a lower bound. This suggests that while adding more neurons can enhance model 

accuracy to some extent, excessive neurons do not necessarily yield further benefits and may even 

introduce variability due to overfitting. 

Meanwhile, Hidden layers vs RMSE sensitivity analysis plot highlights the effect of varying the 

number of hidden layers. The reduction in RMSE is most significant when moving from a single hidden 

layer to two layers, confirming that a deeper structure improves the network’s ability to capture 

nonlinearities in the data. Nevertheless, adding more than two layers results in only marginal 

improvements for training RMSE and even leads to a slight increase in testing RMSE, reflecting reduced 

generalization and potential overfitting. Taken together, these findings support the selection of a 

moderate network architecture with two hidden layers and 32 neurons each as a balanced choice between 

accuracy and robustness. 
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Figure 7. Hyperparameter sensitivity analysis (Hidden layer and neurons) 

3.4.   SOC Estimation Result 

The final SOC estimation result using proposed method is obtained by converting the estimated open 

circuit voltage value through (9). The obtained SOC estimation value then compared with obtained SOC 

from experiments using pure NN method and physic-based model with KF as presented in Fig. 8. The 

actual SOC trajectory, derived from high-resolution experimental data was used as the reference 

baseline. All estimation curves closely follow the ground truth across the charge cycle, though 

significant differences emerge in terms of transient behavior and steady-state accuracy. 

 

Figure 8. SOC estimation results from various methods 

 

Quantitative evaluation was conducted using three performance metrics including RMSE, MAPE, 

and 𝑅2. These metrics, summarized in Table 3, reveal that the proposed PINN significantly outperforms 

the other methods. It achieves the lowest RMSE of 0.103, the smallest MAPE of 0.702%, and the highest 

𝑅2 of 0.998. These results indicate both high estimation precision and strong correlation with the 

ground-truth SOC, underscoring the effectiveness of embedding physical constraints within a neural 

learning framework. 
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Table 3. SOC Estimation Error Comparison 

Methods RMSE MAPE 𝑹𝟐 

Pure NN 0.703 1.462 0.997 

Pure Physic-based Model 1.410 3.377 0.995 

Proposed Method 0.103 0.702 0.998 

 

 

The pure NN baseline demonstrates competitive accuracy, with RMSE of 0.703 and 𝑅2 of 0.997, but 

the MAPE rises to 1.462%. This higher percentage error is linked to the absence of physical priors that 

makes the network more prone to noise and overfitting in regions where training data are limited. As a 

result, its transient predictions become less stable, a well-documented drawback of unconstrained black-

box models. 

The physics-based model with Kalman filtering provides greater interpretability and noise 

suppression during steady states, yet it records the largest estimation errors (RMSE = 1.410, MAPE = 

3.377%). The reduced 𝑅2 (0.995) indicates weaker tracking during highly nonlinear charge–discharge 

phases. A key source of error lies in the filter’s sensitivity to initial conditions and covariance 

assumptions, which produced large deviations at the beginning of the estimation horizon. Since the 

Kalman filter relies on local linearization, it cannot fully capture the strong nonlinearities that dominate 

under rapid current changes, leading to biased estimates before the filter converges. 

The error distribution shown in Fig. 9 provides further insight into these observations. The physics-

based method exhibits a wide spread of error values, especially at the beginning of the estimation 

horizon, confirming its sensitivity to initialization and filter tuning. By contrast, the pure NN baseline 

produces narrower but more irregular fluctuations, consistent with its tendency to amplify noise in 

regions lacking sufficient training support. The proposed approach, however, demonstrates the most 

compact distribution centered closely around zero, indicating both lower bias and reduced variance in 

its error profile. This visual evidence reinforces the numerical metrics, highlighting that the PINN not 

only minimizes average error but also stabilizes transient behavior across the entire time horizon. 

 

 

Figure 9. Error distribution plot 

 

In contrast, the proposed PINN integrates the strengths of both approaches. By incorporating 

differential constraints from the Thevenin model, the PINN reduces sensitivity to noisy or sparse data 

that typically destabilize pure NN predictions. At the same time, the learning component captures 
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nonlinear dynamics beyond the reach of linearized Kalman filtering. This hybrid structure explains why 

the method delivers both low absolute error and smooth transient performance. In effect, the physics 

priors restrict the hypothesis space, guiding the neural network toward physically consistent solutions, 

while the data-driven learning ensures adaptability to real operating conditions. This synergy accounts 

for the observed improvement in accuracy and robustness, particularly during dynamic load transitions 

where other methods show noticeable limitations. 

In addition, the proposed method also shows efficiency in computation. Table 4 summarizes average 

runtime per cycle and approximate floating-point operations (FLOPs) for the three estimators. From 

these data, the analysis is derived into two metrics: FLOPs per millisecond and time per FLOP. The pure 

NN requires the largest number of arithmetic operations (8.02 × 104 FLOPs) and the longest average 

latency (7.8 ms), but exhibits the lowest time per FLOP (≈97 ns/FLOP), indicating that its arithmetic 

workload is highly vectorizable and benefits from optimized dense linear algebra kernels. The pure 

physic-based model has very low computational complexity (1.5 × 103 FLOPs) and the smallest total 

runtime (3.2 ms), yet shows the highest time per FLOP (≈2,133 ns/FLOP), which suggests that its wall-

time is dominated by non-FLOP overheads (control branching, scalar operations, or interpreter 

overhead). The proposed PINN achieves an intermediate computational cost (1.2 × 104 FLOPs) and 

latency (5.1 ms), reflecting its mixed character (neural inference plus modest physics processing). 

 

Table 4. Computational complexity comparison 

Methods Average runtime 

per cycle (ms) 

Approximated 

FLOPs per cycle 

Pure NN 7.8 8.02 × 104 

Pure Physic-based Model 3.2 1.5 × 103 

Proposed Method 5.1 𝟏. 𝟐 × 𝟏𝟎𝟒 

 

The comparison shows that the proposed method offers the most balanced trade between the accuracy 

and the cost of computation. Relative to the pure physics-based model, the method requires additional 

computation because of the neural network component, but the increase is modest and outweighed by 

the significant improvement in accuracy. In contrast, compared with a purely data-driven NN, the 

proposed method achieves both higher accuracy and lower computational demand. This outcome arises 

from the hybrid design: the equivalent circuit model restricts the solution space with physically grounded 

constraints, while the neural network captures nonlinear dynamics that are difficult to express 

analytically. By embedding physical structure into the learning process, the network can remain compact 

without sacrificing performance. Consequently, the method delivers markedly higher accuracy while 

keeping runtime within practical limits for real-time battery management applications. 

The findings emphasize the strength of combining data-driven learning with physical modeling. 

Because the PINN enforces differential constraints and system dynamics, it can maintain accurate SOC 

estimation across the full operating range. This shows that physics-informed learning is particularly 

valuable in safety-critical settings, where accuracy must be accompanied by interpretability. Unlike 

black-box neural networks, the proposed framework offers greater confidence in prediction reliability 

by remaining consistent with established battery behaviors. 

These benefits also extend to practical use in battery management systems. In electric vehicles, more 

accurate SOC estimation means drivers can rely on improved range prediction, longer usable driving 

distance, and better safeguards against overcharge or deep discharge. For large battery energy storage 

systems, the method’s robustness under variable loads and repeated cycling helps ensure stable grid 

operation and dependable renewable energy dispatch. Although the computational cost of the PINN is 

higher than a purely physics-based model, it remains well within the limits of common embedded 

controllers used in automotive and stationary BMS. This balance of accuracy and efficiency makes the 

approach not only technically sound but also realistically deployable. 
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While the proposed PINN demonstrates clear advantages, certain limitations should be 

acknowledged. The experiment was conducted under a fixed temperature of 20 °C and with predefined 

charge–discharge rates. As a result, the generalization of the model across a broader temperature range 

or under highly variable C-rates has not yet been validated. In practical BMS applications, thermal 

effects and current-rate fluctuations strongly influence internal battery dynamics, and further testing is 

required to confirm robustness under such conditions. Moreover, this study only focuses on LiFePO₄ 

cells, and the applicability of the framework to other chemistries such as NMC or LCO remains an open 

question. Differences in OCV–SOC characteristics and degradation pathways may require re-tuning of 

the polynomial fitting or additional modifications to the loss formulation. These aspects point to the 

need for future work on transferability and cross-chemistry adaptation before large-scale deployment in 

diverse battery systems. 

4.   Conclusion 

A novel method for real-time SOC estimation of lithium-ion batteries using a dynamic model with a 

PINN has been successfully developed. This approach blends experimental data with internal battery 

dynamics such as polarization voltage, OCV, and internal resistance. Parameter values were initially 

obtained from an equivalent circuit model, and behavior dynamics were learned via PINN training, 

facilitating accurate SOC tracking. The OCV-SOC relationship was modeled using an eighth-order 

polynomial regression, with coefficients optimized via a GA. The final SOC estimates were obtained 

using the NR method and validated against experimental data. Comparative analysis showed that the 

proposed PINN method outperformed both pure NN and physics-based models with Kalman filters, 

achieving the lowest RMSE (0.103), MAPE (0.702%), and highest 𝑅2 (0.998). These results confirm 

the effectiveness of embedding physic-based knowledge into the NN training. The PINN approach 

improves robustness, accuracy, and interpretability in dynamic and nonlinear conditions. This hybrid 

model was shown to improve robustness, accuracy, and interpretability. Despite its strong performance, 

this study is limited to LiFePO₄ cells tested under fixed laboratory conditions. Broader validation across 

temperatures, C-rates, and chemistries is required. Future work will incorporate thermal coupling, 

integrate SOH estimation, and evaluate deployment on embedded BMS hardware. With these 

extensions, the proposed PINN can further enhance the safety and reliability of EV or energy storage 

systems. 
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