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Abstract. Accurate state of charge (SOC) estimation is essential for the safety, performance, and
longevity of lithium-ion batteries. Physics-based models such as equivalent circuit models
(ECM) are computationally efficient but struggle under nonlinear and time-varying conditions,
whereas purely data-driven approaches often lack interpretability. This study proposes a hybrid
framework that integrates a physics-informed neural network (PINN) with a first-order Thevenin
ECM for dynamic SOC estimation using only terminal voltage and current inputs. The method
incorporates physically derived parameters including open-circuit voltage (OCV), polarization
resistance, and capacitance identified through pulse testing. An eighth-order OCV-SOC
polynomial regression optimized with a genetic algorithm (GA) enables nonlinear mapping,
while the Newton—Raphson (NR) method is applied for final SOC estimation. Experimental
validation was performed on 18 Ah lithium iron phosphate (LFP) cells over 300 charge—
discharge cycles at 20 °C, extended up to 2000 cycles under 1C/2C rates with cut-off voltages
of 3.7V and 2.7 V. Comparative analysis with extended kalman filters (EKF) and standard neural
networks (NN) demonstrates the superiority of the proposed method, achieving a root mean
squared error (RMSE) of 0.103, mean absolute percentage error (MAPE) of 0.702%, and
coefficient of determination (R?) of 0.998. By embedding physical constraints into the learning
process, the PINN enhances accuracy, robustness, and generalizability, while reducing
estimation uncertainty, thereby offering a scalable and interpretable solution for real-time battery
management systems (BMS) in electric vehicles (EVs) and battery energy storage systems
(BESS).
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1. Introduction

The growing use of lithium-ion batteries in BESS necessitates precise models to estimate battery states
like state of charge (SOC). SOC, a key operational parameter, indicates the remaining battery energy
and is crucial for managing energy, ensuring safety, and optimizing performance [1]. Estimating SOC
in real-world scenarios is challenging due to the dynamic, nonlinear battery behavior affected by
electrical, thermal, and aging factors [2-3]. These complexities have motivated diverse approaches to
SOC estimation that can broadly be categorized into physics-based, data-driven, and hybrid frameworks.

Electrochemical models and equivalent circuit models (ECM) are the most established physics-based
approaches. Electrochemical models provide high fidelity by explicitly representing reaction kinetics,
ion transport, and diffusion processes inside the cell [4—5]. Their interpretability and accuracy are strong
advantages, but their reliance on numerous hard-to-measure parameters and high computational demand
restricts their practical use in embedded and real-time systems [6]. In contrast, ECM such as the
Thevenin and partnership for a new generation of vehicles (PNGV) models approximate cell dynamics
with resistors, capacitors, and voltage sources, striking a balance between simplicity and predictive
ability [7-11]. ECM are widely used because of their ease of parameterization and compatibility with
onboard battery management systems. Yet, they struggle with long-term nonlinear effects such as
hysteresis, temperature sensitivity, and degradation [12].

Model-based estimation techniques have been introduced to extend ECM applicability under
uncertain operating conditions. The kalman filter (KF) and its extensions remain widely adopted. The
extended kalman filter (EKF) improves performance in nonlinear settings through local linearization,
while the unscented kalman filter (UKF) addresses linearization errors by propagating sigma points [ 13—
18]. Particle filters (PF) further generalize to non-Gaussian distributions using sequential monte carlo
techniques [19]. These methods are robust under moderate dynamics and measurement noise. However,
their performance is highly sensitive to initialization and model assumptions. For example, the EKF
introduces linearization errors when nonlinearities are pronounced, while PF require significant
computational resources and can diverge if resampling strategies are inadequate [17,19,20]. Thus, while
physics-based approaches provide interpretability, their accuracy degrades under highly dynamic
conditions or when physical parameters shift due to aging.

Advances in machine learning (ML) and deep learning have introduced purely data-driven
alternatives for SOC estimation. Classical ML methods such as decision tree, random forest (RF) and
extreme gradient boosting (XGBoost) have proven effective at modeling nonlinear input—output
relationships based on current, voltage, and temperature features [21-23]. These ensemble approaches
mitigate overfitting and are relatively robust for static or semi-dynamic operation. However, they lack
the ability to capture sequential dependencies intrinsic to battery cycling [24].

Deep learning methods, including convolutional neural network (CNN) and recurrent neural network
such as long short-term memory (LSTM) have addressed this limitation by modeling temporal features
[25-29]. CNN extract localized patterns such as transient responses, while LSTM capture long-term
temporal dependencies and well suited for dynamic charge—discharge cycles. Nevertheless, these
models require vast labeled datasets, are computationally intensive, and operate as black-box systems,
limiting physical interpretability and raising concerns about generalization to unseen conditions [30—
31].

Probabilistic data-driven methods, such as gaussian process regression (GPR), have been proposed
to enhance safety by quantifying predictive uncertainty [32]. While they provide valuable insights into
estimation confidence, their scalability to large datasets and high sampling rates is limited, restricting
real-time use. In general, data-driven methods excel in adaptability but remain constrained by their
dependence on large-scale training data and their lack of physical consistency [33-35].

To reconcile the trade-offs between interpretability and adaptability, hybrid approaches have been
developed by embedding physical knowledge into data-driven models. These frameworks leverage the
simplicity of ECM while exploiting the pattern-recognition strength of neural networks [36]. Previous
studies combining ECM with shallow neural networks have shown improved accuracy over standalone
approaches, but often at the cost of increased sensor requirements or limited ability to generalize under
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varying conditions [37-38]. Physics-informed machine learning pipelines have further advanced the
field by constraining model training with electrochemical or circuit dynamics, thereby improving
physical consistency and robustness [39].

Recent progress includes embedding ECM dynamics directly into differential equation-informed
neural networks (DENN) or augmenting ECM with machine learning to improve SOC estimation
accuracy [40-42]. While these models represent an important step toward interpretable and accurate
estimation, they often require multiple features beyond current and voltage, or involve complex
parameter tuning that hinders practical deployment. A persistent challenge remains in designing hybrid
methods that achieve high accuracy, robustness, and generalizability under dynamic conditions, while
keeping sensor requirements minimal for real-time systems.

In summary, physics-based models are interpretable but limited under uncertain conditions, while
data-driven models are flexible but often opaque and data-hungry. Hybrid approaches provide a
promising balance, but existing works have yet to deliver a framework that simultaneously (i) embeds
ECM parameters into a neural learning process, (ii) requires only essential measurements such as
terminal voltage and current, and (iii) remains computationally efficient for real-time operation. The
overview of the methods used in previous study is as shown in Table 1.

This study addresses this gap by proposing a physics-informed neural network (PINN) integrated
with a first-order Thevenin equivalent circuit for dynamic SOC estimation. The objectives are: (i) to
design a hybrid estimation framework that combines physically derived parameters with neural network
learning, (ii) to validate its performance experimentally under dynamic load and extended cycling
conditions, and (iii) to benchmark the approach against widely used estimators, including EKF and pure
NN models. The novelty lies in embedding physical constraints directly into loss function of NN,
thereby improving interpretability, robustness, and accuracy while reducing estimation uncertainty. This
contribution offers scalable and practical solution for real-time battery management in electric vehicles
and energy storage applications.

Table 1. Literature review on SOC Estimation approaches

Method Approach  Model Type Strengths Limitations

Type
Electrochemic  Physics- Electrochemical High accuracy; High computational
al Model [4- Based Equations physically interpretable  cost; requires precise
5] parameters
Electrical Physics- RC Networks (e.g., Real-time compatible;  Inaccurate for

ECM [8-11] Based Thevenin, PNGV) easy to parameterize nonlinear or
longterm behavior

KF [13] Model- Statistical Effective for linear not optimal for
Based Estimation systems; efficient nonlinear dynamics

EKF [16] Model- Linearized Handles moderate Suffers from
Based Estimation nonlinearity; widely linearization errors

adopted

UKF [18] Model- Nonlinear Accurate without Higher computational
Based Estimation linearization demand

PF [19] Model- Monte Carlo Works for nonlinear, Computationally
Based Bayesian non-Gaussian systems  expensive

RF [22] Data- Ensemble Learning Robust, interpretable Limited temporal
Driven modeling
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XGBoost [23] Data- Boosted Trees High accuracy; fast Lacks time-sequence
Driven training modeling
CNN [26] Data- Deep Learning Learns short-term Poor for longterm
Driven patterns dependencies
LSTM [28] Data- RNN Captures long-term Requires large data;
Driven trends low interpretability
GPR [32] Data- Probabilistic Predictive uncertainty;  Poor scalability
Driven Regression good accuracy
Hybrid ECM  Hybrid Physical - ML Balanced accuracy and ~ Unable to interpret
- ANN [38] interpretability dynamic patterns of
the battery
Proposed Hybrid Physics-Informed Accurate, interpretable;  Needs physical
Method NN needs only V, | parameters; training
complexity
2. Methods

The overall process conducted in this research to develop SOC estimation algorithm is as illustrated in
the flowchart in Fig. 1 below.

Experiment Setup
- LFP 18650 (18 Ah)

Physics-Based Modeling
(Thevenin Model)
- OCV, Ri, Rp, Cp
- OCV-SOC mapping (8th-order + GA)

- NEWARE tester
- Chamber 20 = 1 °C

- Discharge: CC 2C

- 300 + 2000 cycles Neural Network Modeling

(PINN)
- Inputs: Vt, Ib
- Outputs: Voc, Ri, Rp, Cp
- 2 hidden layers, 32 neurons
- Physics-constrained loss

Battery Cycling Tests
- Charge: CC-CV 1C

Data Collection
- Voltage, Current
- SOC via Coulomb counting

Data Preparation
- 80% training
- 20% testing

Figure 1. Research flow framework

Model Evaluation
- RMSE, MAPE, R?

2.1. Experiment and Data Preparation

Constructing a NN model requires a dataset with key battery parameters, notably terminal voltage and
current. To achieve this, controlled experiments were conducted on lithium iron phosphate (LiFePOa,
LFP) 18650 cells with a nominal capacity of 18 Ah, developed by the Lithium Battery Research and
Technology Centre, Universitas Sebelas Maret, Indonesia. These cylindrical cells were designed for
high-power applications, capable of continuous charge and discharge at elevated current rates.
Experiments were performed in a chamber with temperature maintained at 20 + 1 °C to ensure stable
ambient conditions.

The battery cycle comprised two main stages: charging and discharging. During charging, the cell
was charged in constant current (CC) mode with 1C rate until the target voltage was achieved, then
maintained at constant voltage (CV) until the current reduced to zero. In the discharging phase, cell was
discharged in CC mode with 2C discharging rate until the voltage cut-off limit was reached. This cycle
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was repeated 300 times, with a 20-minute rest between cycles. Data collected included
charging/discharging current, terminal voltage, cycle count, and SOC or capacity that was calculated
using coulomb counting method.

The experimental materials and equipment employed in this study consisted of:

e LFP 18650 cells supplied by the UNS Lithium Battery Research and Technology Excellence Centre,

o a NEWARE battery testing unit, and

e NEWARE data acquisition software.

These equipment and materials are illustrated in Fig. 2.

In addition, extended cycling tests were carried out for up to 2000 consecutive charge—discharge
cycles without resting intervals, applying a constant current protocol. The cut-off voltages were set at
3.7 V for charging and 2.7 V for discharging. The cycling rates were established at 2C for discharge and
1C for charge, where 1C corresponds to current rate necessary to fully discharge or charge the cell within
one hour.

The primary objective of these experiments was to generate a comprehensive dataset that captures
the battery dynamic behavior under repeated charge—discharge cycles. Key parameters, including
terminal voltage, current, and capacity, were systematically recorded to reflect both short-term dynamics
and long-term degradation pattern. This dataset will be used for training and validating the proposed
neural network framework. To minimize sampling bias and ensure representative coverage of the
operating conditions, the collected data was randomly partitioned into two subsets. A total of 80% of
the samples were allocated for training the PINN enabling the model to learn the underlying relation
between voltage, current and SOC. The remaining 20% was reserved exclusively for independent testing
and validation, ensuring that model performance was assessed on unseen data. This randomized splitting
strategy improves the robustness of the evaluation and enhances the generalizability of the proposed
method across varying cycling conditions.

Figure 2. Experiment tools and materials

2.2. ECM modeling

In this work, a Thevenin equivalent circuit model (first-order) was adopted due to the simplicity and
satisfactory accuracy. The model represents the electrical behavior of the battery by combining an open-
circuit voltage (OCV) source in series with a resistor (internal resistance) and a parallel resistor and
capacitor (R-C) network, as illustrated in Fig. 3.
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Figure 3. The first-order thevenin equivalent circuit model

V; is terminal voltage of the battery that can be expressed mathematically as shown in equation (1).
Ve =Voc —Ip. Ry — Ve 1)

V. is open circuit voltage, I, is current accross the battery, R; is internal resistance, and Vg is the
voltage in the R-C branch. The R-C branch is modeled as a parallel network consist of a resistor and a
capacitor. The voltage Vg across this branch follows a first-order differential equation as shown in
equation (2).
AVre(t) _ Ip(t)  Vge(D)
dt  Cp(t)  Rp(©)-Cp(t) )

R, and C,, are the resistance and capacitance in the parallel R-C branch. For modeling implementation,
this form is discretized with sampling time 1 s. The discretized RC model is as shown in equation (3).

1

Vee(k +1) = e‘“(RPCP)vRC(k) +R,(1 - e'“(ﬁ))lb k) ©)

In SOC estimation, the parameters V;., Ry, and C, are vital. They can vary with temperature, current

rate, and battery health. When accurately identified, these parameters effectively represent the battery's
internal behavior and allow precise SOC tracking.

2.3. OCV-SOC Mapping

The OCV dynamic from the ECM aids in real-time and online SOC estimation. The derived V.. is related
to SOC through an 8th-order polynomial regression. This approach is popular for its adaptability in
fitting the OCV-SOC curve, particularly for Li-ion batteries like LFP or NMC. As detailed in equation
(4), the polynomial fitting uses estimated OCV values.

Voc(SOC) = ao + a150C + a250C2 + a35063 + e + a85068 (4)
Qy, a4, -.., ag are the polynomial coefficients obtained through least squares fitting. Higher-order fitting
is often required for LiFePOs and NMC chemistries because their OCV-SOC curves exhibit nonlinear

plateaus and inflection points that cannot be captured accurately with low-order polynomials. In this
study, orders from 4 to 8 were tested, and while 4th- and 6th-order regressions showed larger residuals
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near the flat plateau region, the 8th-order polynomial achieved the lowest root mean squared error
(RMSE) without introducing noticeable overfitting, as verified through cross-validation.

To further refine the coefficients and avoid local minima, a genetic algorithm (GA) was employed.
GA hyperparameter was set with a population size of 50, mutation probability of 0.05 and crossover
probability of 0.8. The fitness function minimized the mean squared error between measured and
estimated OCV values. The algorithm was terminated either after 200 generations or if the fitness
improvement remained below 10~ for 20 consecutive generations, whichever occurred first.

The resulting polynomial equation was solved iteratively using the Newton—Raphson (NR) method
to obtain SOC from a given V.. The initial SOC guess is set to 0.5 (50%) which represents a neutral
midpoint that improves convergence stability across charge—discharge cycles. A convergence tolerance
of 10~° was applied to the residual error, with a maximum of 100 iterations permitted. In practice, the
method consistently converged within fewer than 10 iterations for all tested cases.

2.4. Neural Network Model

A NN was employed to estimate the time-varying battery parameters V,., R;, R, and C,, which are
essential for estimating SOC. The model receives terminal voltage V; and current I, as input features,
and the outputs are the internal parameters used to derive SOC through an OCV-SOC mapping. To train
the model, the time-series dataset generated in the previous step was used. The architecture of the ANN
is illustrated in Fig. 4. The inputs x1 and x2 correspond to V; and I;,, while the outputs y1, y2, y3, and
y4 represent V¢, R;, R, and C,, respectively. The ANN architecture consisted of one input layer with
two nodes corresponding to terminal voltage and current, two fully connected hidden layers, and one
output layer with four nodes representing outputs V;., R;, R, and C,,. Each hidden layer contained 32
neurons with rectified linear unit (ReLU) activation functions, which provided efficient training and
mitigated vanishing gradient issues. The output layer used linear activation to predict continuous
parameter values. Model training was performed using the Adam optimizer. The initial learning rate is
setto 1 x 1073 and batch size is set to 128 for 200 training epochs. Early stopping was applied to avoid
overfitting, with validation performance monitored during training. The detail of the NN
hyperparameters used in this research is shown in Table 2.

' A ‘
72X T
/"‘v OAR

Figure 4. ANN architeture
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Table 2. ANN hyperparameters setting

Parameter Specification

Input layer 2 nodes

Output layer 4 nodes

Hidden layers 2 layers, 32 neurons each
Activation function (hidden layer) RelLU

Activation function (output layer) Linear

Batch size 128

Epochs 200 (with early stopping)
Optimizer Adam

Learning rate 1x1073

Since this approach incorporates domain knowledge, a PINN framework was implemented. The
ANN training is not only aimed to minimize the data training loss but also to comply with the governing
physical equations of the Thevenin model. The total loss is a weighted sum of three components:

e Output loss (L,,;); ensures the predicted terminal voltage matches the measured values.

e RC dynamics constraint (Lg.); enforces consistency with the RC branch differential equation.

e SOC consistency loss (Lgoc); ensures that the predicted V. corresponds to SOC using OCV-

SOC mapping.
These loss functions are given by equation (5), (6) and (7).

N
1 2
Loys = NZ'Vt(t)true -V (t)pred| (5)
i=1
N 2
Lol Z Vpe 1, 001
RC = 737 RC — 6
NL[de " R,G, C, (6)
N
1 2
Lsoc =3 ) [SOC(Eerue = SOCDpredl e

i=1

In (7), SOC(t)¢rye is the measured SOC from Coulomb counting, and SOC(t),,.q is the corresponding
SOC derived from the predicted V,. using the OCV-SOC relation. The total loss is given by equation
(8).

Liotar = @ Loyt + B-Lrc +v-Lsoc (8)

Where a, B, and vy are weighting coefficients. In this study, values of 0=0.5, p=0.3, and y=0.2 were
selected after preliminary tuning to balance data fidelity, dynamic consistency, and SOC accuracy. This
weighting ensures that the model prioritizes accurate reproduction of measured terminal voltage while
still enforcing the RC dynamics and SOC consistency constraints. By training under these physics-based
constraints, the NN can learn the dynamic behavior of the battery parameters and accurately estimate
SOC in real time, ensuring both robustness and physical consistency.
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2.5. Model Evaluation

The performance of the proposed PINN in estimating the battery’s internal parameters and SOC was
assessed using three statistical metrics: root mean square error (RMSE), mean absolute percentage error
(MAPE), and the coefficient of determination (R?). These metrics assess prediction accuracy by
comparing the model's estimated terminal voltage and SOC to the ground truth values. RMSE gives the
average size of errors in the same units as the target variable, while MAPE shows the error as a
percentage. The R? value indicates how well the model captures data variance, with values near 1
suggesting a better fit.

3. Results and Discussion

This section displays the experiment outcomes and the processes of parameter identification, parameter
dynamics modeling, and model simulation for real-time SOC estimation of the battery system. The
experiment supplied crucial measurement data under varying conditions, and the parameter
identification aimed at identifying essential model parameters affecting battery behavior. These
parameters were integrated into the model to accurately simulate battery dynamics. The model's efficacy
in estimating real-time SOC is assessed via simulation results, detailed in subsequent subsections.

3.1. Parameter Dynamics

The training of the proposed PINN model facilitated the discovery of crucial battery parameters, the
main focus of the learning stage. These parameters align with the equivalent circuit model elements,
such as the OCV (V,,.), polarization voltage (3,), and internal resistance (R;). By deriving these from the
data, the model precisely models the battery's internal dynamics during charging.

Among these parameters, the OCV (V) is crucial as it reliably estimates the SOC. Likewise, the
internal resistance (R;) offers insights into the battery's condition, revealing both immediate response
and long-term degradation effects, enhancing SOC estimation accuracy. The polarization voltage (V)
complements the model by addressing transient voltage behavior from electrochemical processes.

The ability of the model to learn battery behavior was assessed by comparing the estimated values
of V,. and R;. from the training with reference data from experiments. This comparison facilitates an in-
depth analysis of the battery system's dynamic response. Fig. 5 presents the estimation results for OCV
and internal resistance over the training cycles, showing the ability of the model to accurately capture
the dynamics of battery. The findings confirm that this method effectively derives key parameters from
voltage-current data during charging, enhancing SOC estimation accuracy and supporting battery health
monitoring and reliability.

3.5 1 —— Open-Circuit Voltage 0014 —— Internal Resistance
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3.2 4
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Figure 5. The dynamic estimation of OCV and internal resistance
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3.2. OCV-SOC Relationship

As explained in the proposed method, the OCV parameter obtained from NN training is used to estimate
SOC of the battery through polynomial regression. The estimated OCV has a polynomial relationship
with the actual SOC of the battery. Therefore, an eighth-order polynomial regression method is
employed to obtain an equation representing the relation between estimated OCV and actual SOC. To
complete equation (4), the values of the coefficients were determined using least square fitting and the
result is shown in equation (9) below.

Vocv(SoC) = 2.76 + 5.38S0C — 17.28 SOC? + 33.96 SOC?3
+2.1750C* — 188.17 SOC® + 406.46 SOC® — 350.29 SOC” + 109.6 SOC?® 9)

Battery SOC can be approached by solving equation (9). To solve it, the NR method was utilized by
inputting V. obtained from PINN training. The initial guess for SOC is set to 0. The SOC prediction
result is then compared to the actual SOC obtained from experimental data to validate model accuracy,
as shown in Fig. 6.

357 —— voltage (V)
—— SoC (%)
-80
3.4 1 o~
— q)
= o0 O
o 331 S
e
o
© Q
ﬁ ’40q_
o 3.2 o
> (0]
o
-20 ©
3.14 (Vp]
r0

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Figure 6. The relationship between actual SOC and estimated open circuit voltage

3.3. Hyperparameter Sensitivity Analysis

Fig. 7 presents the results of the sensitivity analysis for two parameters including the number of hidden
layers and the number of neurons per hidden layer. As shown in Neurons vs RMSE sensitivity analysis
plot, increasing the number of neurons from very small values initially leads to a sharp reduction in
RMSE for both training and testing sets, indicating improved representational capacity of the network.
However, beyond about 32 neurons the improvement becomes more gradual, and the curves begin to
fluctuate around a lower bound. This suggests that while adding more neurons can enhance model
accuracy to some extent, excessive neurons do not necessarily yield further benefits and may even
introduce variability due to overfitting.

Meanwhile, Hidden layers vs RMSE sensitivity analysis plot highlights the effect of varying the
number of hidden layers. The reduction in RMSE is most significant when moving from a single hidden
layer to two layers, confirming that a deeper structure improves the network’s ability to capture
nonlinearities in the data. Nevertheless, adding more than two layers results in only marginal
improvements for training RMSE and even leads to a slight increase in testing RMSE, reflecting reduced
generalization and potential overfitting. Taken together, these findings support the selection of a
moderate network architecture with two hidden layers and 32 neurons each as a balanced choice between
accuracy and robustness.
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Sensitivity Analysis: Neurons vs RMSE s Sensitivity Analysis: Hidden Layers vs RMSE
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Figure 7. Hyperparameter sensitivity analysis (Hidden layer and neurons)

3.4. SOC Estimation Result

The final SOC estimation result using proposed method is obtained by converting the estimated open
circuit voltage value through equation (9). The obtained SOC estimation value then compared with
obtained SOC from experiments using pure NN method and physic-based model with KF as presented
in Fig. 8. The actual SOC trajectory, derived from high-resolution experimental data was used as the
reference baseline. All estimation curves closely follow the ground truth across the charge cycle, though
significant differences emerge in terms of transient behavior and steady-state accuracy.

100
Pure Neural Network

—— Actual SoC
—— Proposed Method
—— Physic-based + Kalman Filter

801

60

404

SOC (%)

201

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Time (s)
Figure 8. SOC estimation results from various methods

Quantitative evaluation was conducted using three performance metrics including RMSE, MAPE,
and R2. These metrics, summarized in Table 3, reveal that the proposed PINN significantly outperforms
the other methods. It achieves the lowest RMSE of 0.103, the smallest MAPE of 0.702%, and the highest
R? of 0.998. These results indicate both high estimation precision and strong correlation with the
ground-truth SOC, underscoring the effectiveness of embedding physical constraints within a neural
learning framework.
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Table 3. SOC Estimation Error Comparison

Methods RMSE MAPE R?

Pure NN 0.703 1.462 0.997
Pure Physic-based Model 1.410 3.377 0.995
Proposed Method 0.103 0.702 0.998

The pure NN baseline demonstrates competitive accuracy, with RMSE of 0.703 and R? of 0.997, but
the MAPE rises to 1.462%. This higher percentage error is linked to the absence of physical priors that
makes the network more prone to noise and overfitting in regions where training data are limited. As a
result, its transient predictions become less stable, a well-documented drawback of unconstrained black-
box models.

The physics-based model with Kalman filtering provides greater interpretability and noise
suppression during steady states, yet it records the largest estimation errors (RMSE = 1.410, MAPE =
3.377%). The reduced R? (0.995) indicates weaker tracking during highly nonlinear charge—discharge
phases. A key source of error lies in the filter’s sensitivity to initial conditions and covariance
assumptions, which produced large deviations at the beginning of the estimation horizon. Since the
Kalman filter relies on local linearization, it cannot fully capture the strong nonlinearities that dominate
under rapid current changes, leading to biased estimates before the filter converges.

The error distribution shown in Fig. 9 provides further insight into these observations. The physics-
based method exhibits a wide spread of error values, especially at the beginning of the estimation
horizon, confirming its sensitivity to initialization and filter tuning. By contrast, the pure NN baseline
produces narrower but more irregular fluctuations, consistent with its tendency to amplify noise in
regions lacking sufficient training support. The proposed approach, however, demonstrates the most
compact distribution centered closely around zero, indicating both lower bias and reduced variance in
its error profile. This visual evidence reinforces the numerical metrics, highlighting that the PINN not
only minimizes average error but also stabilizes transient behavior across the entire time horizon.

—— Physic-based + KF

~
S
L

—— Pure Neural Network

—— Proposed Method

H
v
L
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Error in SoC Estimation (%)

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Time (s)

Figure 9. Error distribution plot

In contrast, the proposed PINN integrates the strengths of both approaches. By incorporating
differential constraints from the Thevenin model, the PINN reduces sensitivity to noisy or sparse data
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that typically destabilize pure NN predictions. At the same time, the learning component captures
nonlinear dynamics beyond the reach of linearized Kalman filtering. This hybrid structure explains why
the method delivers both low absolute error and smooth transient performance. In effect, the physics
priors restrict the hypothesis space, guiding the neural network toward physically consistent solutions,
while the data-driven learning ensures adaptability to real operating conditions. This synergy accounts
for the observed improvement in accuracy and robustness, particularly during dynamic load transitions
where other methods show noticeable limitations.

In addition, the proposed method also shows efficiency in computation. Table 4 summarizes average
runtime per cycle and approximate floating-point operations (FLOPS) for the three estimators. From
these data, the analysis is derived into two metrics: FLOPs per millisecond and time per FLOP. The pure
NN requires the largest number of arithmetic operations (8.02 x 10* FLOPs) and the longest average
latency (7.8 ms), but exhibits the lowest time per FLOP (=97 ns/FLOP), indicating that its arithmetic
workload is highly vectorizable and benefits from optimized dense linear algebra kernels. The pure
physic-based model has very low computational complexity (1.5 x 103 FLOPs) and the smallest total
runtime (3.2 ms), yet shows the highest time per FLOP (=2,133 ns/FLOP), which suggests that its wall-
time is dominated by non-FLOP overheads (control branching, scalar operations, or interpreter
overhead). The proposed PINN achieves an intermediate computational cost (1.2 x 10* FLOPs) and
latency (5.1 ms), reflecting its mixed character (neural inference plus modest physics processing).

Table 4. Computational complexity comparison

Methods Average runtime Approximated
per cycle (ms) FLOPs per cycle
Pure NN 7.8 8.02 x 10*
Pure Physic-based Model 3.2 1.5 x 103
Proposed Method 51 1.2 x 104

The comparison shows that the proposed method offers the most balanced trade between the accuracy
and the cost of computation. Relative to the pure physics-based model, the method requires additional
computation because of the neural network component, but the increase is modest and outweighed by
the significant improvement in accuracy. In contrast, compared with a purely data-driven NN, the
proposed method achieves both higher accuracy and lower computational demand. This outcome arises
from the hybrid design: the equivalent circuit model restricts the solution space with physically grounded
constraints, while the neural network captures nonlinear dynamics that are difficult to express
analytically. By embedding physical structure into the learning process, the network can remain compact
without sacrificing performance. Consequently, the method delivers markedly higher accuracy while
keeping runtime within practical limits for real-time battery management applications.

The findings emphasize the strength of combining data-driven learning with physical modeling.
Because the PINN enforces differential constraints and system dynamics, it can maintain accurate SOC
estimation across the full operating range. This shows that physics-informed learning is particularly
valuable in safety-critical settings, where accuracy must be accompanied by interpretability. Unlike
black-box neural networks, the proposed framework offers greater confidence in prediction reliability
by remaining consistent with established battery behaviors.

These benefits also extend to practical use in battery management systems. In electric vehicles, more
accurate SOC estimation means drivers can rely on improved range prediction, longer usable driving
distance, and better safeguards against overcharge or deep discharge. For large battery energy storage
systems, the method’s robustness under variable loads and repeated cycling helps ensure stable grid
operation and dependable renewable energy dispatch. Although the computational cost of the PINN is
higher than a purely physics-based model, it remains well within the limits of common embedded
controllers used in automotive and stationary BMS. This balance of accuracy and efficiency makes the
approach not only technically sound but also realistically deployable.
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While the proposed PINN demonstrates clear advantages, certain limitations should be
acknowledged. The experiment was conducted under a fixed temperature of 20 °C and with predefined
charge—discharge rates. As a result, the generalization of the model across a broader temperature range
or under highly variable C-rates has not yet been validated. In practical BMS applications, thermal
effects and current-rate fluctuations strongly influence internal battery dynamics, and further testing is
required to confirm robustness under such conditions. Moreover, this study only focuses on LiFePOs
cells, and the applicability of the framework to other chemistries such as NMC or LTO remains an open
question. Differences in OCV-SOC characteristics and degradation pathways may require re-tuning of
the polynomial fitting or additional modifications to the loss formulation. These aspects point to the
need for future work on transferability and cross-chemistry adaptation before large-scale deployment in
diverse battery systems.

4, Conclusion

A novel method for real-time SOC estimation of lithium-ion batteries using a dynamic model with a
PINN has been successfully developed. This approach blends experimental data with internal battery
dynamics such as polarization voltage, OCV, and internal resistance. Parameter values were initially
obtained from an equivalent circuit model, and behavior dynamics were learned via PINN training,
facilitating accurate SOC tracking. The OCV-SOC relationship was modeled using an eighth-order
polynomial regression, with coefficients optimized via a GA. The final SOC estimates were obtained
using the NR method and validated against experimental data. Comparative analysis showed that the
proposed PINN method outperformed both pure NN and physics-based models with Kalman filters,
achieving the lowest RMSE (0.103), MAPE (0.702%), and highest R? (0.998). These results confirm
the effectiveness of embedding physic-based knowledge into the NN training. The PINN approach
improves robustness, accuracy, and interpretability in dynamic and nonlinear conditions. This hybrid
model was shown to improve robustness, accuracy, and interpretability. Despite its strong performance,
this study is limited to LiFePOs cells tested under fixed laboratory conditions. Broader validation across
temperatures, C-rates, and chemistries is required. Future work will incorporate thermal coupling,
integrate SOH estimation, and evaluate deployment on embedded BMS hardware. With these
extensions, the proposed PINN can further enhance the safety and reliability of EV or energy storage
systems.
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