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Abstract. The growing need for efficient night lighting in natural tourist destinations highlights 

the importance of reliable and sustainable energy solutions. This study analyzes the optimization 

of solar-based lighting at Bukit Kunci, Indonesia, using the Open Energy Modelling Framework 

(OEMOF) combined with real-time monitoring via the IoT ThingSpeak platform. Photovoltaic 

(PV) panel data recorded at 15-second intervals during February–July 2025, yielding 532,520 

records, were cleaned and aggregated as input to model the interaction of PV, batteries, LED 

lights, inverters, and backup generators, to minimize lifecycle cost and energy loss. Results 

indicate that the current PV capacity (0.4 kWp) supplies less than 50% of lighting demand, with 

a high levelized cost of energy (≈9.2 USD/kWh) and low reliability (self-sufficiency 3–22%). 

Optimization through capacity expansion (≈224 modules, ≈1.25 kWh storage) eliminated load 

loss probability and reduced LCOE to ≈0.05 USD/kWh. This approach demonstrates OEMOF’s 

potential to enhance system efficiency, ensure reliable night lighting, and support eco-tourism 

while offering replicability for rural destinations. 
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1.   Introduction  

The demand for reliable and sustainable night lighting in tourist destinations such as Bukit Kunci is 

increasing alongside tourism development, which requires both visitor comfort and safety. Conventional 

grid-based systems are often inefficient or unavailable in rural tourist areas, creating a need for lighting 

solutions that combine visual quality, reliability, and sustainability. Off-grid photovoltaic (PV) systems 

are a viable option, but their performance and cost-effectiveness depend strongly on proper system 

design and optimization. 
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Optimization frameworks such as the Open Energy Modelling Framework (OEMOF) provide a 

modular, transparent, and reproducible approach to designing integrated energy systems that include PV 

generation, storage, and loads, with explicit consideration of efficiency and cost  [1–4]. OEMOF has 

been widely applied in large-scale or institutional energy planning, such as regional energy transitions 

[5], building retrofits [6,7],  and decentralized system strategies [8,9]. However, the application of 

OEMOF to small-scale energy infrastructure related to the tourism sector is still relatively limited. Most 

previous research has focused more on urban or industrial contexts, so the application of OEMOF for 

micro-scale off-grid systems in rural tourism areas has not been widely explored. On the other hand, 

small-scale off-grid system analysis is generally more often done using other software, such as HOMER, 

which has become more established in integrated energy system analysis [10,11]. 

At the same time, the Internet of Things (IoT) enables real-time monitoring and control of energy 

systems. Platforms such as ThingSpeak can record and visualize high-frequency data (irradiance, 

voltage, current, temperature) that are valuable for model calibration and optimization. Numerous IoT 

systems have been developed for smart lighting and energy efficiency, including LoRaWAN-based 

lighting control [12] and low-cost monitoring architectures for campus-scale systems [13]. oT-based 

monitoring and control have become essential tools for achieving data transparency and operational 

efficiency in smart grids [14]. While ThingSpeak and similar platforms have proven effective for PV 

data analysis and simulation [15], their integration with techno-economic optimization models in the 

tourism energy context remains underexplored. 

Recent studies in the hospitality sector have highlighted the benefits of smart monitoring for 

managing energy consumption and guest comfort [16] and optimizing hybrid renewable systems for 

tourist facilities [17]. Similarly, IoT-based street lighting control has been implemented in urban 

environments [18], and broader reviews emphasize IoT’s potential for intelligent energy management 

in buildings and cities [19], [20]. Nevertheless, few works have systematically combined field IoT data 

with optimization models to design and evaluate energy systems for rural tourist sites. 

This study bridges that gap by integrating OEMOF optimization with real-time IoT monitoring via 

ThingSpeak to evaluate and improve solar-powered lighting infrastructure. The research objectives are:  

1. To demonstrate how high-frequency IoT data can improve the accuracy and realism of OEMOF-based 

optimization for small PV–battery systems; 

2. To assess the techno-economic performance and life-cycle cost of solar lighting configurations, and 

3. To evaluate the replicability of the proposed framework for similar off-grid rural tourism sites. 

The novelty of this research lies in the integration of real-time IoT data streams with an open-source 

optimization framework to develop a reproducible, data-driven methodology for small-scale energy 

systems. The proposed approach provides a transparent pathway for enhancing energy efficiency, 

reliability, and sustainability of lighting infrastructure in rural tourism destinations such as Bukit Kunci, 

Indonesia. 

 

2.   Methods 

2.1.   Study Location 

The study was conducted in Bukit Kunci, Blora Regency, Central Java, Indonesia (6°57.6′ S, 111°31.3′ 

E), a hilly natural tourist site known for panoramic views and night-time city lights. The area’s elevation 

ranges from 100–500 m above sea level, with slopes of 5–20° influencing panel tilt and orientation. The 

climate is tropical with distinct rainy (November–March) and dry (April–October) seasons. According 

to BMKG data, the average daily solar irradiation is 5.2–5.5 kWh/m²/day, with average temperatures 

between 24–27 °C and humidity of 70–85 %, indicating good solar energy potential [21].  

 

2.2.   Data Acquisition and Processing 

Real-time PV performance data were collected through an IoT-based monitoring system connected to 

the ThingSpeak platform. The setup included PZEM-017 energy meters and INA219 current sensors 

linked to a NodeMCU ESP8266 microcontroller.   
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 Data were collected using a ThingSpeak-based IoT logger with 15-second sampling from February 

to July 2025. The monitoring system recorded irradiance, voltage, current, power, and cumulative 

energy from the PV subsystem.  

 Raw data contained 532,520 entries, of which 204,135 were invalid due to missing or negative 

readings in voltage, current, or power channels. Additionally, 21,608 zero-power anomalies were 

detected where irradiance exceeded 100 W/m² but PV power readings were near zero, indicating 

potential logger disconnections or sensor dropouts. After filtering and timestamp normalization 

(UTC+7), 328,385 valid records were retained, corresponding to 61.67 % completeness. 

The existence of data anomalies in IoT-based PV monitoring systems is a common phenomenon, 

especially due to communication interference and dropout sensors in multivariate time series data. Guo 

et al. point out that this kind of anomaly needs to be addressed through a data filtering process so that 

the analysis of the energy system is not distorted by measurement artifacts. Thus, the data cleansing 

stage in this study is an important step before the data is used for performance analysis and system 

optimization [22,23]. 

Temporal anomaly analysis showed that most anomalies occurred in March (226 cases) and April 

2025 (197 cases), coinciding with intermittent data-logger instability during the early deployment 

period. From May–July 2025, the number of anomalies dropped sharply (to < 90 per month) after on-

site maintenance and cable tightening, confirming improved reliability of the data acquisition chain. 

Cleaned data were aggregated into hourly averages for use as OEMOF model inputs. No gap-filling 

or interpolation was applied beyond anomaly removal to preserve data authenticity. Validation was 

cross-checked using BMKG solar radiation data for Blora and PLN tariff references for the economic 

model. The resulting hourly dataset ensured reliable input consistency for subsequent OEMOF 

simulations. The physical configuration of the monitoring system is shown in Figure 1. 

 

 
 

(a) (b) 
 

Figure 1. (a) IoT-based PV control and data logging unit installed at Bukit Kunci; (b) GH Solar 

100 Wp PV module label showing key specifications. 
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Figure 1 shows the configuration of the IoT-based monitoring unit installed at Bukit Kunci. The 

system includes a GH Solar 100 Wp panel, a PWM charge controller, and a VRLA 12 V 3 Ah battery 

housed within a waterproof box, connected to a wireless sensor node for continuous data transmission. 

The unit records irradiance, voltage, current, and power data every 15 seconds to the ThingSpeak cloud 

platform for real-time visualization and analysis. 

2.3.   OEMOF Model Development 

The optimization of the solar lighting system in Bukit Kunci was conducted using the Open Energy 

Modeling Framework (OEMOF), an open-source Python library that models energy systems as directed 

graphs consisting of sources, sinks, storages, and transformers [3,24]. OEMOF enables transparent and 

modular optimization of techno-economic systems by representing each component and energy flow 

explicitly within a consistent mathematical structure. 

In this study, the model structure reflects the actual off-grid PV–battery–inverter system installed on-

site, integrating measured IoT-based power and irradiance data as time-series inputs. The model includes 

the following components:  
1. Photovoltaic (PV) modules as energy sources. 

2. Battery storage as energy buffers with round-trip efficiency and depth-of-discharge limits. 

3. DC and AC buses interconnecting components. 

4. Inverters and charge controllers as transformers. 

5. LED-based lighting loads as energy sinks, modeled with hourly load profiles derived from IoT monitoring 

 

2.3.1 Objective Function 

The optimization problem in this study aims to minimize the total techno-economic cost of the off-grid 

solar lighting system using OEMOF. The system consists of photovoltaic (PV) modules, a lithium-ion 

battery pack, and an inverter supplying LED-based lighting. The optimization objective is to determine 

the optimal operation and sizing strategy that minimizes total operating and investment costs while 

ensuring a reliable power supply to the lighting load. The optimization problem is formulated as: 

min 𝑍 = ∑  ∑ 𝐶𝑖

𝑖 ∈ {𝑃𝑉,𝑏𝑎𝑡,𝑖𝑛𝑣}

𝑇

𝑡=1

𝑃𝑖,𝑡 +  𝐶𝑜𝑚  

(1) 

 

Where Ci  represents the unit cost coefficient of component 𝑖(USD/kWh), and Pi,t denotes the hourly 

power output or throughput of each component 𝑖at time step 𝑡. The component set {PV, bat, inv} refers 

to the photovoltaic array, battery storage, and inverter, respectively. Com denotes the fixed operation and 

maintenance cost of the system. The objective function, therefore, seeks to minimize the total energy 

cost over the simulation horizon while maintaining energy balance between generation, storage, and 

load.   

2.3.2 Constraints 

The optimization is subject to several technical constraints that govern energy balance, storage 

dynamics, and operational limits of the photovoltaic (PV) and battery systems. 
1. Energy Balance Constraint 

The fundamental energy balance of the system ensures that, at each time step, the total generated energy 

equals the sum of consumption and storage changes, as expressed in Equation (2). 

 

𝑃𝑃𝑉,𝑡 +  𝑃𝑑𝑖𝑠,𝑡 =  𝑃𝐿𝐸𝐷,𝑡 + 𝑃𝑐ℎ,𝑡 (2) 

 

The notations are defined as follows:  

𝑃𝑃𝑉,𝑡 = Electrical power generated by the photovoltaic (PV) array at time 𝑡(W) 

𝑃𝑑𝑖𝑠,𝑡 = Power discharged from the battery storage at time 𝑡(W). 

𝑃𝐿𝐸𝐷,𝑡 = Power consumed by the lighting load (LED lamps) at time 𝑡(W). 

𝑃𝑐ℎ,𝑡 = Power used to charge the battery at time 𝑡(W). 
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This constraint ensures that, at every time step t, the total power generated by the PV array and the power 

discharged from the battery equals the total lighting demand and the power used for charging the battery. 

 

2. Battery State of Charge (SoC) Dynamics 

In the OEMOF-based model, the battery SoC represents the temporal energy balance within the storage 

component, governed by charge and discharge efficiencies as formulated in Equation (3). 

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + 
𝑐ℎ

𝑃𝑐ℎ,𝑡 −  
𝑃𝑑𝑖𝑠,𝑡


𝑑𝑖𝑠

 
(3) 

 

This equation represents the temporal evolution of the battery’s state of charge (SoC), describing 

how stored energy in the battery changes at each time step 𝑡. The notations are defined as follows: 

𝑆𝑜𝐶𝑡  = State of charge of the battery at time 𝑡(Wh or % of capacity). 

𝑆𝑜𝐶𝑡−1 = State of charge of the battery at the previous time step. 


𝑐ℎ

  = Charging efficiency of the battery (fraction, typically 0.9–0.95). 

𝑃𝑐ℎ,𝑡  = Charging power entering the battery at time 𝑡(W). 

𝑃𝑑𝑖𝑠,𝑡  = Power discharged from the battery at time 𝑡(W). 


𝑑𝑖𝑠

  = Discharging efficiency of the battery (fraction, typically 0.9–0.95). 

 

The first term 𝑆𝑜𝐶𝑡−1 represents the stored energy at the previous timestep. The second term 
𝑐ℎ

𝑃𝑐ℎ,𝑡 

adds the energy gained from PV charging, adjusted by the charging efficiency. The third term 
𝑃𝑑𝑖𝑠,𝑡

𝑑𝑖𝑠

 

subtracts the energy discharged, accounting for losses during discharge.  

This dynamic model ensures that the battery energy balance remains consistent throughout the 

simulation and allows OEMOF to optimize the charge/discharge schedule while respecting real-world 

efficiency losses. 

 

3. Battery Capacity Limits 

The allowable range of the battery’s state of charge is constrained by its minimum and maximum 

capacity limits, ensuring safe and reliable operation of the storage system, as defined in Equation (4). 

 

𝑆𝑜𝐶𝑚𝑖𝑛  ≤ 𝑆𝑜𝐶𝑡  ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (4) 

 

This inequality defines the allowable operating limits of the battery’s state of charge (SoC) over time, 

ensuring safe and reliable battery operation throughout the simulation. The notations are defined as 

follows: 

𝑆𝑜𝐶𝑚𝑖𝑛     = The minimum allowable state of charge, corresponding to the maximum depth of discharge 

(DoD). Operating below this level risks battery degradation or failure. 

𝑆𝑜𝐶𝑡          = The minimum allowable state of charge, corresponding to the maximum depth of discharge 

(DoD). Operating below this level risks battery degradation or failure. 

𝑆𝑜𝐶𝑚𝑎𝑥   = The maximum allowable state of charge, typically close to the nominal battery capacity 

(e.g., 100%), representing the upper energy storage limit. 

 

This constraint ensures that the battery does not exceed its design capacity during charging and does 

not discharge beyond its safe operating threshold. Maintaining the SoC within these boundaries protects 

the battery’s lifetime, prevents overcharging or deep discharging, and maintains realistic behavior in the 

OEMOF optimization model. 
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4. Depth of Discharge (DoD) Relation 

The minimum allowable state of charge of the battery is determined by its depth of discharge (DoD), 

which defines the fraction of total capacity that can be safely utilized without accelerating degradation, 

as shown in Equation (5). 

𝑆𝑜𝐶𝑚𝑖𝑛 = (1 − 𝐷𝑜𝑃) 𝐸𝑏𝑎𝑡 (5) 

Where 𝐸𝑏𝑎𝑡 denotes the nominal battery energy capacity (Wh). The depth of discharge (DoD) is a 

design parameter defining the maximum usable fraction of stored energy. 

 

 
5. PV Generator limits 

The maximum power output of the photovoltaic (PV) array is constrained by its conversion efficiency, active 

surface area, and the incident solar irradiance at a given time, as expressed in Equation (6). 

 

𝑃𝑃𝑉,𝑡  ≤  𝑝𝑣 . 𝐴𝑃𝑉 . 𝐺𝑡 (6) 

 

Where 𝑃𝑃𝑉,𝑡  is the PV output power at time 𝑡(W), 𝑝𝑣 is the PV conversion efficiency, 𝐴𝑃𝑉 is the 

total active panel area (m²), and 𝐺𝑡 is the solar irradiance (W/m²) at time 𝑡. This ensures that the 

generated PV power never exceeds the physical capacity determined by panel area and local solar 

resource. 

 

2.3.3 Mathematical Modelling of Components 

This section describes the mathematical and technical formulations of each component in the off-grid 

solar lighting system model. The model includes three main subsystems: photovoltaic (PV) generation, 

battery storage, and the inverter that supplies the AC lighting load. Each subsystem is represented in 

OEMOF as a node with specific techno-economic parameters and efficiency constraints. 

 

1. Photovoltaic (PV) Subsystem 

The PV subsystem converts solar irradiance into electrical power according to: 

𝑃𝑃𝑉,𝑡  =  𝑝𝑣 . 𝐴𝑃𝑉  . 𝐺𝑡 (7) 

 

The physical configuration of the PV subsystem is presented in Fig. 2(b), illustrating the wiring, charge 

controller, and dual-module (2 × 100 Wp) array setup used in the field installation. 

 

Table 1. Technical and Economic Specifications of the Solar Panel 

Parameter Symbol  (Unit) Value Description / Source 

Rated capacity 𝑃𝑃𝑉,𝑐𝑎𝑝  (WP) 200 2 modules × 100 Wp (field prototype) 

Module efficiency PV (%) 16.5 Manufacturer (GH Solar GH100M-39) 

Effective system efficiency PV, eff (%) 15.7 Includes derating (0.95) 

Module area APV (m²) 0.51 From label dimensions 

Mounting tilt/orientation – 15° / North-facing Field installation 

System derating factor – 0.95 Wiring & dust losses 

Investment cost CPV,cap (USD/kWp) 480 Field procurement 

O&M cost CPV, om (%CAPEX/yr) 1 Assumed annual maintenance 

 

2. Battery Storage Subsystem 

Battery storage is modelled dynamically based on its charging and discharging behavior, as formulated 

in Equations (4–5). The battery’s state of charge (SoC) evolves with time according to: 
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𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + 
𝑐ℎ

𝑃𝑐ℎ,𝑡 −  
𝑃𝑑𝑖𝑠,𝑡


𝑑𝑖𝑠

 
(8) 

With operational bounds defined by equation (4), and the relationship between minimum SoC and Depth 

of Discharge (DoD) defined by equation (5). Fig. 3 presents the configuration of the Li-ion battery pack 

used in the system, with detailed specifications summarized in Table 3. 

 
 

Figure 2. Li-ion battery pack used in the system 

 

The battery subsystem was modeled with charge/discharge efficiency (ηch, ηdis) and state-of-charge 

(SoC) limits following the OEMOF storage formulation. The expected lifetime of the LiFePO₄ battery 

(5–7 years) accounts for typical cycle degradation and capacity fade characteristics of lithium-ion cells, 

consistent with empirical aging models reported by Madani et al. [25]. 

 

Table 2. Technical and Economic Specifications of the Battery Subsystem 

 

Parameter Symbol  (Unit) Value Description / Source 

Nominal energy 

capacity 
Ebat (Wh) 158.8 (E = V \times C) 

Battery type/chemistry – 
Li-ion (18650 

cells) 
Field-installed specification 

Charging efficiency ch 0.95 Typical for Li-ion systems 

Discharging efficiency dis 0.90 Typical for Li-ion systems 

Depth of discharge DoD 0.8 (80 %) Operational limit to extend cycle life 

Investment cost Cbat, cap (USD/kWh) 93 Field procurement (≈ IDR 1,400,000) 

O&M cost 
Cbat,om 

(%CAPEX/yr) 
2 % Periodic controller and terminal check 

Lifetime assumption – 5 years For the annualized cost in the OEMOF model 

 

3. Inverter Subsystem 

The inverter converts DC energy from PV and battery sources to AC power for the LED load. Its 

efficiency is modelled as equation (9). 

𝑃𝑖𝑛𝑣,𝑡  =  𝜂𝑖𝑛𝑣  × (𝑃𝑃𝑉,𝑡 +  𝑃𝑑𝑖𝑠,𝑡) (9) 

Where: 

Pinv,t  = is the AC output power at time 𝑡, 

inv  = is the inverter conversion efficiency. 

 

Figure 4 presents the configuration of the inverter used in the system. 
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Figure 4. The Inverter  Used in The System 

The configuration and labeling of the DC–AC inverter used in the solar lighting prototype are shown in 

Fig. 3(b). The inverter converts the 12 V DC output from the battery to 220 V AC for LED lighting 

loads. The corresponding technical and economic specifications are summarized in Table 3. 
 

Table 3. Technical and Economic Specifications of the Inverter Subsystem 
 

Parameter Symbol  (Unit) Value Description / Source 

Rated output power Pinv,r (W) 1000 Continuous AC output 

DC input / AC output voltage VDC / VAC (V) 12 / 220 Compatible with battery bank 

Output frequency f  (Hz) 50  Standard for the Indonesian grid 

Conversion efficiency inv  0.90 Manufacturer's typical range 

Investment cost Cinv, cap (USD/kW) 172 Field procurement (≈ IDR 2,600,000) 

O&M cost Cinv, om (%CAPEX/yr) 1 % Periodic cleaning & inspection 

Expected lifetime – 5 years For annualized OEMOF modeling 

 

2.3.4 OEMOF Simulation Framework and Assumptions 

The optimization was implemented in Python 3.10 using the Open Energy Modelling Framework 

(OEMOF) library. OEMOF represents the energy system as a directed graph, where each node 

corresponds to a component (e.g., PV, battery, inverter, or lighting load) and edges represent the energy 

flow between them. The optimization aims to minimize total techno-economic cost, formulated in 

Section 2.3.1, while maintaining the physical and operational constraints defined in Section 2.3.2. 
 

2.3.4.1 Simulation Horizon and Temporal Resolution 

Measured PV and electrical data were collected at 15-second intervals from January to July 2025 using 

the installed IoT-based data logger. After cleaning and validation, these data were aggregated into hourly 

averages (Δt = 1 h) to ensure computational efficiency and compatibility with OEMOF’s standard time-

series structure. The simulation horizon covered the full 7-month observation period (January–July 

2025), which was treated as a representative operating year for the local climate of Bukit Kunci. This 

period includes both wet and dry seasons, allowing the model to capture realistic variations in solar 

irradiance and system performance under actual field conditions. 

 

2.3.4.2 Model Structure and Assumptions 

The OEMOF model consists of three primary subsystems—PV, battery, and inverter—interconnected 

through DC and AC buses. The main assumptions are as follows: 

1. Energy balance is enforced at every time step, ensuring supply equals demand. 

2. PV generation depends on measured irradiance and temperature; no synthetic weather data are used. 

3. Battery degradation effects are neglected within the 7-month simulation horizon, assuming constant 

efficiency. 

4. Economic parameters (CAPEX and OPEX) are derived from field procurement costs and annualized 

using a 5% discount rate. The capital and operational expenditures were calculated based on the installed 
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capacity of each subsystem using the following relations: 
 

𝐶𝐴𝑃𝐸𝑋 =  ∑(𝐶𝑖,𝑐𝑎𝑝  ×  𝑃𝑖)  ; 

𝐼

𝑃𝑃𝐸𝑋 =  ∑(𝐶𝑖,𝑜𝑚  ×  𝑃𝑖)   

𝐼

 
(10) 

Where Ci, cap, and Ci, om denote the specific capital and annual operation & maintenance costs (USD 

per unit capacity) of component i (PV, battery, inverter), and 𝑃𝑖 is its installed capacity. These values 

were derived from field procurement data and standardized techno-economic references [22]. The 

resulting total cost is annualized at a 5 % discount rate and used in the subsequent LCOE formulation 

(Equation 6). 

5. Operational lifetime assumptions: PV = 15 years, Battery = 5 years, Inverter = 5 years. 

6. No load shedding is allowed; unmet demand incurs a high penalty cost (λ). 

The model was executed using OEMOF’s solph optimization package with the CBC solver, performing 

linear programming (LP) optimization to obtain the least-cost configuration and operational schedule. 

The structure of the OEMOF model representing the off-grid lighting system is illustrated in Figure 4, 

showing the interactions among PV generation, battery storage, and inverter subsystems. 

 

  
 

Figure 4. PV generation, battery storage, and inverter subsystems modelling by OEMOF 

 

Figure 4 illustrates the OEMOF-based energy flow diagram of the proposed off-grid PV lighting 

system. The PV array acts as a DC energy source that supplies power to a DC bus. The generated energy 

can either charge the battery storage or be converted to AC via the inverter to supply the LED lighting 

load. The battery operates as an energy buffer, storing excess PV energy during the daytime and 

discharging when solar generation is insufficient. The inverter converts DC power into AC power with 

an efficiency ηinv, ensuring a continuous supply to the AC load. 
 

3.   Results and Discussion 

3.1.   Data Visualization from ThingSpeak 

The monitoring data of the PV system in Bukit Kunci collected through the IoT platform ThingSpeak is 

analyzed to obtain an overview of the potential of solar energy and the actual performance of the system. 

Two forms of visualization are shown to highlight the temporal variation and physical relationship 

between solar radiation and panel output power. 

 The results of ThingSpeak-based data visualization in this study are consistent with previous studies 

that show that the platform is able to reliably provide PV parameter data for small-scale systems. Sutikno 

et al.[26] report that the integration of NodeMCU ESP8266 and ThingSpeak supports real-time and 

historical PV monitoring at a low cost. Different from the study, this study uses IoT data as the main 

input in OEMOF-based energy system optimization, so that monitoring data plays a direct role in system 

evaluation and design. 

 

3.1.2 Temporal Variations of Energy and Insolation. 

Figure 1 shows that at Bukit Kunci (Jan–Jul 2025), solar insolation ranges from 2,000–6,000 Wh/m² on 

sunny days but drops sharply in cloudy/rainy conditions. PV output is very low, averaging 20–60 

Wh/day with occasional peaks above 100 Wh. From May to early June, output was nearly zero despite 
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recorded insolation, suggesting operational issues or data logger problems. Overall, PV capacity is far 

below the site’s solar potential. 

 

 
Figure 5. Temporal Variations of Energy and Insolation 

 

3.1.3 The Relationship of Irradiance and PV Power 

Data is aggregated into monthly averages to analyze seasonal trends and serve as input for the OEMOF 

optimization model. Climate data from BMKG and NASA POWER validate field measurements, while 

PLN tariff data support economic analysis. Data cleaning, processing, and aggregation are performed in 

Python (Google Colab) using pandas for manipulation and matplotlib for visualization. 

 
Figure 6. Scatter plot between irradiance (W/m²) and PV output power 

 

These two visualizations (figures 1 and 2) provide an important basis for the optimization process 

using OEMOF. The temporal pattern of insolation is used to construct the input profile of the solar 

energy source, while the scatter plot highlights the low actual efficiency of the system. The combination 

of the two justifies the need for an optimization strategy based on energy storage to ensure the 

availability of electricity during curfews in the Bukit Kunci tourist area. 
 

3.1.4 Night load profile. 

Figure 3 shows the night lighting load profile.  
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Figure 7. The night lighting load profile 

The lighting load is constant at about 0.06 kW from 18:00–06:00 and zero during the day. Data from 

February–July 2025 shows a consistent daily on/off cycle, confirming that the tourist lighting demand 

is stable and requires a continuous nightly energy supply. 

 

3.1.5 Supply and Demand Gap 

Figure 8 presents a comparison of PV supply and energy demand at 15-minute resolution. 

 

 
Figure 8. Supply and Demand Gap 

 

PV output is only available during the day with fluctuating values, while the lighting load remains 

constant at night. This creates a temporal mismatch: surplus energy in the daytime and a deficit at night. 

This highlights the need for an energy storage system (battery) to balance supply and demand. 

 

3.2 The results of the optimization simulation  

3.2.1 Energy output efficiency 

The simulation compares the PV system (4 modules @100 Wp) with the demand of 15 LED lamps (≈0.9 

kWh/day). The lamp load is stable, while PV output averages only 0.2–0.3 kWh/day, supplying less 

than 50% of lighting needs on most days, as shown in Figure 9. 

 

 
Figure 9. Daily Energy: PV Vs Demand Lamps  
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During sunny periods (late March and July), PV can generate 0.5–0.8 kWh/day, covering 60–80% of 

lighting demand. However, in low irradiation months (May–June), PV supply drops sharply to <0.1 

kWh/day, requiring almost all loads to be supported by backups (grid or batteries). This shows that solar 

energy is effective but highly dependent on seasonal conditions. 

 

3.2.2 Energy Costs 

The LCOE calculation is carried out with a 20-year horizon and a discount rate of 8%. The investment 

value of the PV system is 4×100 Wp (0.4 kWp) included as an initial cost, with an O&M of 1% per 

annum. The results of the calculation are shown in Table 4. 

 

Table 4. LCOE calculation results of a 4×100 Wp PV system for lamp load 

 

Parameter Value 

NPV total cost (20 years) $746,76 

Rated PV energy (kWh) 321 

LCOE_gen (USD/kWh) 2,33 

Spent PV energy (kWh) 81 

LCOE_used (USD/kWh) 9,24 

 

These results show that the cost of solar energy generated (LCOE_gen) is ≈ $2.33/kWh, while the 

cost of energy actually utilized for lighting (LCOE_used) reaches ≈ $9.24/kWh. This value is much 

higher than the price of conventional electricity because the energy recorded is relatively small due to 

the limitations of the data logger (only a portion of the day is recorded). 

 

3.2.3. System Reliability 

The reliability of the system is evaluated through a state-of-charge (SoC) analysis of the battery 

during the period February–July 2025. The SoC graph in the following image shows the charging and 

discharging patterns of the battery due to the imbalance between the PV energy availability and the load 

to be met. 

 

 
Figure 10. SoC Battery (% capacity-overlay Feb-July 2025) 

 

 The PV-battery system rarely reaches full SoC, often stays low, and frequently undergoes deep 

discharge, risking battery life and supply reliability. Although SoC rises slightly in high-radiation 

months, the system still struggles to ensure a continuous supply. With LOLP at ≈96% and self-

sufficiency under 5%, its reliability is very limited, requiring optimization through added PV capacity, 

more batteries, or backup integration. 
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Figure 11. Energy Indicators per Month (Feb-July 2025) 

The reliability of the PV-battery system in Bukit Kunci is still low, shown to be self-sufficient at 

only 3–22% throughout February-July 2025. The majority of load energy is unserved (78–97%), so the 

dependence on backup sources remains high. This condition confirms the need to increase PV and 

battery capacity so that the system can more reliably serve night loads. 

 

3.3 Implications for Tourism Infrastructure 

The reliability of the electrical energy supply for nighttime lighting in Bukit Kunci is very important for 

the comfort of visitors and the image of tourist destinations. The results of this simulation show that the 

combination of PV and batteries can provide reliable and sustainable electricity. With high self-

sufficiency, this system has the potential to reduce long-term operational costs while supporting eco-

tourism branding. 

 

3.4 Comparison before & after optimization 

The conditions before optimization (Baseline) can be seen in Figure 12. 

 

 
Figure 12. Before optimization (Baseline) 

 

 The baseline PV system with 4 modules produces only 0.0–0.4 kWh/day, far below the lamp demand 

of ≈0.85 kWh/day and often nearly zero. This results in large energy deficits, leaving most lighting 

needs unmet from February to July 2025. Occasional spikes in late February and July occur, but are still 

insufficient, making the system unable to sustain lighting needs and dependent on external sources. 

 



02601029-014 

 

 
Figure 13. After OEMOF Optimization 

 

After optimization (PV ≈224 modules, battery ≈1.25 kWh), energy production increased sharply, 

meeting most daily lighting needs. The battery improved supply continuity, though extreme conditions 

caused occasional drops. In contrast, the baseline with 4 PV modules produced only ≈34.3 kWh/year, 

with ≈8.6 kWh/year used for lamps, leading to low self-sufficiency and a high LCOE (≈9.2 USD/kWh). 

OEMOF optimization enabled better PV utilization and battery charging, reducing losses, achieving 

100% self-sufficiency in April with LOLP = 0%, and lowering LCOE to ≈0.05 USD/kWh, making the 

system reliable and economical. 

 

Table 5. Summary of Key Findings 
 

Indicator Value 

PV energy (4 modules, annualized) ≈ 34,3 kWh / year 

Lamp load (annualization) ≈ 54,7 kWh / year 

LOLP (Loss of Load Probability) 0% (lamp load is always served) 

LCOE (Levelized Cost of Energy) Used energy 
 

3.5 Sensitivity and Uncertainty Analysis 

In the context of an economic analysis of the energy system, Capital Expenditure (CAPEX) [27] refers 

to the initial investment cost for the purchase and installation of system components, while Operational 

Expenditure (OPEX) includes annual operating and maintenance costs [27]. Meanwhile, the Levelized 

Cost of Energy (LCOE) [28] describes the average cost of electrical energy production per unit kWh 

over the life of a project, which is calculated based on the total investment and operating costs compared 

to the total energy produced, as expressed in Equation (10).  
 

𝐿𝐶𝑂𝐸 =  

∑
𝐶𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

 

(11) 

 

 Where Ct denotes the annualized investment, replacement, and operational costs at year t, Et is the 

corresponding annual energy output, r is the discount rate, and n is the system lifetime. The LCOE value 

is used as a key indicator in assessing the economic feasibility and sensitivity of the system to changes 

in technical and financial parameters [29]. 

 Sensitivity analysis was conducted to evaluate the uncertainty of the key parameters in the 

optimization results of the off-grid solar PV technology developed in this study. Varied parameters 

include investment cost (CAPEX ± 20%), discount rate (4% – 10%), battery life (3 – 7 years) [25], and 

solar irradiation variation (± 10%). 

 The results of the analysis showed that LCOE values were most sensitive to CAPEX changes and 

discount rates, with values ranging from 59 to 86 USD/kWh from a baseline of 64.22 USD/kWh. 

A 20% decrease in CAPEX lowers LCOE by about 8%, while a 20% increase in CAPEX increases 

LCOE by 35%. An increase in the discount rate also increases the LCOE because it lowers the present 
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value of the energy produced, while a longer battery life lowers the LCOE due to reduced component 

replacement costs. In this context, the effect of component degradation is implicitly reflected in the 

battery lifetime scenarios, which represent gradual performance decline over time. 

 The summarized effects of each parameter variation on the Levelized Cost of Energy (LCOE) are 

presented in Table 6, which highlights the relative influence of CAPEX, discount rate, battery lifetime, 

and solar irradiance on the system’s overall economic performance. 
 

Table 6. Sensitivity of Key Parameters on LCOE 
 

Parameter Variation 
LCOE 

(USD/kWh) 

Δ from 

baseline (%) 
Interpretation 

PV CAPEX –20 % (80 %) 59.35 –7.6 Lower investment slightly decreases LCOE 

 +20 % (120 %) 86.51 +34.7 Higher CAPEX proportionally increases LCOE. 

Discount rate 

(r) 
4 % → 10 %  +10 – 20 

Higher discount rates raise LCOE due to 

lower Net Present Value (NPV) of energy. 

Battery 

lifetime 
3 → 7 years  –20 – 30 

Longer lifetime reduces LCOE by 

minimizing replacement cost 

Solar 

irradiance 
+10 % 59 – 69 ± 5 – 8 

Irradiance variability moderately affects 

LCOE. 

 Variations in solar irradiation have only a moderate effect (< 10%), suggesting that meteorological 

uncertainty is not very dominant on the economic outcomes of the system. Overall, these results confirm 

that investment cost factors and financial parameters are the main determinants of the economic viability 

of off-grid solar PV systems. So, taking into account the results of this sensitivity, efforts to reduce the 

cost of key components (especially PV modules and inverters) and optimize battery life will have the 

most significant impact on lowering the LCOE of the system in the future. The corresponding trend of 

CAPEX impact on LCOE is depicted in Figure 14. 

 

 
Figure 14. LCOE Sensitivity to CAPEX (20%) 

  

 The figure illustrates the nearly linear relationship between investment cost (CAPEX) and LCOE. A 

20 % increase in CAPEX raises the LCOE by approximately 35 %, while a 20 % decrease reduces it by 

about 8 %. This confirms that investment cost exerts the most significant influence on the levelized cost 

of electricity compared with other parameters. The LCOE value obtained in this study needs to be 

understood as an estimate that depends on the financial and technical assumptions used. The literature 

shows that LCOE is highly sensitive to parameters such as discount rates, system lifespan, and effective 

capacity, so small variations on those assumptions can result in significant cost differences. Therefore, 

the interpretation of the LCOE results needs to be accompanied by an analysis of uncertainty and 

sensitivity to avoid misleading conclusions [30]. 
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4.   Conclusion 

This study shows the application of the Open Energy Modelling Framework (OEMOF) integrated with 

IoT-based PV data to optimize off-grid solar lighting systems in Bukit Kunci, Indonesia. The results 

show that the combination of OEMOF optimization and actual field data allows for a more accurate 

evaluation of system size, performance, and cost efficiency under real-world environmental conditions. 

The configuration of the optimization results results in a balance between reliability and cost, with a 

lower Levelized Cost of Energy (LCOE) than the initial condition. Sensitivity analysis showed that the 

most influential factors on the economics of the system were the cost of investment (CAPEX) and 

discount rates, while variations in solar radiation and component degradation had a relatively smaller 

influence. 

However, there are some limitations that need to be noted. The data used only covers a seven-month 

period (January–July 2025), and the possibility of data logger anomalies can lead to minor uncertainty 

in the results. These findings provide a strong indication of the effectiveness of the methods used, but 

further validation is still needed to ensure the results are comprehensive. 

The next steps of the research will focus on the collection of long-term data to fully capture seasonal 

variations, advanced sensitivity analysis of the degradation of components and financial parameters, and 

field implementation of the optimization design results to verify their performance in real terms. 

In addition, future research can integrate artificial intelligence (AI/ML) to predict load patterns based 

on tourism activities, as well as apply smart tourism concepts such as real-time monitoring, automated 

demand response, and digital tourism information systems. This approach is expected to strengthen the 

sustainability of renewable energy while enhancing a smart and sustainable ecotourism experience. 
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