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Abstract. The growing need for efficient night lighting in natural tourist destinations highlights
the importance of reliable and sustainable energy solutions. This study analyzes the optimization
of solar-based lighting at Bukit Kunci, Indonesia, using the Open Energy Modelling Framework
(OEMOF) combined with real-time monitoring via the IoT ThingSpeak platform. Photovoltaic
(PV) panel data recorded at 15-second intervals during February—July 2025, yielding 532,520
records, were cleaned and aggregated as input to model the interaction of PV, batteries, LED
lights, inverters, and backup generators, to minimize lifecycle cost and energy loss. Results
indicate that the current PV capacity (0.4 kWp) supplies less than 50% of lighting demand, with
a high levelized cost of energy (=9.2 USD/kWh) and low reliability (self-sufficiency 3-22%).
Optimization through capacity expansion (=224 modules, ~1.25 kWh storage) eliminated load
loss probability and reduced LCOE to ~0.05 USD/kWh. This approach demonstrates OEMOF’s
potential to enhance system efficiency, ensure reliable night lighting, and support eco-tourism
while offering replicability for rural destinations.

Keywords: OEMOF, off-grid systems, energy optimization, rural tourism energy, LCOE, IoT
monitoring.
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1. Introduction

The demand for reliable and sustainable night lighting in tourist destinations such as Bukit Kunci is
increasing alongside tourism development, which requires both visitor comfort and safety. Conventional
grid-based systems are often inefficient or unavailable in rural tourist areas, creating a need for lighting
solutions that combine visual quality, reliability, and sustainability. Off-grid photovoltaic (PV) systems
are a viable option, but their performance and cost-effectiveness depend strongly on proper system
design and optimization.
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Optimization frameworks such as the Open Energy Modelling Framework (OEMOF) provide a
modular, transparent, and reproducible approach to designing integrated energy systems that include PV
generation, storage, and loads, with explicit consideration of efficiency and cost [1-4]. OEMOF has
been widely applied in large-scale or institutional energy planning, such as regional energy transitions
[5], building retrofits [6,7], and decentralized system strategies [8,9]. However, the application of
OEMOF to small-scale energy infrastructure related to the tourism sector is still relatively limited. Most
previous research has focused more on urban or industrial contexts, so the application of OEMOF for
micro-scale off-grid systems in rural tourism areas has not been widely explored. On the other hand,
small-scale off-grid system analysis is generally more often done using other software, such as HOMER,
which has become more established in integrated energy system analysis [10,11].

At the same time, the Internet of Things (IoT) enables real-time monitoring and control of energy
systems. Platforms such as ThingSpeak can record and visualize high-frequency data (irradiance,
voltage, current, temperature) that are valuable for model calibration and optimization. Numerous [oT
systems have been developed for smart lighting and energy efficiency, including LoRaWAN-based
lighting control [12] and low-cost monitoring architectures for campus-scale systems [13]. oT-based
monitoring and control have become essential tools for achieving data transparency and operational
efficiency in smart grids [14]. While ThingSpeak and similar platforms have proven effective for PV
data analysis and simulation [15], their integration with techno-economic optimization models in the
tourism energy context remains underexplored.

Recent studies in the hospitality sector have highlighted the benefits of smart monitoring for
managing energy consumption and guest comfort [16] and optimizing hybrid renewable systems for
tourist facilities [17]. Similarly, IoT-based street lighting control has been implemented in urban
environments [18], and broader reviews emphasize [oT’s potential for intelligent energy management
in buildings and cities [19], [20]. Nevertheless, few works have systematically combined field IoT data
with optimization models to design and evaluate energy systems for rural tourist sites.

This study bridges that gap by integrating OEMOF optimization with real-time [oT monitoring via
ThingSpeak to evaluate and improve solar-powered lighting infrastructure. The research objectives are:
1. To demonstrate how high-frequency ToT data can improve the accuracy and realism of OEMOF-based

optimization for small PV—battery systems;

2. To assess the techno-economic performance and life-cycle cost of solar lighting configurations, and
3. To evaluate the replicability of the proposed framework for similar off-grid rural tourism sites.

The novelty of this research lies in the integration of real-time [oT data streams with an open-source
optimization framework to develop a reproducible, data-driven methodology for small-scale energy
systems. The proposed approach provides a transparent pathway for enhancing energy efficiency,
reliability, and sustainability of lighting infrastructure in rural tourism destinations such as Bukit Kunci,
Indonesia.

2. Methods

2.1. Study Location

The study was conducted in Bukit Kunci, Blora Regency, Central Java, Indonesia (6°57.6" S, 111°31.3’
E), a hilly natural tourist site known for panoramic views and night-time city lights. The area’s elevation
ranges from 100—500 m above sea level, with slopes of 5-20° influencing panel tilt and orientation. The
climate is tropical with distinct rainy (November—March) and dry (April-October) seasons. According
to BMKG data, the average daily solar irradiation is 5.2-5.5 kWh/m?/day, with average temperatures
between 24-27 °C and humidity of 70-85 %, indicating good solar energy potential [21].

2.2. Data Acquisition and Processing

Real-time PV performance data were collected through an IoT-based monitoring system connected to
the ThingSpeak platform. The setup included PZEM-017 energy meters and INA219 current sensors
linked to a NodeMCU ESP8266 microcontroller.
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Data were collected using a ThingSpeak-based IoT logger with 15-second sampling from February
to July 2025. The monitoring system recorded irradiance, voltage, current, power, and cumulative
energy from the PV subsystem.

Raw data contained 532,520 entries, of which 204,135 were invalid due to missing or negative
readings in voltage, current, or power channels. Additionally, 21,608 zero-power anomalies were
detected where irradiance exceeded 100 W/m? but PV power readings were near zero, indicating
potential logger disconnections or sensor dropouts. After filtering and timestamp normalization
(UTC+7), 328,385 valid records were retained, corresponding to 61.67 % completeness.

The existence of data anomalies in loT-based PV monitoring systems is a common phenomenon,
especially due to communication interference and dropout sensors in multivariate time series data. Guo
et al. point out that this kind of anomaly needs to be addressed through a data filtering process so that
the analysis of the energy system is not distorted by measurement artifacts. Thus, the data cleansing
stage in this study is an important step before the data is used for performance analysis and system
optimization [22,23].

Temporal anomaly analysis showed that most anomalies occurred in March (226 cases) and April
2025 (197 cases), coinciding with intermittent data-logger instability during the early deployment
period. From May—July 2025, the number of anomalies dropped sharply (to < 90 per month) after on-
site maintenance and cable tightening, confirming improved reliability of the data acquisition chain.

Cleaned data were aggregated into hourly averages for use as OEMOF model inputs. No gap-filling
or interpolation was applied beyond anomaly removal to preserve data authenticity. Validation was
cross-checked using BMKG solar radiation data for Blora and PLN tariff references for the economic
model. The resulting hourly dataset ensured reliable input consistency for subsequent OEMOF
simulations. The physical configuration of the monitoring system is shown in Figure 1.
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Figure 1. (a) loT-based PV control and data logging unit installed at Bukit Kunci; (b) GH Solar
100 Wp PV module label showing key specifications.
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Figure 1 shows the configuration of the IoT-based monitoring unit installed at Bukit Kunci. The
system includes a GH Solar 100 Wp panel, a PWM charge controller, and a VRLA 12 V 3 Ah battery
housed within a waterproof box, connected to a wireless sensor node for continuous data transmission.
The unit records irradiance, voltage, current, and power data every 15 seconds to the ThingSpeak cloud
platform for real-time visualization and analysis.

2.3. OEMOF Model Development

The optimization of the solar lighting system in Bukit Kunci was conducted using the Open Energy
Modeling Framework (OEMOF), an open-source Python library that models energy systems as directed
graphs consisting of sources, sinks, storages, and transformers [3,24]. OEMOF enables transparent and
modular optimization of techno-economic systems by representing each component and energy flow
explicitly within a consistent mathematical structure.

In this study, the model structure reflects the actual off-grid PV-battery—inverter system installed on-
site, integrating measured [oT-based power and irradiance data as time-series inputs. The model includes
the following components:

Photovoltaic (PV) modules as energy sources.

Battery storage as energy buffers with round-trip efficiency and depth-of-discharge limits.

DC and AC buses interconnecting components.

Inverters and charge controllers as transformers.

LED-based lighting loads as energy sinks, modeled with hourly load profiles derived from IoT monitoring

Nk v

2.3.1 Objective Function
The optimization problem in this study aims to minimize the total techno-economic cost of the off-grid
solar lighting system using OEMOF. The system consists of photovoltaic (PV) modules, a lithium-ion
battery pack, and an inverter supplying LED-based lighting. The optimization objective is to determine
the optimal operation and sizing strategy that minimizes total operating and investment costs while
ensuring a reliable power supply to the lighting load. The optimization problem is formulated as:

d (D

minZ = z Z Ci Pi,t + Com
t=1 i€ {PV,bat,inv}

Where C; represents the unit cost coefficient of component i(USD/kWh), and P;;denotes the hourly
power output or throughput of each component iat time step t. The component set {PV, bat, inv} refers
to the photovoltaic array, battery storage, and inverter, respectively. C,, denotes the fixed operation and
maintenance cost of the system. The objective function, therefore, seeks to minimize the total energy
cost over the simulation horizon while maintaining energy balance between generation, storage, and
load.

2.3.2 Constraints

The optimization is subject to several technical constraints that govern energy balance, storage
dynamics, and operational limits of the photovoltaic (PV) and battery systems.

1. Energy Balance Constraint

The fundamental energy balance of the system ensures that, at each time step, the total generated energy
equals the sum of consumption and storage changes, as expressed in Equation (2).

Ppy ¢ + Paist = Prept + Pene (2)

The notations are defined as follows:

Ppy + = Electrical power generated by the photovoltaic (PV) array at time t(W)
Pgis + = Power discharged from the battery storage at time t(W).

P gp ¢+ = Power consumed by the lighting load (LED lamps) at time t(W).
P.p+ = Power used to charge the battery at time t(W).
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This constraint ensures that, at every time step t, the total power generated by the PV array and the power
discharged from the battery equals the total lighting demand and the power used for charging the battery.

2. Battery State of Charge (SoC) Dynamics
In the OEMOF-based model, the battery SoC represents the temporal energy balance within the storage
component, governed by charge and discharge efficiencies as formulated in Equation (3).

P dis,t (3)

dis

SOCt = SOCt—l + nChPCh,t -

This equation represents the temporal evolution of the battery’s state of charge (SoC), describing
how stored energy in the battery changes at each time step t. The notations are defined as follows:
SoC, = State of charge of the battery at time t(Wh or % of capacity).

SoC;_, = State of charge of the battery at the previous time step.

Nen = Charging efficiency of the battery (fraction, typically 0.9-0.95).
P, = Charging power entering the battery at time t(W).

Pyis¢ = Power discharged from the battery at time t(W).

Mais = Discharging efficiency of the battery (fraction, typically 0.9-0.95).

The first term SoC;_; represents the stored energy at the previous timestep. The second term 77, Pep,¢
adds the energy gained from PV charging, adjusted by the charging efficiency. The third term %

dis
subtracts the energy discharged, accounting for losses during discharge.

This dynamic model ensures that the battery energy balance remains consistent throughout the
simulation and allows OEMOF to optimize the charge/discharge schedule while respecting real-world
efficiency losses.

3. Battery Capacity Limits
The allowable range of the battery’s state of charge is constrained by its minimum and maximum
capacity limits, ensuring safe and reliable operation of the storage system, as defined in Equation (4).

S0Cmin < S0C; < S0Cmax “4)

This inequality defines the allowable operating limits of the battery’s state of charge (SoC) over time,
ensuring safe and reliable battery operation throughout the simulation. The notations are defined as
follows:

SoCpin = The minimum allowable state of charge, corresponding to the maximum depth of discharge
(DoD). Operating below this level risks battery degradation or failure.

SoC; = The minimum allowable state of charge, corresponding to the maximum depth of discharge
(DoD). Operating below this level risks battery degradation or failure.

S0Cphax = The maximum allowable state of charge, typically close to the nominal battery capacity
(e.g., 100%), representing the upper energy storage limit.

This constraint ensures that the battery does not exceed its design capacity during charging and does
not discharge beyond its safe operating threshold. Maintaining the SoC within these boundaries protects
the battery’s lifetime, prevents overcharging or deep discharging, and maintains realistic behavior in the
OEMOF optimization model.
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4. Depth of Discharge (DoD) Relation
The minimum allowable state of charge of the battery is determined by its depth of discharge (DoD),
which defines the fraction of total capacity that can be safely utilized without accelerating degradation,
as shown in Equation (5).
S0Cpin = (1 — DoP) xEp 4 (5)
Where Ep,; denotes the nominal battery energy capacity (Wh). The depth of discharge (DoD) is a
design parameter defining the maximum usable fraction of stored energy.

5. PV Generator limits
The maximum power output of the photovoltaic (PV) array is constrained by its conversion efficiency, active
surface area, and the incident solar irradiance at a given time, as expressed in Equation (6).

Ppy < npv.Apy .G (6)

Where Ppy, ¢ is the PV output power at time t(W), npv is the PV conversion efficiency, Apy is the
total active panel area (m?), and G; is the solar irradiance (W/m?) at time t. This ensures that the
generated PV power never exceeds the physical capacity determined by panel area and local solar
resource.

2.3.3 Mathematical Modelling of Components

This section describes the mathematical and technical formulations of each component in the off-grid
solar lighting system model. The model includes three main subsystems: photovoltaic (PV) generation,
battery storage, and the inverter that supplies the AC lighting load. Each subsystem is represented in
OEMOF as a node with specific techno-economic parameters and efficiency constraints.

1. Photovoltaic (PV) Subsystem
The PV subsystem converts solar irradiance into electrical power according to:

Ppy = npv.Apy .G; (7)

The physical configuration of the PV subsystem is presented in Fig. 2(b), illustrating the wiring, charge
controller, and dual-module (2 X 100 Wp) array setup used in the field installation.

Table 1. Technical and Economic Specifications of the Solar Panel

Parameter Symbol (Unit) Value Description / Source
Rated capacity Ppy cap (WP) 200 2 modules x 100 Wp (field prototype)
Module efficiency nPV (%) 16.5 Manufacturer (GH Solar GH100M-39)
Effective system efficiency nPV, eff (%) 15.7 Includes derating (0.95)
Module area Apy (m?) 0.51 From label dimensions
Mounting tilt/orientation — 15° / North-facing Field installation
System derating factor - 0.95 Wiring & dust losses
Investment cost Crv.cap (USD/kWp) 480 Field procurement
O&M cost Crv, om (%CAPEX/yr) 1 Assumed annual maintenance

2. Battery Storage Subsystem
Battery storage is modelled dynamically based on its charging and discharging behavior, as formulated
in Equations (4-5). The battery’s state of charge (SoC) evolves with time according to:
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P dis,t (8)
dis
With operational bounds defined by equation (4), and the relationship between minimum SoC and Depth
of Discharge (DoD) defined by equation (5). Fig. 3 presents the configuration of the Li-ion battery pack
used in the system, with detailed specifications summarized in Table 3.

SOCt = SOCt—l + nChPCh't -

Figure 2. Li-ion battery pack used in the system

The battery subsystem was modeled with charge/discharge efficiency (nch, ndis) and state-of-charge
(SoC) limits following the OEMOF storage formulation. The expected lifetime of the LiFePOs battery
(5-7 years) accounts for typical cycle degradation and capacity fade characteristics of lithium-ion cells,
consistent with empirical aging models reported by Madani et al. [25].

Table 2. Technical and Economic Specifications of the Battery Subsystem

Parameter Symbol (Unit) Value Description / Source
Nominal energy Epat (Wh) 158.8 (E = V \times C)
capacity
Battery type/chemistry — {;;ill:)n (18650 Field-installed specification
Charging efficiency Neh 0.95 Typical for Li-ion systems
Discharging efficiency s 0.90 Typical for Li-ion systems
Depth of discharge DoD 0.8 (80 %) Operational limit to extend cycle life
Investment cost Chat, cap (USD/kWh) 93 Field procurement (= IDR 1,400,000)

Cbat,om 0 . . .

O&M cost (%CAPEX/yr) 2% Periodic controller and terminal check
Lifetime assumption - 5 years For the annualized cost in the OEMOF model

3. Inverter Subsystem
The inverter converts DC energy from PV and battery sources to AC power for the LED load. Its
efficiency is modelled as equation (9).

Pinv,t = Niny X (PPV,t + Pdis,t) )
Where:
Pinvi  =1s the AC output power at time ¢,
Ninv = is the inverter conversion efficiency.

Figure 4 presents the configuration of the inverter used in the system.
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Figure 4. The Inverter Used in The System
The configuration and labeling of the DC—AC inverter used in the solar lighting prototype are shown in
Fig. 3(b). The inverter converts the 12 V DC output from the battery to 220 V AC for LED lighting
loads. The corresponding technical and economic specifications are summarized in Table 3.

Table 3. Technical and Economic Specifications of the Inverter Subsystem

Parameter Symbol (Unit) Value Description / Source
Rated output power Pinv.r (W) 1000 Continuous AC output
DC input / AC output voltage Vpc / Vac (V) 12/220 Compatible with battery bank
Output frequency f (Hz) 50 Standard for the Indonesian grid
Conversion efficiency Ninv 0.90 Manufacturer's typical range
Investment cost Cinv, cap (USD/KW) 172 Field procurement (= IDR 2,600,000)
O&M cost Cinv, om (%CAPEX/yr) 1% Periodic cleaning & inspection
Expected lifetime - 5 years For annualized OEMOF modeling

2.3.4 OEMOF Simulation Framework and Assumptions

The optimization was implemented in Python 3.10 using the Open Energy Modelling Framework
(OEMOF) library. OEMOF represents the energy system as a directed graph, where each node
corresponds to a component (e.g., PV, battery, inverter, or lighting load) and edges represent the energy
flow between them. The optimization aims to minimize total techno-economic cost, formulated in
Section 2.3.1, while maintaining the physical and operational constraints defined in Section 2.3.2.

2.3.4.1 Simulation Horizon and Temporal Resolution

Measured PV and electrical data were collected at 15-second intervals from January to July 2025 using
the installed IoT-based data logger. After cleaning and validation, these data were aggregated into hourly
averages (At =1 h) to ensure computational efficiency and compatibility with OEMOF’s standard time-
series structure. The simulation horizon covered the full 7-month observation period (January—July
2025), which was treated as a representative operating year for the local climate of Bukit Kunci. This
period includes both wet and dry seasons, allowing the model to capture realistic variations in solar
irradiance and system performance under actual field conditions.

2.3.4.2 Model Structure and Assumptions

The OEMOF model consists of three primary subsystems—PV, battery, and inverter—interconnected

through DC and AC buses. The main assumptions are as follows:

1. Energy balance is enforced at every time step, ensuring supply equals demand.

2. PV generation depends on measured irradiance and temperature; no synthetic weather data are used.

3. Battery degradation effects are neglected within the 7-month simulation horizon, assuming constant
efficiency.

4. Economic parameters (CAPEX and OPEX) are derived from field procurement costs and annualized
using a 5% discount rate. The capital and operational expenditures were calculated based on the installed
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capacity of each subsystem using the following relations:

CAPEX = Z(Clcap x P) PPEX = Z(Cwm PL’) (10)

Where C; cop, and C; om denote the spec1ﬁc capital and annual operatlon & maintenance costs (USD
per unit capacity) of component i (PV, battery, inverter), and P; is its installed capacity. These values
were derived from field procurement data and standardized techno-economic references [22]. The
resulting total cost is annualized at a 5 % discount rate and used in the subsequent LCOE formulation
(Equation 6).
5. Operational lifetime assumptions: PV = 15 years, Battery = 5 years, Inverter = 5 years.
6. No load shedding is allowed; unmet demand incurs a high penalty cost ().
The model was executed using OEMOF’s solph optimization package with the CBC solver, performing
linear programming (LP) optimization to obtain the least-cost configuration and operational schedule.
The structure of the OEMOF model representing the off-grid lighting system is illustrated in Figure 4,
showing the interactions among PV generation, battery storage, and inverter subsystems.

Battery
Py (GenericStorage)

~

P Dt

Inverter
(DC~ AC Converter)

inv- P DCt

LED Load (ink)

Figure 4. PV generation, battery storage, and inverter subsystems modelling by OEMOF

Figure 4 illustrates the OEMOF-based energy flow diagram of the proposed off-grid PV lighting
system. The PV array acts as a DC energy source that supplies power to a DC bus. The generated energy
can either charge the battery storage or be converted to AC via the inverter to supply the LED lighting
load. The battery operates as an energy buffer, storing excess PV energy during the daytime and
discharging when solar generation is insufficient. The inverter converts DC power into AC power with
an efficiency niny, ensuring a continuous supply to the AC load.

3. Results and Discussion

3.1 Data Visualization from ThingSpeak

The monitoring data of the PV system in Bukit Kunci collected through the IoT platform ThingSpeak is
analyzed to obtain an overview of the potential of solar energy and the actual performance of the system.
Two forms of visualization are shown to highlight the temporal variation and physical relationship
between solar radiation and panel output power.

The results of ThingSpeak-based data visualization in this study are consistent with previous studies
that show that the platform is able to reliably provide PV parameter data for small-scale systems. Sutikno
et al.[26] report that the integration of NodeMCU ESP8266 and ThingSpeak supports real-time and
historical PV monitoring at a low cost. Different from the study, this study uses [oT data as the main
input in OEMOF-based energy system optimization, so that monitoring data plays a direct role in system
evaluation and design.

3.1.2 Temporal Variations of Energy and Insolation.

Figure 1 shows that at Bukit Kunci (Jan—Jul 2025), solar insolation ranges from 2,000—-6,000 Wh/m? on
sunny days but drops sharply in cloudy/rainy conditions. PV output is very low, averaging 20—60
Wh/day with occasional peaks above 100 Wh. From May to early June, output was nearly zero despite

02601029-09



recorded insolation, suggesting operational issues or data logger problems. Overall, PV capacity is far
below the site’s solar potential.
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Figure 5. Temporal Variations of Energy and Insolation

3.1.3 The Relationship of Irradiance and PV Power

Data is aggregated into monthly averages to analyze seasonal trends and serve as input for the OEMOF
optimization model. Climate data from BMKG and NASA POWER validate field measurements, while
PLN tariff data support economic analysis. Data cleaning, processing, and aggregation are performed in
Python (Google Colab) using pandas for manipulation and matplotlib for visualization.
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Figure 6. Scatter plot between irradiance (W/m?) and PV output power

These two visualizations (figures 1 and 2) provide an important basis for the optimization process
using OEMOF. The temporal pattern of insolation is used to construct the input profile of the solar
energy source, while the scatter plot highlights the low actual efficiency of the system. The combination
of the two justifies the need for an optimization strategy based on energy storage to ensure the
availability of electricity during curfews in the Bukit Kunci tourist area.

3.1.4 Night load profile.
Figure 3 shows the night lighting load profile.
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Figure 7. The night lighting load profile
The lighting load is constant at about 0.06 kW from 18:00-06:00 and zero during the day. Data from
February—July 2025 shows a consistent daily on/off cycle, confirming that the tourist lighting demand
is stable and requires a continuous nightly energy supply.

3.1.5 Supply and Demand Gap
Figure 8 presents a comparison of PV supply and energy demand at 15-minute resolution.
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Figure 8. Supply and Demand Gap

PV output is only available during the day with fluctuating values, while the lighting load remains
constant at night. This creates a temporal mismatch: surplus energy in the daytime and a deficit at night.
This highlights the need for an energy storage system (battery) to balance supply and demand.

3.2 The results of the optimization simulation

3.2.1 Energy output efficiency

The simulation compares the PV system (4 modules @100 Wp) with the demand of 15 LED lamps (~0.9
kWh/day). The lamp load is stable, while PV output averages only 0.2—0.3 kWh/day, supplying less
than 50% of lighting needs on most days, as shown in Figure 9.
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Figure 9. Daily Energy: PV Vs Demand Lamps
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During sunny periods (late March and July), PV can generate 0.5-0.8 kWh/day, covering 60-80% of
lighting demand. However, in low irradiation months (May—June), PV supply drops sharply to <0.1
kWh/day, requiring almost all loads to be supported by backups (grid or batteries). This shows that solar
energy is effective but highly dependent on seasonal conditions.

3.2.2 Energy Costs

The LCOE calculation is carried out with a 20-year horizon and a discount rate of 8%. The investment
value of the PV system is 4x100 Wp (0.4 kWp) included as an initial cost, with an O&M of 1% per
annum. The results of the calculation are shown in Table 4.

Table 4. LCOE calculation results of a 4x100 Wp PV system for lamp load

Parameter Value
NPV total cost (20 years) $746,76
Rated PV energy (kWh) 321
LCOE gen (USD/kWh) 2,33
Spent PV energy (kWh) 81
LCOE used (USD/kWh) 9,24

These results show that the cost of solar energy generated (LCOE_gen) is = $2.33/kWh, while the
cost of energy actually utilized for lighting (LCOE _used) reaches =~ $9.24/kWh. This value is much
higher than the price of conventional electricity because the energy recorded is relatively small due to
the limitations of the data logger (only a portion of the day is recorded).

3.2.3. System Reliability
The reliability of the system is evaluated through a state-of-charge (SoC) analysis of the battery
during the period February—July 2025. The SoC graph in the following image shows the charging and

discharging patterns of the battery due to the imbalance between the PV energy availability and the load
to be met.
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Figure 10. SoC Battery (% capacity-overlay Feb-July 2025)

80 1

60 1

50C (%)

40 4

S

204

5}

o

The PV-battery system rarely reaches full SoC, often stays low, and frequently undergoes deep
discharge, risking battery life and supply reliability. Although SoC rises slightly in high-radiation
months, the system still struggles to ensure a continuous supply. With LOLP at =96% and self-
sufficiency under 5%, its reliability is very limited, requiring optimization through added PV capacity,
more batteries, or backup integration.
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Figure 11. Energy Indicators per Month (Feb-July 2025)

The reliability of the PV-battery system in Bukit Kunci is still low, shown to be self-sufficient at
only 3-22% throughout February-July 2025. The majority of load energy is unserved (78-97%), so the
dependence on backup sources remains high. This condition confirms the need to increase PV and
battery capacity so that the system can more reliably serve night loads.

3.3 Implications for Tourism Infrastructure

The reliability of the electrical energy supply for nighttime lighting in Bukit Kunci is very important for
the comfort of visitors and the image of tourist destinations. The results of this simulation show that the
combination of PV and batteries can provide reliable and sustainable electricity. With high self-
sufficiency, this system has the potential to reduce long-term operational costs while supporting eco-
tourism branding.

3.4 Comparison before & after optimization
The conditions before optimization (Baseline) can be seen in Figure 12.

—— PV {4 modul) kWh/hari
—— Lampu kWh/hari

KWhyhari
o
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T T T T T
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2025

Timestamp

Figure 12. Before optimization (Baseline)

The baseline PV system with 4 modules produces only 0.0-0.4 kWh/day, far below the lamp demand
of =0.85 kWh/day and often nearly zero. This results in large energy deficits, leaving most lighting
needs unmet from February to July 2025. Occasional spikes in late February and July occur, but are still
insufficient, making the system unable to sustain lighting needs and dependent on external sources.
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Figure 13. After OEMOF Optimization

After optimization (PV =224 modules, battery ~1.25 kWh), energy production increased sharply,
meeting most daily lighting needs. The battery improved supply continuity, though extreme conditions
caused occasional drops. In contrast, the baseline with 4 PV modules produced only ~34.3 kWh/year,
with ~8.6 kWh/year used for lamps, leading to low self-sufficiency and a high LCOE (=9.2 USD/kWh).
OEMOF optimization enabled better PV utilization and battery charging, reducing losses, achieving
100% self-sufficiency in April with LOLP = 0%, and lowering LCOE to =~0.05 USD/kWh, making the
system reliable and economical.

Table 5. Summary of Key Findings

Indicator Value
PV energy (4 modules, annualized) ~ 34,3 kWh / year
Lamp load (annualization) ~ 54,7 kWh / year
LOLP (Loss of Load Probability) 0% (lamp load is always served)
LCOE (Levelized Cost of Energy) Used energy

3.5 Sensitivity and Uncertainty Analysis

In the context of an economic analysis of the energy system, Capital Expenditure (CAPEX) [27] refers
to the initial investment cost for the purchase and installation of system components, while Operational
Expenditure (OPEX) includes annual operating and maintenance costs [27]. Meanwhile, the Levelized
Cost of Energy (LCOE) [28] describes the average cost of electrical energy production per unit kWh
over the life of a project, which is calculated based on the total investment and operating costs compared
to the total energy produced, as expressed in Equation (10).

. C (11
Zt:l (1 +tr)t )

n Ey

t=1 (T + 1)t

LCOE =

Where C; denotes the annualized investment, replacement, and operational costs at year ¢, E; is the
corresponding annual energy output, 7 is the discount rate, and # is the system lifetime. The LCOE value
is used as a key indicator in assessing the economic feasibility and sensitivity of the system to changes
in technical and financial parameters [29].

Sensitivity analysis was conducted to evaluate the uncertainty of the key parameters in the
optimization results of the off-grid solar PV technology developed in this study. Varied parameters
include investment cost (CAPEX £ 20%), discount rate (4% — 10%), battery life (3 — 7 years) [25], and
solar irradiation variation (£ 10%).

The results of the analysis showed that LCOE values were most sensitive to CAPEX changes and
discount rates, with values ranging from 59 to 86 USD/kWh from a baseline of 64.22 USD/kWh.

A 20% decrease in CAPEX lowers LCOE by about 8%, while a 20% increase in CAPEX increases
LCOE by 35%. An increase in the discount rate also increases the LCOE because it lowers the present
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value of the energy produced, while a longer battery life lowers the LCOE due to reduced component
replacement costs. In this context, the effect of component degradation is implicitly reflected in the
battery lifetime scenarios, which represent gradual performance decline over time.

The summarized effects of each parameter variation on the Levelized Cost of Energy (LCOE) are
presented in Table 6, which highlights the relative influence of CAPEX, discount rate, battery lifetime,
and solar irradiance on the system’s overall economic performance.

Table 6. Sensitivity of Key Parameters on LCOE

LCOE A from

Parameter Variation (USD/KWh)  baseline (%) Interpretation

PV CAPEX -20 % (80 %) 59.35 7.6 Lower investment slightly decreases LCOE
+20 % (120 %) 86.51 +34.7 Higher CAPEX proportionally increases LCOE.

Discount rate Higher discount rates raise LCOE due to

4% — 109 +10-2

(r) %= 10% 0-20 lower Net Present Value (NPV) of energy.

Battery 3 - 7 years 90— 30 Lc_mger_ 1_1fet1me reduces LCOE by

lifetime minimizing replacement cost

Solar o Irradiance variability moderately affects

irradiance *10% 3969 £5-8 LCOE.

Variations in solar irradiation have only a moderate effect (< 10%), suggesting that meteorological
uncertainty is not very dominant on the economic outcomes of the system. Overall, these results confirm
that investment cost factors and financial parameters are the main determinants of the economic viability
of off-grid solar PV systems. So, taking into account the results of this sensitivity, efforts to reduce the
cost of key components (especially PV modules and inverters) and optimize battery life will have the
most significant impact on lowering the LCOE of the system in the future. The corresponding trend of
CAPEX impact on LCOE is depicted in Figure 14.

85 A

80

LCOE (UsD/kWh)

60

T T T
100% 120% 80%

Figure 14. LCOE Sensitivity to CAPEX (£20%)

The figure illustrates the nearly linear relationship between investment cost (CAPEX) and LCOE. A
20 % increase in CAPEX raises the LCOE by approximately 35 %, while a 20 % decrease reduces it by
about 8 %. This confirms that investment cost exerts the most significant influence on the levelized cost
of electricity compared with other parameters. The LCOE value obtained in this study needs to be
understood as an estimate that depends on the financial and technical assumptions used. The literature
shows that LCOE is highly sensitive to parameters such as discount rates, system lifespan, and effective
capacity, so small variations on those assumptions can result in significant cost differences. Therefore,
the interpretation of the LCOE results needs to be accompanied by an analysis of uncertainty and
sensitivity to avoid misleading conclusions [30].
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4. Conclusion

This study shows the application of the Open Energy Modelling Framework (OEMOF) integrated with
IoT-based PV data to optimize off-grid solar lighting systems in Bukit Kunci, Indonesia. The results
show that the combination of OEMOF optimization and actual field data allows for a more accurate
evaluation of system size, performance, and cost efficiency under real-world environmental conditions.

The configuration of the optimization results results in a balance between reliability and cost, with a
lower Levelized Cost of Energy (LCOE) than the initial condition. Sensitivity analysis showed that the
most influential factors on the economics of the system were the cost of investment (CAPEX) and
discount rates, while variations in solar radiation and component degradation had a relatively smaller
influence.

However, there are some limitations that need to be noted. The data used only covers a seven-month
period (January—July 2025), and the possibility of data logger anomalies can lead to minor uncertainty
in the results. These findings provide a strong indication of the effectiveness of the methods used, but
further validation is still needed to ensure the results are comprehensive.

The next steps of the research will focus on the collection of long-term data to fully capture seasonal
variations, advanced sensitivity analysis of the degradation of components and financial parameters, and
field implementation of the optimization design results to verify their performance in real terms.

In addition, future research can integrate artificial intelligence (AI/ML) to predict load patterns based
on tourism activities, as well as apply smart tourism concepts such as real-time monitoring, automated
demand response, and digital tourism information systems. This approach is expected to strengthen the
sustainability of renewable energy while enhancing a smart and sustainable ecotourism experience.
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