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Abstract. In this study, we systematically analyzed all isomers of 5-11 atom clusters using a
graph-theoretical approach and evaluated their maximum Hiickel energy (HE) within the Hiickel
approximation. The maximum HE increased with the number of bonds, reached a maximum at
an intermediate value, and then decreased again, with the peak located near the average of the
minimum and maximum possible edge numbers. This relationship was well reproduced by a
simple linear expression. The isomers with maximum HE were found to have nearly uniform
degree distributions, and classification by graph radius (Gr) and maximum degree (Ma) revealed
that they possess compact and homogeneous structural characteristics. By extrapolating these
trends, structural features of maximum-HE isomers were predicted for clusters with 12-14
atoms. These results demonstrate the effectiveness of a graph-theoretical description for
analyzing cluster stability and provide a foundation for extending the analysis to larger clusters
and for comparison with first-principles calculations. In a broader context, this topology-based
and computationally efficient framework contributes to computational materials science by
offering a sustainable and transferable approach to understanding structure—stability
relationships across atomistic systems.

Keywords: Graph theory, hiickel energy, cluster stability, computational chemistry, metal
clusters, sodium clusters

(Received 2025-09-15, Revised 2026-11-01, Accepted 2026-01-29, Available Online by 2026-01-31)

1. Introduction

Metal clusters represent a crucial class of finite systems for understanding the transition from individual
atoms to the bulk solid state. In particular, small clusters exhibit an enormous number of possible
isomers, whose stability and electronic properties are highly size-dependent. Early theoretical efforts by
Wang et al. [1] employed a Huckel model in combination with graph-theoretical concepts to investigate
cluster stability, which led to the establishment of a simplified but insightful framework. Subsequent ab
initio studies by Solov’yov, Solov’yov, and Greiner [2] provided systematic benchmarks for neutral and
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singly charged sodium clusters up to 20 atoms, including optimized geometries, binding energies,
ionization potentials, and vibrational properties.

Building on these pioneering works, Rothlisberger and Andreoni [3,21] carried out ab initio
molecular dynamics on sodium clusters with up to 20 atoms, revealing structural and electronic trends
at finite temperatures. More recently, Sun et al. [4,22] identified a distinctive honeycomb-like motif in
Nazo, while Kronik et al. [5,23] reported accurate polarizabilities for Na clusters up to 20 atoms. Huber
et al. [6,24] combined photoelectron spectroscopy and density-functional theory to determine the
structures of Naxo—Nas7, revealing systematic growth patterns involving double-icosahedral cores and
Mackay/anti-Mackay overlayers. Calvo and Spiegelmann [7,25] further demonstrated size-dependent
melting behavior in sodium clusters. In parallel, Itoh et al. [8,26] investigated Na and Cu clusters,
emphasizing the role of sp—d hybridization in their growth behaviors, and Sanchez et al. [9,27]
demonstrated that nanoscale gold clusters can exhibit unusual catalytic activity, highlighting the broader
relevance of 1-valence metal systems.

More recently, Fisicaro et al. [10,28] reported a large-scale density-functional database comprising
approximately 44,000 isomers of metallic and semiconducting clusters, and analyzed stability trends
using structural and electronic descriptors. These studies collectively advanced the field; however, most
have focused on identifying the global minima, while little attention has been paid to extracting general
structural features common to the entire isomer ensemble.

Although the Hickel method was one of the earliest molecular-orbital approaches, its algebraic
framework based on matrix representation and eigenvalue analysis constitutes the conceptual prototype
of all subsequent electronic-structure theories, including modern ab initio and density-functional
methods. The simplicity and transparency of the Huckel framework continue to provide valuable
insights into the fundamental relationship between topology and electronic structure. In fact, recent
studies have revisited the Hickel approach from an analytical and parameter-free perspective,
demonstrating its continued relevance to contemporary quantum chemistry and materials modeling [11].
In this context, our present work employs a graph-theoretical interpretation of the Hiickel framework to
systematically analyze cluster structures and stability trends.

In parallel, graph-based representations have become central in modern data-driven materials
science. Recent developments in machine learning increasingly describe molecules and crystals as
graphs—where atoms are represented as vertices and chemical bonds as edges—to predict physical and
chemical properties with high accuracy [12]. Similarly, structural networks have been utilized as
descriptors for catalytic and energy materials, highlighting the link between bonding topology and
macroscopic functionality [13]. These approaches share the same conceptual lineage with Hiickel-type
models, in which electronic structure is derived from connectivity information. The present study thus
bridges classical graph-theoretical quantum models and current machine-learning-based materials
frameworks.

Moreover, graph theory continues to be applied in quantitative analyses of complex inorganic
frameworks. For example, Mohankumar et al. applied graph-theoretical and QSAR-based molecular
descriptors to single-chain diamond silicates, demonstrating how degree- and distance-based topological
indices capture both stability and electronic characteristics [14]. While the present work statistically
analyzes Huckel energies across all graph isomers, Tsuji provided a complementary interpretation by
viewing the coefficients of the lowest occupied molecular orbital (LOMO) as graph-centrality measures
and discussing local structural stability of individual metallic clusters [15]. Although different in focus,
both studies share the same conceptual basis of understanding electronic properties through graph
structures.

In this work, we address this gap by performing a graph-theoretical analysis of all connected simple
graphs with 5-11 vertices. For each graph, we computed adjacency-matrix eigenvalues and defined the
Huckel energy as the sum of the largest occupied eigenvalues. From these data, we identified the
maximum Huckel energies, established empirical relations with the number of edges, and introduced
classifications based on graph radius and maximum degree. We further extrapolated these descriptors
to clusters with 12—-14 atoms and compared our predictions with available ab initio results. The outcomes
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highlight both the potential and limitations of graph-theoretical approaches as complementary tools for
understanding cluster stability.
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Figure 1. Correlation between maximum Huckel energy and the number of bonds in
isomers with 4 to 11 atoms.

2. Methods

2.1. Graph Enumeration

We considered all connected simple graphs with 5-11 vertices, excluding multiple edges and self-loops.
The database of isomers used in this work was generated in our laboratory by Taki and is deposited on
Zenodo [16]. Equivalent data are also available from McKay’s graph database [17]. Our independently
generated dataset is consistent with these publicly available resources.

2.2. Adjacency Matrix and Eigenvalues

Each graph was transformed into an adjacency matrix A, where the element is 1 if vertices i and j are
connected, and 0 otherwise. The diagonal elements were set to 0, making the matrix symmetric.
Eigenvalues &1, &, ..., &n Were obtained using standard functions in Python (NumPy) and Mathematica.

2.3. Definition and Evaluation of Hiickel Energy

The Hiickel approximation was chosen for its compatibility with the graph representation, because the
Hamiltonian can be directly expressed by the adjacency matrix. For a graph with N vertices, the number
of electrons was assumed to be N. Considering spin degeneracy, the floor(N/2) largest eigenvalues were
taken as occupied orbitals. The Hiickel energy (HE) was defined as twice the sum of these occupied
orbital eigenvalues:

[N/2]
HE =2 z & (1)
i=1

Using this definition, HE values were computed for all graphs for each N, and the structures yielding
the maximum HE (maximum-HE isomers) were identified. Data handling and filtering were carried out
using Python (Pandas).
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Figure 2. Workflow of the graph-theoretical analysis for cluster stability.

Table 1. Relationship between number of bonds and maximum HE

Cluster size Minimum Maximum e_opt=(MintMax)/2  Number of bonds
(N) number of bonds  number of bonds for maximum HE
5 (pentamer) 4 10 7 7
6 (hexamer) 5 15 10 10
7 (heptamer) 6 21 13.5 15
8 (octamer) 7 28 17.5 18
9 (nonamer) 8§ 36 22 24
10 (decamer) 9 45 27 30
11 10 55 32.5 37
(undecamer)

24. Fitting Procedure

The relation between maximum HE and the number of edges was analyzed using polynomial and linear
models. The linear form was found to provide the best fit, and fitting was performed with Python
numerical libraries (SciPy). The resulting empirical expression was written in terms of the optimal edge
number, defined as the average of the minimum and maximum number of edges:

(N-1)+ N(NT_D
€opt = 2 2

2.5. Classification and Extrapolation by Graph Descriptors

For maximum-HE isomers, the graph radius (Gr) and maximum degree (Ma) were calculated using
standard graph analysis functions in Mathematica. This allowed us to classify structural features
systematically. Based on these descriptors, the empirical relations obtained for 5-11 atoms were
extrapolated to clusters with 12—14 atoms to predict the behavior of maximum Hiickel energies. Most
of the calculations were performed on standard desktop PCs. Only the largest cases, where the number
of isomers became too large, were executed on the supercomputing system at Kyoto University.

3. Results and Discussion

3.1 Correlation Between Maximum HE and Number of Edges

For all isomers up to 11 atoms, adjacency matrices were constructed and their eigenvalues were
computed to obtain the Huckel energy (HE). For each edge number, the isomer giving the maximum
HE was identified. In every cluster size examined, HE increased with the number of edges, reached a
maximum, and then decreased again (Figure 1). This behavior was consistently observed for clusters
with 4-11 atoms, and the maximum HE was typically obtained at edge numbers close to the midpoint
between the minimum (N-1) and maximum (N(N-1)/2) possible edges.
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Figure 3. Maximum Hickel energy (HE_max) plotted against the number of vertices (N).

Although HE_max is not linear in N, it is well reproduced by a linear function of e_opt(N),
providing a consistent description across N = 4-11.

Table 2. Comparison of functional forms for fitting HE_max.

Model Equation Coefficients Remarks

Linear HE_max = 0=2.484, f=5.520 Simple, accuracy decreases
aN+p for large N

Quadratic HE_max = a=0.0786, p=1.3047, Fits well overall
aN2 + BN + vy y=—1.5107

Logarithmic HE_max = a=17.016, p=-20.306 Accurate for small N, poor
alog(N)+p for large N

e opt Linear HE _max = a=0.616, p=2.787 High accuracy, easy to
a-e_opt+p interpret physically using

e_opt

N+1/N HE_max = 0=3.045, f=13.614, Very high accuracy

oN+B+y/N ¥=26.203

This characteristic trend has been reported previously. Sekine et al. [18] analyzed sodium clusters
up to nine atoms using a graph-theoretical approach and showed that HE varies nonlinearly with the
number of edges, reaching a maximum near the midpoint value. Similarly, Maeda et al. [19] reported
consistent results for 5-8 atom clusters, confirming that the maximum HE appears near the average of
the minimum and maximum edge numbers. In the present study, we extended this analysis to 11 atoms.
Specifically, for N = 9, the maximum was observed at 24 edges compared with the midpoint value of
22; for N = 10, at 30 edges compared with 27; and for N = 11, at 37 edges compared with 32.5. These
findings reveal a size-dependent trend in which the maximum position gradually shifts to larger edge
numbers relative to the midpoint as the cluster size increases (Table 1).
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Figure 4. Structures of isomers with maximum Huickel energy. The inset illustrates the 9-atom
cluster with 22 edges, identified by our collaborators as the most stable 3D candidate.

3.2 Linear Relationship with e_opt

As shown above, the maximum HE is generally obtained at edge numbers close to the average between
the minimum and maximum. Based on this, we quantitatively examined the relation between maximum
HE and e_opt for clusters with 5-11 vertices. As shown in Figure 3, a simple linear fit was found to
describe the data well:

HE max ~0.6163 xe_opt+2.7871 (3)
This expression was obtained using Python-based numerical fitting. Reanalysis with Excel gave
HE max ~ 0.6132 x e_opt + 2.8044 (R?=0.9915), (3a)

essentially identical results. The coefficients and intercepts agreed up to the second decimal place,
confirming that this relation is obtained consistently and does not depend on the analysis method or
software environment. A comparison with other functional forms is summarized in Table 2.

This result indicates that cluster stability reaches a maximum at an intermediate bond density.
Because each atom has a finite valence, the number of available bonding electrons does not increase
proportionally with the number of bonds. As a result, the bond energy per connection gradually
decreases as bonding becomes denser, and unlimited stabilization cannot occur. The present analysis
revealed that this optimal bonding condition appears near the average between the minimum and
maximum possible edge numbers. Furthermore, for clusters up to nine atoms, detailed analysis of vertex
degree distributions revealed that the graphs with the highest Hiickel energies tend to exhibit small
variations in vertex degree; in other words, all vertices share nearly equivalent bonding environments.
This trend was also observed in the previous study on sodium cluster isomers [18]. Although the analysis
for larger clusters (ten atoms and above) is still preliminary, similar tendencies have been found,
indicating that graphs with more uniform connectivity generally yield higher HE values.
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Figure 5. Maximum Hiickel energy (HE) as a function of the number of bonds (5-14 atoms). The data
for N = 5-11 are fitted by a parabolic function of edge number, and extrapolations to N= 12-14 are also
shown. Classification by graph radius (Gr) is indicated. The extrapolated maxima for N = 12, 13, and
14 are marked with red circles, demonstrating that these points lie in the region of Gr = 2, consistent
with the trend that maximum-HE isomers become increasingly compact as the cluster size increases.

Quadratic and N+1/N models achieve higher accuracy, but their expressions are more complex and
difficult to interpret physically. In contrast, the linear expression based on e_opt maintains sufficiently
high accuracy (R? > 0.99) while allowing an intuitive understanding of cluster stability, and was
therefore judged to be the most useful. These results demonstrate that the relationship between
maximum HE and the number of edges can be adequately described by a simple linear expression, which
serves as an effective indicator of the general scaling rule of stability with increasing cluster size.

3.3. Examples of Maximum-HE Isomers

The structures of maximum-HE isomers for each cluster size were investigated. As shown in Figure 4,
the isomers giving maximum HE were extracted for each cluster size. For small clusters, where each
vertex has only a few connections, the maximum-HE structures tend to be relatively planar. As the
number of vertices increases, the degree of each vertex becomes larger, and the structures become more
compact and approach spherical shapes.

For clusters up to N= 8, the maximum-HE isomers coincide with the most stable structures obtained
from ab initio calculations [2]. For N > 9, however, graph-theoretical maximum-HE isomers are not
necessarily realizable as stable three-dimensional structures. For example, collaborative studies in our
group indicated that a 9-atom cluster with 22 edges is the most stable candidate in 3D space [20]. This
illustrates that graph-theoretical HE analysis alone cannot always identify the true global minima and
must be complemented by structural feasibility checks. Nevertheless, analyzing isomers in terms of HE
is not only useful for discussing their stability but also meaningful for classifying their structures from
a graph-theoretical perspective.

3.4. Parabolic Fitting and Classification by Graph Descriptor

Up to this point, the maximum Huckel energy (HE) has been discussed as a function of the number of
vertices N. We next analyzed HE as a function of both N and the number of edges e. For N = 5-11, the
data are well reproduced by a parabolic function:
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Figure 6. Maximum Huckel energy (HE) as a function of the number of bonds (5-14 atoms). The data
for N = 5-11 are fitted by a parabolic function of edge number, and extrapolations to N = 12-14 are
also shown. Classification is given by the maximum coordination number (Ma) rather than the graph

radius (Gr). The extrapolated maxima for N = 12, 13, and 14 are marked with red circles. These points
suggest Ma = 8 or 9 for N = 12 and Ma = 10 for N = 13, while for N = 14 the maximum-HE isomer

likely requires Ma > 11, indicating the need for further analysis.

HE(e,N) = ay(e — by)? + cy

aN = _2084‘6562 X e < b[\

N 3-105506
_0.058887 4.576035

ay = N N2 e> bN (4)

by = 0.369048N? — 0.940476N + 2.571429
cy = 0.048326N? + 1.803457N — 3.537159

where by gives the edge number at the maximum and cy is the corresponding maximum HE. Parameters
an, by, and cy vary systematically with N. Extrapolation of these parameters provides predictions for N
= 12-14 clusters, as shown in Figure 5. Using the expression for by given above (Equation (4)), the
predicted edge numbers are ~44, 53, and 62 for N = 12, 13, and 14, respectively. These extrapolated
maxima are marked with red circles in Figures 5.

Although the analysis for the 12-atom cluster is still in progress, the obtained parameters already
confirm that the fitting is valid in both the few-bond and many-bond regions. Furthermore, this
extrapolation allows us to predict the overall shape of the curves for the 13- and 14-atom clusters.
Classification by graph radius (Gr) (Figure 5) revealed that maximum-HE isomers consistently had
small Gr values that converge to 2 as N increases. Importantly, the extrapolated points for N = 12, 13,
and 14—shown as red circles in Figure 5—are located in the region of Gr = 2. This trend agrees with
the recent large-scale first-principles study by Fisicaro et al. [10], which reported that stable isomers
generally adopt compact, nearly spherical shapes with small surface area. In graph-theoretical terms,
small Gr values correspond to short average distances between vertices, supporting this consistency.
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Classification by maximum degree (Ma) (Figure 6) further revealed that maximum-HE isomers align
along nearly parallel boundary lines up to N = 11. The extrapolated maxima for N = 12, 13, and 14 are
indicated by red circles in Figure 6. Based on this trend, the most plausible maximum degrees are Ma =
8 or 9 for N =12 and Ma = 10 for N = 13. For N = 14, however, the maximum-HE isomer is expected
to require Ma > 11, and further analysis is necessary to clarify this case.

As shown above, for N = 12, 13, and 14 the edge numbers giving the maximum HE are 44, 53, and
62, respectively. The corresponding total degree sums (2e) are 89, 105, and 123. Assuming that one
vertex has Ma = 9, 10, and 12 for these clusters, the average degrees of the remaining vertices are
approximately 7.2, 8.0, and 8.6, respectively. This suggests that the high degree is not concentrated on
a single vertex, but rather distributed almost evenly among the others. In structural terms, the bonding
is spread uniformly throughout the cluster, with some variation, but without any single vertex being
dominant. As already shown for the maximum-HE isomers of 5-11 atom clusters in Figure 4, the
variance of degree distribution becomes small for N > 7, and this trend is expected to persist for N > 12
as well.

4. Conclusions

In this study, we systematically analyzed all isomers of 5-11 atom clusters using a graph-theoretical
approach within the Huckel approximation. The maximum HE was found to increase with edge number,
reach a maximum near the midpoint between minimum and maximum, and then decrease. This behavior
is well described by a simple linear function of e_opt. Structural analysis revealed that maximum-HE
isomers exhibit compact and homogeneous features with small variation in degree distribution.
Classification by graph radius (Gr) showed a consistent trend toward Gr — 2 as n increases, while
classification by maximum degree (Ma) suggested extrapolatable regularities, predicting Ma ~9-11 (or
higher) for N = 12-14. Combining parabolic fitting with Gr and Ma classification thus enables structural
predictions beyond 11 atoms. This graph-theoretical framework provides valuable guidelines for
assessing stability trends and for comparison with first-principles calculations. Because it relies solely
on topological information and simple gquantum-chemical approximations, the approach offers a
computationally efficient and transferable tool for exploring structure—stability relationships in atomic
and molecular systems. Such graph-based descriptors can complement existing first-principles and
machine-learning methods in computational materials science, contributing to the sustainable discovery
and design of novel materials.
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