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Abstract. In this study, we systematically analyzed all isomers of 5–11 atom clusters using a 

graph-theoretical approach and evaluated their maximum Hückel energy (HE) within the Hückel 

approximation. The maximum HE increased with the number of bonds, reached a maximum at 

an intermediate value, and then decreased again, with the peak located near the average of the 

minimum and maximum possible edge numbers. This relationship was well reproduced by a 

simple linear expression. The isomers with maximum HE were found to have nearly uniform 

degree distributions, and classification by graph radius (Gr) and maximum degree (Ma) revealed 

that they possess compact and homogeneous structural characteristics. By extrapolating these 

trends, structural features of maximum-HE isomers were predicted for clusters with 12–14 

atoms. These results demonstrate the effectiveness of a graph-theoretical description for 

analyzing cluster stability and provide a foundation for extending the analysis to larger clusters 

and for comparison with first-principles calculations. In a broader context, this topology-based 

and computationally efficient framework contributes to computational materials science by 

offering a sustainable and transferable approach to understanding structure–stability 

relationships across atomistic systems. 
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1.   Introduction  

Metal clusters represent a crucial class of finite systems for understanding the transition from individual 

atoms to the bulk solid state. In particular, small clusters exhibit an enormous number of possible 

isomers, whose stability and electronic properties are highly size-dependent. Early theoretical efforts by 

Wang et al. [1] employed a Hückel model in combination with graph-theoretical concepts to investigate 

cluster stability, which led to the establishment of a simplified but insightful framework. Subsequent ab 

initio studies by Solov’yov, Solov’yov, and Greiner [2] provided systematic benchmarks for neutral and 
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singly charged sodium clusters up to 20 atoms, including optimized geometries, binding energies, 

ionization potentials, and vibrational properties. 

Building on these pioneering works, Röthlisberger and Andreoni [3,21] carried out ab initio 

molecular dynamics on sodium clusters with up to 20 atoms, revealing structural and electronic trends 

at finite temperatures. More recently, Sun et al. [4,22] identified a distinctive honeycomb-like motif in 

Na₂₀, while Kronik et al. [5,23] reported accurate polarizabilities for Na clusters up to 20 atoms. Huber 

et al. [6,24] combined photoelectron spectroscopy and density-functional theory to determine the 

structures of Na₂₀⁻–Na₅₇⁻, revealing systematic growth patterns involving double-icosahedral cores and 

Mackay/anti-Mackay overlayers. Calvo and Spiegelmann [7,25] further demonstrated size-dependent 

melting behavior in sodium clusters. In parallel, Itoh et al. [8,26] investigated Na and Cu clusters, 

emphasizing the role of sp–d hybridization in their growth behaviors, and Sanchez et al. [9,27] 

demonstrated that nanoscale gold clusters can exhibit unusual catalytic activity, highlighting the broader 

relevance of 1-valence metal systems. 

More recently, Fisicaro et al. [10,28] reported a large-scale density-functional database comprising 

approximately 44,000 isomers of metallic and semiconducting clusters, and analyzed stability trends 

using structural and electronic descriptors. These studies collectively advanced the field; however, most 

have focused on identifying the global minima, while little attention has been paid to extracting general 

structural features common to the entire isomer ensemble. 

Although the Hückel method was one of the earliest molecular-orbital approaches, its algebraic 

framework based on matrix representation and eigenvalue analysis constitutes the conceptual prototype 

of all subsequent electronic-structure theories, including modern ab initio and density-functional 

methods. The simplicity and transparency of the Hückel framework continue to provide valuable 

insights into the fundamental relationship between topology and electronic structure. In fact, recent 

studies have revisited the Hückel approach from an analytical and parameter-free perspective, 

demonstrating its continued relevance to contemporary quantum chemistry and materials modeling [11]. 

In this context, our present work employs a graph-theoretical interpretation of the Hückel framework to 

systematically analyze cluster structures and stability trends. 

In parallel, graph-based representations have become central in modern data-driven materials 

science. Recent developments in machine learning increasingly describe molecules and crystals as 

graphs—where atoms are represented as vertices and chemical bonds as edges—to predict physical and 

chemical properties with high accuracy [12]. Similarly, structural networks have been utilized as 

descriptors for catalytic and energy materials, highlighting the link between bonding topology and 

macroscopic functionality [13]. These approaches share the same conceptual lineage with Hückel-type 

models, in which electronic structure is derived from connectivity information. The present study thus 

bridges classical graph-theoretical quantum models and current machine-learning-based materials 

frameworks. 

Moreover, graph theory continues to be applied in quantitative analyses of complex inorganic 

frameworks. For example, Mohankumar et al. applied graph-theoretical and QSAR-based molecular 

descriptors to single-chain diamond silicates, demonstrating how degree- and distance-based topological 

indices capture both stability and electronic characteristics [14]. While the present work statistically 

analyzes Hückel energies across all graph isomers, Tsuji provided a complementary interpretation by 

viewing the coefficients of the lowest occupied molecular orbital (LOMO) as graph-centrality measures 

and discussing local structural stability of individual metallic clusters [15]. Although different in focus, 

both studies share the same conceptual basis of understanding electronic properties through graph 

structures. 

In this work, we address this gap by performing a graph-theoretical analysis of all connected simple 

graphs with 5–11 vertices. For each graph, we computed adjacency-matrix eigenvalues and defined the 

Hückel energy as the sum of the largest occupied eigenvalues. From these data, we identified the 

maximum Hückel energies, established empirical relations with the number of edges, and introduced 

classifications based on graph radius and maximum degree. We further extrapolated these descriptors 

to clusters with 12–14 atoms and compared our predictions with available ab initio results. The outcomes 
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highlight both the potential and limitations of graph-theoretical approaches as complementary tools for 

understanding cluster stability. 

 

Figure 1. Correlation between maximum Hückel energy and the number of bonds in 

isomers with 4 to 11 atoms. 

 

2.   Methods 

2.1.   Graph Enumeration 

We considered all connected simple graphs with 5–11 vertices, excluding multiple edges and self-loops. 

The database of isomers used in this work was generated in our laboratory by Taki and is deposited on 

Zenodo [16]. Equivalent data are also available from McKay’s graph database [17]. Our independently 

generated dataset is consistent with these publicly available resources. 

2.2.   Adjacency Matrix and Eigenvalues 

Each graph was transformed into an adjacency matrix A, where the element is 1 if vertices i and j are 

connected, and 0 otherwise. The diagonal elements were set to 0, making the matrix symmetric. 

Eigenvalues ε1, ε2, …, εn were obtained using standard functions in Python (NumPy) and Mathematica. 

2.3.   Definition and Evaluation of Hückel Energy 

The Hückel approximation was chosen for its compatibility with the graph representation, because the 

Hamiltonian can be directly expressed by the adjacency matrix. For a graph with N vertices, the number 

of electrons was assumed to be N. Considering spin degeneracy, the floor(N/2) largest eigenvalues were 

taken as occupied orbitals. The Hückel energy (HE) was defined as twice the sum of these occupied 

orbital eigenvalues:  

 

𝐻𝐸 = 2 ∑ 𝜀𝑖

⌊𝑁∕2⌋

𝑖=1

 

 

Using this definition, HE values were computed for all graphs for each N, and the structures yielding 

the maximum HE (maximum-HE isomers) were identified. Data handling and filtering were carried out 

using Python (Pandas). 
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* Linear fit vs. e_opt, Classification by Gr and Ma  

Figure 2. Workflow of the graph-theoretical analysis for cluster stability. 

 

Table 1. Relationship between number of bonds and maximum HE 

  

Cluster size 

(N) 

Minimum 

number of bonds 

Maximum 

number of bonds 

e_opt=(Min+Max)/2 Number of bonds 

for maximum HE 

5 (pentamer) 4 10 7 7 

6 (hexamer) 5 15 10 10 

7 (heptamer) 6 21 13.5 15 

8 (octamer) 7 28 17.5 18 

9 (nonamer) 8 36 22 24 

10 (decamer) 9 45 27 30 

11 

(undecamer) 

10 55 32.5 37 

 

2.4.   Fitting Procedure 

The relation between maximum HE and the number of edges was analyzed using polynomial and linear 

models. The linear form was found to provide the best fit, and fitting was performed with Python 

numerical libraries (SciPy). The resulting empirical expression was written in terms of the optimal edge 

number, defined as the average of the minimum and maximum number of edges: 

 

𝑒𝑜𝑝𝑡 =
(𝑁 − 1) +

𝑁(𝑁 − 1)
2

2
 

 

2.5.   Classification and Extrapolation by Graph Descriptors 

For maximum-HE isomers, the graph radius (Gr) and maximum degree (Ma) were calculated using 

standard graph analysis functions in Mathematica. This allowed us to classify structural features 

systematically. Based on these descriptors, the empirical relations obtained for 5–11 atoms were 

extrapolated to clusters with 12–14 atoms to predict the behavior of maximum Hückel energies. Most 

of the calculations were performed on standard desktop PCs. Only the largest cases, where the number 

of isomers became too large, were executed on the supercomputing system at Kyoto University.                                 

3.   Results and Discussion 

3.1.   Correlation Between Maximum HE and Number of Edges 

For all isomers up to 11 atoms, adjacency matrices were constructed and their eigenvalues were 

computed to obtain the Hückel energy (HE). For each edge number, the isomer giving the maximum 

HE was identified. In every cluster size examined, HE increased with the number of edges, reached a 

maximum, and then decreased again (Figure 1). This behavior was consistently observed for clusters 

with 4–11 atoms, and the maximum HE was typically obtained at edge numbers close to the midpoint 

between the minimum (N–1) and maximum (N(N–1)/2) possible edges. 
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Figure 3. Maximum Hückel energy (HE_max) plotted against the number of vertices (N). 

Although HE_max is not linear in N, it is well reproduced by a linear function of e_opt(N), 
providing a consistent description across N = 4–11. 

 

 

Table 2. Comparison of functional forms for fitting HE_max. 

 

Model Equation Coefficients Remarks 

Linear HE_max =  

α·N + β 

α=2.484, β=−5.520 Simple, accuracy decreases 

for large N 

Quadratic HE_max = 

 αN² + βN + γ 

α=0.0786, β=1.3047,  

γ=−1.5107 

Fits well overall 

Logarithmic HE_max = 

αlog(N)+β 

α=17.016, β=−20.306 Accurate for small N, poor 

for large N 

e_opt Linear HE_max = 

 α·e_opt + β 

α=0.616, β=2.787 High accuracy, easy to 

interpret physically using 

e_opt 

N+1/N HE_max = 

αN+β+γ/N 

α=3.045, β=−13.614, 

 γ=26.203 

Very high accuracy 

 

 

This characteristic trend has been reported previously. Sekine et al. [18] analyzed sodium clusters 

up to nine atoms using a graph-theoretical approach and showed that HE varies nonlinearly with the 

number of edges, reaching a maximum near the midpoint value. Similarly, Maeda et al. [19] reported 

consistent results for 5–8 atom clusters, confirming that the maximum HE appears near the average of 

the minimum and maximum edge numbers. In the present study, we extended this analysis to 11 atoms. 

Specifically, for N = 9, the maximum was observed at 24 edges compared with the midpoint value of 

22; for N = 10, at 30 edges compared with 27; and for N = 11, at 37 edges compared with 32.5. These 

findings reveal a size-dependent trend in which the maximum position gradually shifts to larger edge 

numbers relative to the midpoint as the cluster size increases (Table 1). 

 



  

02601038-06 

 

 

Figure 4. Structures of isomers with maximum Hückel energy. The inset illustrates the 9-atom 
cluster with 22 edges, identified by our collaborators as the most stable 3D candidate. 

 

3.2.   Linear Relationship with e_opt 

As shown above, the maximum HE is generally obtained at edge numbers close to the average between 

the minimum and maximum. Based on this, we quantitatively examined the relation between maximum 

HE and e_opt for clusters with 5–11 vertices. As shown in Figure 3, a simple linear fit was found to 

describe the data well: 

 

HE_max ≈ 0.6163 × e_opt + 2.7871     (3) 

 

This expression was obtained using Python-based numerical fitting. Reanalysis with Excel gave 

 

HE_max ≈ 0.6132 × e_opt + 2.8044  (R² = 0.9915),    (3a) 

 

essentially identical results. The coefficients and intercepts agreed up to the second decimal place, 

confirming that this relation is obtained consistently and does not depend on the analysis method or 

software environment. A comparison with other functional forms is summarized in Table 2. 

This result indicates that cluster stability reaches a maximum at an intermediate bond density. 

Because each atom has a finite valence, the number of available bonding electrons does not increase 

proportionally with the number of bonds. As a result, the bond energy per connection gradually 

decreases as bonding becomes denser, and unlimited stabilization cannot occur. The present analysis 

revealed that this optimal bonding condition appears near the average between the minimum and 

maximum possible edge numbers. Furthermore, for clusters up to nine atoms, detailed analysis of vertex 

degree distributions revealed that the graphs with the highest Hückel energies tend to exhibit small 

variations in vertex degree; in other words, all vertices share nearly equivalent bonding environments. 

This trend was also observed in the previous study on sodium cluster isomers [18]. Although the analysis 

for larger clusters (ten atoms and above) is still preliminary, similar tendencies have been found, 

indicating that graphs with more uniform connectivity generally yield higher HE values. 
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Figure 5. Maximum Hückel energy (HE) as a function of the number of bonds (5–14 atoms). The data 

for N = 5–11 are fitted by a parabolic function of edge number, and extrapolations to N= 12–14 are also 

shown. Classification by graph radius (Gr) is indicated. The extrapolated maxima for N = 12, 13, and 

14 are marked with red circles, demonstrating that these points lie in the region of Gr ≈ 2, consistent 

with the trend that maximum-HE isomers become increasingly compact as the cluster size increases.  

 

 

Quadratic and N+1/N models achieve higher accuracy, but their expressions are more complex and 

difficult to interpret physically. In contrast, the linear expression based on e_opt maintains sufficiently 

high accuracy (R² > 0.99) while allowing an intuitive understanding of cluster stability, and was 

therefore judged to be the most useful. These results demonstrate that the relationship between 

maximum HE and the number of edges can be adequately described by a simple linear expression, which 

serves as an effective indicator of the general scaling rule of stability with increasing cluster size. 

3.3.   Examples of Maximum-HE Isomers 

The structures of maximum-HE isomers for each cluster size were investigated. As shown in Figure 4, 

the isomers giving maximum HE were extracted for each cluster size. For small clusters, where each 

vertex has only a few connections, the maximum-HE structures tend to be relatively planar. As the 

number of vertices increases, the degree of each vertex becomes larger, and the structures become more 

compact and approach spherical shapes. 

For clusters up to N= 8, the maximum-HE isomers coincide with the most stable structures obtained 

from ab initio calculations [2]. For N ≥ 9, however, graph-theoretical maximum-HE isomers are not 

necessarily realizable as stable three-dimensional structures. For example, collaborative studies in our 

group indicated that a 9-atom cluster with 22 edges is the most stable candidate in 3D space [20]. This 

illustrates that graph-theoretical HE analysis alone cannot always identify the true global minima and  

must be complemented by structural feasibility checks. Nevertheless, analyzing isomers in terms of HE 

is not only useful for discussing their stability but also meaningful for classifying their structures from 

a graph-theoretical perspective. 

 

3.4.   Parabolic Fitting and Classification by Graph Descriptor 

Up to this point, the maximum Hückel energy (HE) has been discussed as a function of the number of 

vertices N. We next analyzed HE as a function of both N and the number of edges e. For N = 5–11, the 

data are well reproduced by a parabolic function: 

 



  

02601038-08 

 

(4) 

  

Figure 6. Maximum Hückel energy (HE) as a function of the number of bonds (5–14 atoms). The data 

for N = 5–11 are fitted by a parabolic function of edge number, and extrapolations to N = 12–14 are 

also shown. Classification is given by the maximum coordination number (Ma) rather than the graph 

radius (Gr). The extrapolated maxima for N = 12, 13, and 14 are marked with red circles. These points 

suggest Ma ≈ 8 or 9 for N = 12 and Ma ≈ 10 for N = 13, while for N = 14 the maximum-HE isomer 

likely requires Ma ≥ 11, indicating the need for further analysis.  

 

 

𝐻𝐸(𝑒, 𝑁) = 𝑎𝑁(𝑒 − 𝑏𝑁)2 + 𝑐𝑁 

 

 
 

 
 

 
 

 
 

where bN gives the edge number at the maximum and cN is the corresponding maximum HE. Parameters 

aN, bN, and cN vary systematically with N. Extrapolation of these parameters provides predictions for N 

= 12–14 clusters, as shown in Figure 5.  Using the expression for bN given above (Equation (4)), the 

predicted edge numbers are ~44, 53, and 62 for N = 12, 13, and 14, respectively. These extrapolated 

maxima are marked with red circles in Figures 5. 

Although the analysis for the 12-atom cluster is still in progress, the obtained parameters already 

confirm that the fitting is valid in both the few-bond and many-bond regions. Furthermore, this 

extrapolation allows us to predict the overall shape of the curves for the 13- and 14-atom clusters. 

Classification by graph radius (Gr) (Figure 5) revealed that maximum-HE isomers consistently had 

small Gr values that converge to 2 as N increases. Importantly, the extrapolated points for N = 12, 13, 

and 14—shown as red circles in Figure 5—are located in the region of Gr ≈ 2. This trend agrees with 

the recent large-scale first-principles study by Fisicaro et al. [10], which reported that stable isomers 

generally adopt compact, nearly spherical shapes with small surface area. In graph-theoretical terms, 

small Gr values correspond to short average distances between vertices, supporting this consistency. 

𝑎𝑁 = −20.846562 ×
1

𝑁3.105506
         𝑒 ≤ 𝑏𝑁 

𝑎𝑁 =
0.058887

𝑁
−

4.576035

𝑁2
               𝑒 > 𝑏𝑁 

𝑏𝑁 = 0.369048𝑁2 − 0.940476𝑁 + 2.571429 

𝑐𝑁 = 0.048326𝑁2 + 1.803457𝑁 − 3.537159 
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Classification by maximum degree (Ma) (Figure 6) further revealed that maximum-HE isomers align 

along nearly parallel boundary lines up to N = 11. The extrapolated maxima for N = 12, 13, and 14 are 

indicated by red circles in Figure 6. Based on this trend, the most plausible maximum degrees are Ma ≈ 

8 or 9 for N = 12 and Ma ≈ 10 for N = 13. For N = 14, however, the maximum-HE isomer is expected 

to require Ma ≥ 11, and further analysis is necessary to clarify this case. 

As shown above, for N = 12, 13, and 14 the edge numbers giving the maximum HE are 44, 53, and 

62, respectively. The corresponding total degree sums (2e) are 89, 105, and 123. Assuming that one 

vertex has Ma = 9, 10, and 12 for these clusters, the average degrees of the remaining vertices are 

approximately 7.2, 8.0, and 8.6, respectively. This suggests that the high degree is not concentrated on 

a single vertex, but rather distributed almost evenly among the others. In structural terms, the bonding 

is spread uniformly throughout the cluster, with some variation, but without any single vertex being 

dominant. As already shown for the maximum-HE isomers of 5–11 atom clusters in Figure 4, the 

variance of degree distribution becomes small for N ≥ 7, and this trend is expected to persist for N ≥ 12 

as well. 

 

4.    Conclusions 

In this study, we systematically analyzed all isomers of 5–11 atom clusters using a graph-theoretical 

approach within the Hückel approximation. The maximum HE was found to increase with edge number, 

reach a maximum near the midpoint between minimum and maximum, and then decrease. This behavior 

is well described by a simple linear function of e_opt. Structural analysis revealed that maximum-HE 

isomers exhibit compact and homogeneous features with small variation in degree distribution. 

Classification by graph radius (Gr) showed a consistent trend toward Gr → 2 as n increases, while 

classification by maximum degree (Ma) suggested extrapolatable regularities, predicting Ma ≈9–11 (or 

higher) for N = 12–14. Combining parabolic fitting with Gr and Ma classification thus enables structural 

predictions beyond 11 atoms. This graph-theoretical framework provides valuable guidelines for 

assessing stability trends and for comparison with first-principles calculations. Because it relies solely 

on topological information and simple quantum-chemical approximations, the approach offers a 

computationally efficient and transferable tool for exploring structure–stability relationships in atomic 

and molecular systems. Such graph-based descriptors can complement existing first-principles and 

machine-learning methods in computational materials science, contributing to the sustainable discovery 

and design of novel materials. 
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