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Abstract. Standard metrics such as SSIM often overlook complex chromatic distortions, 

creating a gap between objective scores and human judgment. To address this, we present the 

Synergistic Structural Similarity Index (SSSI), a metric grounded in a novel dual-pyramid 

strategy that integrates Gaussian-blurred stability with direct subsampling sharpness. Our 

method departs from luminance-only analysis by employing an equal, synergistic partnership 

between the luminance (Y) and Green (G) channels, mirroring the eye's spectral sensitivity. On 

the KADID-10k dataset, SSSI achieves an SROCC of 0.7793. This represents a significant 4% 

performance gain over the standard SSIM baseline, demonstrating that integrating chromatic 

data with dual-scale structural analysis provides a more accurate proxy for human visual 

perception. 
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1.   Introduction  

Digital imaging has emerged as a hallmark of the 21st century and is utilised in situations ranging from 

medical diagnostics [1] and autonomous navigation to entertainment and communication [2][3]. With 

many billions of images being taken each day, even quality assurance is no longer a theoretical exercise; 

it is a requirement built into the technology [2]. The field of Image Quality Assessment (IQA) provides 

a foundation for measuring and improving performance across every stage of the imaging pipeline. IQA 
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is the underpinning research for algorithms in compression, enhanced satellite imagery, consumer 

camera benchmarking, and visual media recovery [4][5]. 

The overarching goal of IQA is to create computational models that automatically predict the 

perceived quality of an image in agreement with human judgment. These models, as a function of the 

reference image, fall into two general categories: No-Reference (NR) and Reduced-Reference (RR) 

methods to help address limited-reference cases at each end, and Full Reference (FR) IQA at the centre 

that assumes the presence of a clean, undistorted image [6]. At the fulcrum of this space is FR-IQA, 

arguably the most appropriate standard for evaluating images produced by denoising, super-resolution, 

deblurring, and compression methods, when those images must not only be viewed by human observers 

but also have fidelity to the source content quantifiably verified. Professional acceptance is a prerequisite 

for its display or publication [7]. Our work here seeks to advance the state of the art of FR-IQA. The 

early FR-IQA metrics used pixel-difference measures. Peak Signal-to-Noise Ratio (PSNR), ultimately 

derived from Mean Squared Error (MSE), has become a de facto standard because of its ease of use, 

even though it poorly correlates with perceived quality. PSNR assumes pixel error is independent (or 

weighs errors with equal importance), although we know that the Human Visual System (HVS) 

processes signals at a complex level; therefore, two images could be very similar in PSNR, yet have 

clear perceptual differences to a human operator [8][9].  

A leap ahead in imaging metrics came from the Structural Similarity Index (SSIM), which modelled 

quality using a combination of luminance, contrast, and structural comparisons; elements that are much 

more aligned with human vision and perception [10]. MS-SSIM (Multi-Scale SSIM) improved this by 

extending structural comparisons across multiple scales, thereby producing a more realistic simulation 

of perceptual quality [11]. Nonetheless, SSIM metrics demonstrated considerable limitations, as they 

still treat luminance as a quality factor and ignore chromatic distortions, which can significantly alter 

perceived image quality. It is conceivable that an image could be structurally accurate yet contain visible 

colour artefacts that would not be detected by grayscale-based SSIM models [12]. When using these 

objective scores, the resulting difference produces a perceptual gap, especially given that modern image 

enhancement and generation methods are creating new types of distortion to be considered [13]. 

To address this challenge, we propose a new FR-IQA metric, the Synergistic Structural Similarity 

Index (SSSI), which unifies structural and chromatic evaluations. This work introduces two primary 

contributions to the field: 

• A Novel Dual-Pyramid Framework: We propose a hybrid structural analysis that combines a 

Gaussian pyramid, which captures structurally stable low-frequency features, with a direct 

subsampling pyramid that retains erratic, high-frequency details. Together, these parallel 

streams construct a comprehensive structural understanding of the image that neither could 

achieve alone. 

• Optimal Luminance–Green (Y–G) Synergy: Through extensive empirical research, we 

demonstrate that the most perceptually relevant results emerge not from using all color channels, 

but from a synergistic and equal partnership (50/50 weighting) between the Luminance (Y) and 

Green (G) channels. This specific pairing aligns with the Human Visual System's (HVS) peak 

spectral sensitivity and the superior fidelity of green data in Bayer sensor architectures. 

By integrating this Y–G synergy with the dual-pyramid structure, SSSI achieves a perceptually 

consistent and computationally efficient approach to measuring image quality. Unlike recent 

perceptual metrics such as Feature Similarity Index Measure (FSIM), Haar Wavelet-Based 

Perceptual Similarity Index (HaarPSI), Deep Image Structure and Texture Similarity (DISTS), and 

Learned Perceptual Image Patch Similarity (LPIPS), which either rely on gradient-based features or 

deep neural representations, the proposed Synergistic Structural Similarity Index (SSSI) remains 

fully knowledge-driven while explicitly integrating chromatic sensitivity. 

1.1.   Related work 

         Zubkov and Abramchuk [14] presented GMS-MLD, a simple yet effective FR-IQA metric that 

builds on GMSD. GMS-MLD utilises a linear combination of the standard deviation of gradient-
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magnitude similarity and the mean deviation of luminance. In doing so, GMS-MLD combines the effects 

of structural and luminance degradations. Despite its straightforwardness, GMS-MLD achieved a strong 

SROCC of 0.865 on KADID-10k, a performance level comparable to more elaborate methods. Ding et 

al. [15] considered a hybrid model that melds classical principles with deep features. Specifically, in 

their proposal, a pre-trained VGG network is used to extract features that then produce multi-scale 

texture-structure maps that are compared via a weighted distance based on SSIM (the Structural 

Similarity Index). This design is designed to tolerate texture resampling and achieves an SROCC of 

0.855 on TID2013-based images. 

      Zhang et al. [16] introduced LPIPS, a seminal hybrid metric that quantifies the perceptual strength 

of deep representations. Reference and distorted image patches are passed through a pre-trained CNN 

(VGG/AlexNet), and the perceptual distance is computed as a weighted L2 distance between the 

activation maps. LPIPS correlates closely with human judgment, achieving an SROCC of 0.932 on 

LIVE. Reisenhofer et al. [17] developed HaarPSI, a wavelet-domain FR-IQA using the Haar transform 

to compare coefficient magnitudes across scales and orientations. By emphasising high-frequency 

information, it provides a fast, perceptually aligned metric with an SROCC of 0.957 on LIVE. 

      Das and Gupte [18] combined visual-saliency weighting with structural similarity. Salient regions, 

identified via the spectral-residual technique, guide local quality pooling that merges gradient- and 

luminance-based similarities, emphasising visually important areas. Bandyapadhyay and Varadarajan 

[19] extended FSIM using the Riesz transform, a 2-D Hilbert generalisation. Replacing gradient 

magnitude with feature-asymmetry and feature-similarity terms allows richer local-phase analysis and 

improved correlation with human perception. Lee et al. [20] proposed an information-theoretic FR-IQA 

inspired by VIF. By modelling reference and distorted images as random variables, it measures quality 

via differences in joint and marginal entropies—an engineering-free formulation achieving SROCC = 

0.957 on LIVE. 

      The differences between our SSSI (SROCC = 0.7793) and these approaches are conceptual rather 

than merely numerical. Models such as DISTS and GMS-MLD are rated higher on KADID-10k but 

differ fundamentally in their design, added sophistication, and learned features. Deep-feature hybrids, 

such as DISTS and LPIPS, use pre-trained convolutional neural networks (CNNs), such as VGG, to 

encode a hierarchy of visual features from large datasets. In contrast, SSSI utilises a fully knowledge-

driven metric derived from signal processing, SSIM, and human visual-system properties (Y–G channel 

synergy). While SSSI demonstrates competitive performance without learned components, this indicates 

the efficacy of a design grounded in physical and perceptual properties. SSSI promotes simplicity, 

transparency, and efficiency at the expense of black-box sophistication; for this reason, every 

mathematical operation is clearly defined, enabling interpretation, adjustment, and simpler debugging. 

This makes SSSI a good fit for research and applications in which computational resources may be 

limited and/or there is a need for explainable decisions. Finally, we obtained results from a limited subset 

of KADID-10k, comprising 200 images, to expedite prototyping. Other studies reported results from the 

full KADID-10k dataset. Therefore, the SSSI results from several ablation analyses, which consistently 

show similar findings, support subsequent validation. Future follow-up work will aim to expand the 

evaluation to the complete benchmark dataset for a definitive comparison. 

2.   Methods 

This section describes the overall architecture and computational structure of the proposed Full-

Reference Image Quality Assessment (FR-IQA) metric, Synergistic Structural Similarity Index (SSSI), 

shown in Figure 1. SSSI is developed via the principle that perceptual accuracy applies by bringing 

together distinct but complementary information channels in a synergistic way: 

 𝑆𝑆𝑆𝐼 = 0.5 × 𝑆𝑌 + 0.5 × 𝑆𝐺 (1) 

 

Where SY represents the structural similarity score of the Luminance channel, and SG represents the 

structural similarity score of the green channel. This 50/50 weighting structure, determined by 

experimenting with this value (see Section 4), was included because it most closely aligned with human 
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perception. The Hybrid Multi-Scale Structural Similarity (H-MSSS) engine computes quality across 

channels. 

2.1.   Channel Preparation and Colour Space Transformation 

     Two input channels are created using reference and distorted BGR images. To obtain luminance 

information crucial for perception, the images are converted to the YCbCr colour space, the Y channel, 

which contains most high-frequency structural detail, is selected.  

 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2) 

The pixel values are processed in the integer range [0, 255] without prior normalization to the [0, 

1] range, ensuring that the metric operates directly on the bit-depth format typical of consumer digital 

imaging. YCbCr is useful for separating luminance from chrominance and yields an image 

representation that approximates HVS (Human Visual System) processing  [21]. The Green (G) channel 

can also be obtained from the BGR image. The choice of green is based on human visual physiology 

and that of most digital sensors: the HVS is most sensitive to the green range of the visible spectrum, 

and the Bayer filter used in cameras allocates twice as many green pixels as red or blue pixels. Therefore, 

the G channel provides the most detailed and least interpolated information relative to the luminance 

channel and is useful for image processing [22]. Subsequently, the Y and G channels are processed by 

the same H-MSSS engine, as previously described, on both the reference and distorted images. 

 

 
Figure 1. Block diagram of the proposed SSSI metric 
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2.2.   The H-MSSS Engine 

The H-MSSS engine enables effective multi-scale comparison through a dual-pyramid architecture 

that balances stability and detail. Gaussian Pyramid: The first stream consists of repeatedly applying a 

Gaussian blur to the images, followed by downsampling. The blur serves as an anti-aliasing filter, 

removing high-frequency noise (or detail), and it can capture low-frequency structures that are stable 

and resistant to small shifts or rotations. This helps promote stability and reflects how the HVS perceives 

global image structure. Subsampling Pyramid: The second stream directly downsamples the images 

without pre-blurring. Although less stable due to the absence of blur, the resulting pictures retain sharp 

edges and fine detail that would typically be suppressed by Gaussian smoothing. This sensitivity is 

crucial for detecting sources of degradation, including motion blur and out-of-focus errors. By 

comparing blurred and sharp images, the dual-pyramid design provides a complete characterisation of 

the structure. 

The Gaussian pyramid is constructed using N=4 levels. For each level, the image is smoothed using 

a standard 5×5 Gaussian kernel with an approximate standard deviation of σ=1.0 (as implemented in 

the cv2.pyrDown function) before being downsampled by a factor of 2. Conversely, the subsampling 

pyramid is generated with the same number of levels (N=4) using nearest-neighbor interpolation to 

preserve high-frequency edge artifacts without smoothing. 

2.3.   Local Quality Measurement and Final Score Aggregation 

The Structural Similarity Index (SSIM) is computed using the implementation from the scikit-

image library. We utilize a sliding window of size 7×7. The standard stability constants are set to K1

=0.01 and K2=0.03, with a dynamic range (L) of 255.  To ensure reproducibility, the final score 

aggregation is performed in three distinct stages: level averaging, pyramid fusion, and channel synergy. 

First, the SSIM scores are averaged across all N = 4 levels for both the Gaussian (G) and Subsampling 

(S) streams. Second, these streams are fused with equal weights. Finally, the Luminance (Y) and Green 

(Gch) channels are combined. The complete mathematical formulation for the Synergistic Structural 

Similarity Index (SSSI) is: 

 𝑆𝑆𝑆𝐼 = 0.5𝑄(𝑌) + 0.5𝑄(𝐺𝑐ℎ) (3) 

Where Q(c) is the quality score for a specific channel c, defined as: 

 𝑄(𝑐) = 0.5(
1

𝑁
∑𝑆𝑆𝐼𝑀(𝐺𝑟𝑒𝑓

𝑖 , 𝐺𝑑𝑖𝑠𝑡
𝑖 )

𝑁

𝑖=1

) + 0.5(
1

𝑁
∑𝑆𝑆𝐼𝑀(

𝑁

𝑖=1

𝑆𝑟𝑒𝑓
𝑖 , 𝑆𝑑𝑖𝑠𝑡

𝑖 )) (4) 

Here, Gi and Si represent the i-th level of the Gaussian and Subsampling pyramids, respectively. 

This approach has been validated in ablation studies (Section 4) and achieves higher correlation with 

human perceptual judgments than luminance-only or multi-channel fusion models. 

3.   Results and Discussion 

This section reports an experimental evaluation that confirms the performance and design of the 

Synergistic Structural Similarity Index (SSSI). The aim is to demonstrate how closely the metric aligns 

with human perception and to review its core components. This includes elaborating on the experimental 

design, benchmark data set, and established performance protocols. The following elaborate ablation 

study outlines the impact of each design choice, ranging from the obsolete histogram component to the 

final luminance–green channel pairing, and then compares the results quantitatively against other 

metrics and qualitatively reviews the visual outputs. 

3.1.   Dataset 

     The proposed metric was assessed on the KADID-10k database—a large-scale, challenging 

benchmark for Full-Reference Image Quality Assessment (IQA). The database comprises 81 pristine 

reference images and 10,125 distorted images (illustrated in Figure 2). The distortions were created 

using 25 types of degradation (e.g., noise, blur, compression, colour artefacts), each at five levels of 
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severity; together, the distortions provide a highly diverse set that can be employed for assessing the 

robustness and generalization of IQA models. Each distorted image is assigned a Mean Opinion Score 

(MOS) based on a set of psychophysical experiments reported. Human MOS ratings are used as ground 

truth to quantify the correlation between human perception and SSSI predictions [23]. 

 

 
                                                    (a)                                                          (b)  

Figure 2. Images from the KADID-10k database (a) Reference image (b) Distorted image 

3.2.   Results of the proposed metrics 

     In this subsection, the study's central findings clarify and enhance the transparency of the 

methodology and commence with an examination of the performance of the metric components 

presented in Table 3. 

Table 1. Results of the proposed metrics 

 

Reference image Distorted image PSNR SSIM SSSI MOS 

  

26.9495 0.9859 0.9839 2.3700 

  

25.2730 0.9569 0.9371 3.0700 

  

23.7359 0.6069 0.7161 4.2300 

  

11.2512 0.8853 0.8745 2.2000 

  

∞ 1.0000 1.0000 4.6000 
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3.3.   Ablation studies 

     To justify the final architecture of the metric, an ablation study was conducted to identify which 

component(s) improved with increasing depth of analysis. This allowed us to assess how each structure 

analysis method performed, using its respective combination method, to ensure that the final design was 

empirically robust and validated. We will present our findings as a series of targeted studies that build 

on one another, culminating in an optimised model. 

3.3.1. Initial Component Analysis 

     The initial prototype consisted of three components: a global histogram module and two dual-

pyramid structural streams (Gaussian and Subsampling). The preliminary tests showed global histogram 

scores had weak and inconsistent correlations with human Mean Opinion Scores (MOS), indicating 

global pixel distributions are unlikely to predict perceived structure. Reviews of the proposed 

components led to the subsequent decision to remove the histographic component and to test only the 

more consistently reliable pyramid-based structure analysis. 

3.3.2. The Core Engine 

The enhanced model characterised its core engine as an equal (50/50) combination of the Gaussian and 

Subsampling pyramid streams. Subsequently, performance was measured through individual image 

channels -Luminance (Y) and R, G, and B primary colours- using Spearman's Rank-Order Correlation 

Coefficient (SROCC) as a measure of perceptual agreement. The findings showed that the Y and G 

channels provided the greatest perceptual utility, whereas the R and dB channels showed significantly 

lower correlation. 

3.3.3. Synergistic Integration 

     The final and most crucial stage of the study was to determine how best to combine these high-

performing channels [24]. Several developments were tested, ranging from a luminance-focused version 

to several involving colours. Table 2 summarises the results of this study, presenting SROCC values for 

the most relevant model builds. 

Table 2. Ablation Study Results for Different Strategies 

Model Configuration Description SROCC 

Y + G (50/50) An equal partnership of Luminance and Green. 0.7793 

Y + G (65/35) Luminance-dominant partnership with Green. 0.7789 

Y + G (30/70) Green-dominant partnership with Luminance. 0.7767 

Y + Avg. (RGB) (70/30) Luminance-dominant with an average of all colours. 0.7731 

Y-Channel Only Luminance-only model. 0.7641 

Y + B (65/35) Luminance-dominant partnership with Blue. 0.7598 

Y + R (65/35) Luminance-dominant partnership with Red. 0.7171 

 

The data shown in Table 2 tells an important story. The results show that performance does not peak 

when using luminance only or a straightforward average of all colour information. The best 

correspondence to human perception happens when luminance (Y) and the green channel (G) are 

combined in a synergistic, equal (50/50) partnership. In fact, this model outperforms all other tested 

models, including those with different weightings. This evidence strongly supports our overall model 

and directly supports the hypothesis that equal contributions from the most stable structural channel (Y) 

and the most perceptually and technically important colour channel (G) yield a metric closer to the true 

measure of IQA than those of other models tested. 
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3.4. Comparison with other metrics 

     To provide a frame of reference for our SSSI metric, we next present its performance relative to two 

of the most common benchmarks in FR-IQA: peak signal-to-noise ratio (PSNR) and Structural 

Similarity Index (SSIM). Again, this evaluation was conducted on the same 200-image subset used in 

our ablation studies to provide the most equitable basis for comparing the three metrics. The quantitative 

performance of all three was evaluated using SROCC, and PLCC was computed against the ground-

truth human scores; the results are presented in Table 3. 

Table 3. Performance Comparison of SSSI against Benchmark Metrics 

Metric SROCC PLCC 

PSNR 0.6586  0.5248 

SSIM 0.7356  0.6254 

SSSI (Ours) 0.7793 0.5923 

 

     The proposed SSSI achieves the highest SROCC (0.7793) among the metrics investigated, 

confirming its superior alignment with human perceptual rankings. PSNR has the lowest SROCC value 

(0.6586), consistent with its recognised limitation as a measure of pixel difference, whereas SSIM 

(0.7356) is only marginally improved because it captures structural information rather than pixel 

difference. Notably, SSSI represents an improvement of more than 4 percentage points, illustrating the 

benefit of utilising a dual-pyramid structural analysis combined with green-channel chromatic 

sensitivity to yield a more perceptually consistent assessment quality than a grayscale-only model. 

     In terms of the PLCC, SSIM has a higher PLCC (0.6254) than SSSI’s situation-specific 0.5923, 

implying a slightly better linearity with subjective scores. However, IQA considers a more meaningful 

dimensionality of an SROCC, as perceptual ranking is more important than linearity. Nevertheless, SSSI 

has a clearer SROCC relationship, maintaining visual constancy and again emphasising its advantage in 

modelling human visual judgment, as illustrated qualitatively in Table 1. Thus, the quantitative 

assessment indicates that, by abandoning the strictly structural, grayscale-only perceptual measure in 

favor of a more perceptually inspired, careful 'structure-based' measure, SSSI yields significantly better, 

more predictive image quality across large distortions. 

3.5. Advantages 

     The Synergistic Structural Similarity Index (SSSI) that we proposed offers several important 

advantages over standard image quality metrics, as supported by experimental results [25]. The SSSI is 

more strongly correlated with subjective human ratings (SROCC = 0.7793) than standard metrics such 

as PSNR and SSIM, and therefore is more perceptually accurate. The SSSI can also use the green 

channel and thereby detect many colour-related degradations that grayscale-based metrics cannot. The 

dual-pyramid scheme used by the SSSI enables simultaneous evaluation of both stable and high-

frequency features, providing a more comprehensive measure of structural fidelity. Finally, utilising the 

synergy between the Y–G (yellow-green) model and human visual sensitivity to green, and the Bayer 

sensor's strong green capture frequency, ensures that the metric has both perceptual appropriateness and 

physical justification. 

3.6. Limitations and future work 

     While the proposed Synergistic Structural Similarity Index (SSSI) aligns closely with human 

perception, it has notable limitations. First, the computational cost is higher than that of previous 

reference-based metrics, such as SSIM. This is due to the dual-pyramid structure, which operates on two 

channels (luminance and green), making it less suitable for low-resource settings or real-time 

processing. Second, the proposed 50/50 weighting of the Y-G channel, determined from training on the 

KADID-10k dataset, may not generalise to other databases with different forms of distortion; thus, 
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further evaluation will be needed. Finally, as a Full-Reference (FR) model, the SSSI relies on an 

uncorrupted reference scene, thereby limiting its applicability to No-reference (NR) or Reduced-

reference (RR) tasks. These limitations, although substantial, raise important questions for future 

research. Reducing computational debt while maintaining fidelity is an important area of future work, 

as is extending the Y-G synergy to NR-IQA using the proposed deep–learning–based features from 

single scenes. Additionally, as a tangential future direction, the concepts employed in SSSI may 

naturally extend to video-quality assessments of motion artefacts manifested in combined spatial and 

chromatic forms. 

 

Conclusion 

This paper introduces the Synergistic Structural Similarity Index (SSSI), a new Full-Reference Image 

Quality Assessment metric designed to more accurately model human visual perception. Moving beyond 

the traditional assessment of image quality, which is primarily grey-level (intensity)- based, we have 

demonstrated that a simple pixel-to-pixel or single-channel structural approach is inadequate for 

understanding the full complexity of image degradation. The significant contribution is that the optimal 

assessment of image quality can be achieved through a synergistic, equal partnership between the 

luminance (Y) and green (G) channels. The properties of the human visual system and digital imaging 

sensors were used to justify the pairing process. The proposed SSSI metric incorporates this Y-G 

partnership into a new dual-pyramid framework. It derives objective measures that indicate significantly 

stronger moderation between subjective observers' ratings and human scores than the benchmark metrics 

PSNR and SSIM (SROCC = 0.7793), using empirical data from the comprehensive KADID-10k dataset. 

This work not only develops a novel, superior, and robust metric for evaluating image quality in practice 

but also deepens understanding of the significant yet often overlooked interaction between luminance 

and purposefully directed chromatic information in image-quality assessment. 
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