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Abstract. The recent resurgence of Monkeypox has highlighted the urgent need for fast and 

accurate diagnostic tools. In this paper, we propose a new framework of hybrid deep learning to 

combine both DenseNet121 and MobileNetV2 to obtain both rich and supplementary attributes 

of the skin lesion images. By pooling the outputs of these two models in terms of features, we 

get the lightweight representation of the images as well as rich representations of the images. To 

improve the feature set, we use Genetic Algorithm (GA) which is useful in reducing the 

dimensions and eliminating redundancy. Optimized features are then categorized with the help 

of the Random Forest model, which has been selected due to its good performance and capacity 

to work with high-dimensional data. Using two publicly accessible datasets, MSID and MSLD, 

we tested our approach and obtained remarkable classification accuracies of 92.71% and 97.77%, 

respectively. These findings highlight the success of combining ensemble learning, evolutionary 

optimization, and deep learning to achieve accuracy and proper diagnosis of monkeypox through 

medical images. 
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1.   Introduction  

Monkeypox is a re-emerging zoonotic disease that presents with dermatological symptoms, most 

notably skin lesions that can closely resemble those of other skin diseases like chickenpox and measles. 

Fast and proper diagnosis is a major tool in the control of outbreaks and the provision of effective timely 

treatment particularly in resource-constrained environments where laboratory tests like PCR might be 

inaccessible. Consequently, there is an increasing research interest in the development of the automated 

and image-based diagnostic tools. The use of deep learning (DL) specifically convolutional neural 

networks (CNNs) has shown great promise in the analysis of medical images [[1]-[2]]. Deep neural 

networks such as DenseNet121 and MobileNetV2 are commonly used due to their good performance 
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feature extraction with a compromise in depth and computation efficiency. Nonetheless, using one CNN 

may limit the variety of characteristics that could be learnt using complex medical images. It is possible 

to combine several CNN designs to enhance the feature richness and better diagnostics. One of the 

primary challenges of such systems is the large dimensionality of deep features that often have redundant 

or unnecessary information. This can have an adverse effect on model generalization. To overcome this, 

one can use Genetic Algorithms (GAs) that imitate natural selection to be able to find the most 

informative subset of features, as it is very effective at searching for very large and complex feature 

spaces. Specifically, ensemble methods like Random Forests are well-posed to process various and high-

dimensional data to classify it and offer trustworthy and understandable predictions. This paper 

introduces a combined model that consists of feature extraction with two CNN models (DenseNet121 

and MobileNetV2), feature selection with a Genetic Algorithm, and the final classification with a 

Random Forest. This model is applicable to clinical practice and remote healthcare because it aims at 

the high accuracy of a diagnosis and lower computational load. Two publicly available datasets of skin 

lesion images are used to determine the effectiveness of the proposed framework. Stricter validation is 

maintained with greater caution such as relevant data partitioning and assessment methods to avoid 

overfitting. Key contributions of this work include: 

• A novel hybrid pipeline combining dual CNN architectures, evolutionary feature selection, and 

ensemble classification. 

• Effective fusion of deep features from DenseNet121 and MobileNetV2. 

• Dimensionality reduction based on GA to improve classification performance. 

• Integration with a Random Forest classifier to increase robustness and interpretability. 

• Extensive empirical validation showing notable advancements over baseline models. 
 

Previous studies have explored various deep learning architectures for Monkeypox detection. The 

study by [[3]] introduced DeepGenMon, integrating attention-based CNNs with Genetic Algorithms to 

optimize hyperparameters, resulting in improved classification performance. [[4]] utilized MobileNetV2 

for feature extraction, achieving high accuracy in distinguishing Monkeypox from other skin conditions. 

The advancement of computer-aided diagnostic (CAD) systems has significantly transformed 

dermatological disease detection, especially with the integration of artificial intelligence (AI). In recent 

years, convolutional neural networks (CNNs) and transfer learning models have proven effective in 

classifying complex dermoscopic images with high accuracy [[5]][[27]]. Transfer learning frameworks 

such as VGG16, VGG19, ResNet-50, DenseNet121, InceptionV3, and MobileNetV2 have been 

leveraged to compensate for the limited availability of annotated medical image datasets, demonstrating 

notable performance in multi-class skin lesion classification tasks [[6]].  Recent research has 

increasingly explored hybrid approaches that combine the strengths of both deep learning (DL) and 

machine learning (ML) for detecting monkeypox from skin lesion images. Eliwa, et.al uses GWO 

optimization method to optimize CNNs, which are well-known for their efficacy in image classification 

tasks. Accuracy, precision, recall, F1-score, and AUC are just a few of the performance measures that 

significantly increase when the CNN hyperparameters are adjusted with the aid of the 

GWO.[[7]].Similarly, [[7]] utilized a hybrid deep learning model for the classification of skin diseases—

including monkeypox—within the Internet of Medical Things (IoMT) context, effectively merging 

CNN-based feature extraction with traditional ML classifiers like SVM and Random Forest to optimize 

real-time deployment performance. [[9]] combined Vision Transformers with classic augmentation 

techniques and transfer learning models such as InceptionV3 to improve robustness against small sample 

sizes in monkeypox classification.  
Another notable effort by [[10]] introduced a federated learning-enhanced model using pre-trained 

CNNs to detect monkeypox lesions efficiently while preserving patient data privacy across decentralized 

nodes. A broader synthesis by [[11]] also reviewed various hybrid frameworks that combine DL models 

like CNNs and Transformers with ML classifiers to improve generalizability and reduce overfitting in 

monkeypox lesion identification. [[12]] emphasized the value of hybrid texture and statistical feature 



 

 

02601018-03 

extraction combined with DL classifiers, resulting in enhanced multiclass discrimination between 

monkeypox, chickenpox, and other diseases. 

Recent advancements in artificial intelligence have spurred the development of hybrid systems 

combining deep learning (DL), machine learning (ML), and genetic algorithms (GA) for the early 

detection of monkeypox through skin lesion images. One of the most notable efforts is [[13]][[24]] that 

developed a diagnostic pipeline using binary genetic algorithms (GA) and binary firefly optimization to 

refine feature selection in DL models trained on monkeypox lesions. [[14]] extended this by employing 

ANN+GA ensembles in an IoT-integrated DL system, emphasizing its potential for mobile-based 

screening tools. Furthermore, [[15]] applied a GA-based feature selection method to optimize DL 

models and demonstrated improved performance in multiclass skin lesion classification, including 

monkeypox. [[16]] combined high-performing CNNs with a GA-driven feature reduction strategy to 

develop a hybrid DL model for monkeypox, validating it across a noisy, unbalanced dataset with 

superior precision and recall metrics. These hybrid systems illustrate a growing consensus: combining 

DL's representation power with ML's interpretability and GA's optimization can yield robust, scalable 

models suitable for both clinical and remote diagnostic settings. 

However, limited research has combined multiple deep learning models with machine learning 

classifiers and optimization techniques in a unified framework for Monkeypox detection. This study 

aims to fill this gap by integrating MobileNetV2, DenseNet121, Random Forest, and Genetic Algorithm 

optimization 

2.   Methods 

The suggested hybrid diagnostic system, which combines a Random Forest (RF) classifier for 

monkeypox diagnosis, a Genetic Algorithm (GA) for feature selection, and deep learning for feature 

extraction, is described in this section. Dataset preparation, preprocessing, dual CNN-based feature 

extraction, GA-based feature selection, Random Forest classification, and performance evaluation are 

the six main parts of the procedure. This hybrid approach for detecting Monkeypox is visualized in 

Error! Reference source not found.. 

 

 
Figure 1. Hybrid framework used in the study 
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2.1.   Dataset 

The study utilizes a publicly available Monkeypox skin lesion dataset comprising images labelled as 

Monkeypox and normal skin conditions [[23]]. The dataset includes diverse skin tones and lesion 

presentations to ensure model generalizability. The datasets are already pre-processed including image 

normalization, resizing, and augmentation to enhance model generalization. 

Monkeypox Skin Image Dataset (MSID) – 477 images categorized into Monkeypox, chickenpox, and 

measles classes which are collectively placed into Normal class. 

Monkeypox Skin Lesion Detection (MSLD) – 2,607 images classified as Monkeypox or normal skin 

conditions. Dataset distribution for each dataset is shown in Table 1. All the datasets being used perform 

binary classification. 

Table 1. Dataset distribution 
Dataset Label Train  Validation  Test Total 

MSID 

Monkeypox 223 56 0 279 

Normal (Chickenpox + 

Measles) 
158 40 0 198 

Total 381 96 0 477 

MSLD 

Monkeypox 980 20 168 1168 

Normal 1162 25 252 1439 

Total 2142 45 420 2607 

 

Some sample images of Monkeypox disease from both the datasets are shown in Error! Reference 

source not found.. 

 

 
 

Figure 2. Sample images of Monkeypox disease from the two datasets used in this study. 

2.2.   Feature Extraction using Deep Learning Models(MobileNetV2+DenseNet

This study uses a dual-model strategy employing DenseNet121 and MobileNetV2 for feature extraction 

to take advantage of multiple convolutional neural networks (CNNs). These models were selected due 

to their complementary characteristics. While MobileNetV2 is designed for efficiency and lightweight 

deployment, especially for edge and mobile applications, DenseNet121 enables dense connectivity with 

rich feature hierarchies. 

Model Selection and Fine-tuning: 

Both models were pretrained on ImageNet and subsequently fine-tuned on the Monkeypox skin lesion 

datasets. The classification layers were removed, and Global Average Pooling (GAP) was applied to 

extract fixed-length feature vectors from each architecture. [[17]] 

Feature Fusion Strategy: 

A complete and high-dimensional feature representation was created by concatenating features taken 

from both models. Different levels of abstraction are captured by this fusion strategy: MobileNetV2 
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adds lightweight and spatially efficient features, while DenseNet121 contributes rich semantic 

representations. 

Let each input image be denoted as x∈R224×224×3. DenseNet121 and MobileNetV2 extract hierarchical 

features from images. Mathematically, these can be represented as (1) and (2) 
 

fD(x):R224×224×3→Rd1    (1) 

     fM(x):R224×224×3→ Rd2    (2) 

 

where d1 and d2 are the dimensions of the feature vectors extracted by DenseNet121 and MobileNetV2, 

respectively. The combined feature vector for an image x is represented as (3) 

 

F(x)=[fD(x);fM(x)]∈Rd, where d= d1+ d2            (3) 

2.3.   Feature Selection using Genetic Algorithm 

CNN-generated high-dimensional feature vectors frequently have non-discriminative, redundant, or 

irrelevant components that could negatively impact classification performance [18]. In order to address 

this problem, feature selection is carried out using a Genetic Algorithm (GA), which optimizes the subset 

of features for downstream classification. 

Genetic Algorithm Overview: 

Natural selection and genetic inheritance serve as the foundation for the GA, an evolutionary 

optimization method. It finds the ideal subset of attributes that maximizes classification accuracy by 

evolving a population of possible solutions (chromosomes) over several generations. 

Each chromosome is encoded as a binary vector z∈{0,1}d, where: 

• zi=1 indicates the inclusion of the ith feature. 

• zi=0 indicates exclusion of the ith feature. 

The selected features for an image x based on a chromosome z are denoted as Fz(x)⊆F(x) [[19], [25]]. 

Fitness Evaluation: 

The fitness of each chromosome is evaluated using the classification accuracy of a Random Forest (RF) 

classifier trained on the selected features. Five-fold cross-validation is used for reliable fitness estimation 

[[20]]. The fitness function is defined as: 

Fitness(z)=Accuracy (Classifier trained on Fz(x))   (4) 

 

The GA iteratively evolves the population to maximize the fitness function, resulting in an optimal 

feature subset Fopt(x).Our initial tests showed diminishing benefits beyond moderate population sizes 

when combined with Optuna tuning and cross-validation, even though standard GAs employ enormous 

populations. A sensitivity study was performed to evaluate population sizes ∈ {10, 20, 40, 60} and 

generations ∈ {5, 10, 20}. Each configuration was tested on the MSID dataset using 5-fold cross-

validation. Therefore, population = 20 and generations = 10 were selected as a balanced trade-off 

between performance and computational cost [[28]]. This decision was reinforced by Optuna’s trial-

based optimization, which confirmed near-plateau fitness improvements beyond these values. 

Hyperparameters tuned for GA+Random Forest is shown in Table 2. When compared to manually 

specified parameters, the optimized configuration consistently produced lower overfitting and higher 

validation accuracy. Both the evolutionary and ensemble learning components were optimized in a 

repeatable, data-driven manner due to this adaptive search technique. 

 

Table 2.  Hyperparameter tuning of GA+Random Forest parameters 

GA parameters Random Forest parameters 
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Population size ∈ {10, 20, 30, 40} 

Number of trees (n_estimators) ∈ {100, 200, 300, 400, 

500} 

Crossover probability ∈ [0.3, 0.8] Maximum depth (max_depth) ∈ {None, 10 – 50} 

Mutation probability ∈ [0.05, 0.3] Minimum samples per leaf (min_samples_leaf) ∈ {1, 2, 4} 

Number of generations ∈ {5 – 20} Criterion ∈ {“gini”, “entropy”} 

Feature subset ratio ∈ [0.2, 0.8] Bootstrap ∈ {True, False} 

2.4.   Classification with Machine Learning Classifier 

A Random Forest (RF) classifier was used in this study rather than an end-to-end fine-tuned CNN 

classifierfor several reasons beyond interpretability. First, heterogeneous, and high-dimensional feature 

spaces, as those created by combining feature maps from several CNN architectures, are a good fit for 

RFs. Unlike end-to-end fine-tuning, which requires large labeled datasets to optimize millions of 

parameters, RFs can effectively learn decision boundaries from limited data without overfitting. Second, 

RFs provide inherent resistance to noisy or redundant features, which is crucial even after Genetic 

Algorithm (GA)based selection. By combining multiple decision trees, their ensemble structure 

automatically reduces variation and stabilizes predictions across datasets and folds. Third, modular 

experimentation is made possible by separating deep feature extraction from classification using a 

separate RF stage. This adaptability promotes repeatability and useful deployment on constrained 

hardware by enabling the same optimized features to be assessed with different traditional classifiers 

(e.g., SVM, XGBoost) without retraining the deep network.Lastly, RFs are more suitable for integration 

into portable or edge-based diagnostic systems as they require less processing power and training time 

than fine-tuned CNNs, particularly in low-resource healthcare settings where monkeypox detection is 

crucial.Therefore, following feature selection, the optimal subset of features Fopt(x) is used to train a 

Random Forest (RF) classifier for the final prediction task. Random Forest is an ensemble learning 

method composed of multiple decision trees, each trained on a bootstrapped subset of the data with 

random feature sampling at each node split [[21]]. 

Prediction Mechanism: 

Let the ensemble consist of M decision trees{T1,T2,…,TM}. Each tree provides an individual class 

prediction ym for a given input sample x. The final class label ŷ is determined by majority voting across 

all trees as in (5):  

ŷ=mode{y1,y2,…,yM}     (5) 

      

The following algorithm describes the entire diagnostic pipeline for classifying monkeypox utilizing 

Random Forest classification, Genetic Algorithm-based feature selection, and dual deep learning 

models. 

Algorithm: Hybrid framework 

Input: Skin image dataset D=(xi,yi) where xi ∈ R 224×224×3, Labels yi ∈{0,1} (Monkeypox or Normal) 

Output: Predicted label ŷ for each test image. 

Begin 

Step 1: Data Preprocessing 

1. Resize all images to 224×224 

2. Normalize pixel values to [0,1] or per model's requirements. 

3. Applied 5-fold cross validation on both datasets. 

Step 2: Deep Feature Extraction 

3. Load pretrained DenseNet121 and MobileNetV2 (excluding classification head). 

4. For each image xi∈ D 

o Extract feature vector fd←DenseNet121(xi) 

o Extract feature vector fm←MobileNetV2(xi) 

o Concatenate: Fi=[ fd ;fm] 
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Step 3: Genetic Algorithm-Based Feature Selection 

5. Initialize population of binary chromosomes representing selected features from Fi. 

6. For each generation: 

o For each chromosome: 

▪ Select subset of features Fi ′ based on the chromosome. 

▪ Train a Random Forest on F ′ using cross-validation. 

▪ Compute accuracy as fitness score. 

o Apply genetic operators: selection, crossover, mutation. 

7. Select best-performing chromosome → final selected feature indices. 

Step 4: Classification using Random Forest 

8. Train Random Forest classifier on GA-selected features. 

9. Predict labels ŷ on test set using selected features. 

Step 5: Evaluation 

10. Compute metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC. 

Step 6: Visualization  

11. Apply PCA on selected features for 2D visualization. 

End 

3.   Results and Discussion 

This section presents the performance evaluation of the proposed hybrid framework integrating 

DenseNet121 and MobileNetV2 for deep feature extraction, Genetic Algorithm (GA) for feature 

selection, and Random Forest (RF) for classification. The framework was tested on two publicly 

available datasets:  MSID and MSLD and evaluated using accuracy, precision, recall, F1-score, ROC-

AUC, and visual diagnostics. All experiments were implemented in Python using the Scikit-learn and 

Keras libraries. 

3.1.   Performance Metrics 

Table 3and  

 

Table 4summarize the classification results on the MSID and MSLD datasets, respectively. Each 

configuration incrementally incorporates the components of the proposed framework, demonstrating the 

additive value of ensemble learning and GA-based feature selection. 

For the MSID and MSLD the base dual-CNN model (DenseNet121 + MobileNetV2) achieved 83.33% 

and 88.89% accuracy respectively. Incorporating a Random Forest classifier improved accuracy to 

89.58% for MSID and 97.77% for MSLD. Applying Genetic Algorithm-based feature selection further 

boosted accuracy to 92.71% for MSID. However, 97.77% accuracy for MSLD remains same due to 

small dataset. 

 

Table 3. Evaluation metrics values on MSID dataset. 

 

Model Accuracy Precision Recall 
F1-

Score 

DenseNet121+MobileNetV2 83.33% 0.83 0.75 0.78 

DenseNet121+MobileNetV2+RandomForest 89.58% 0.91 0.91 0.91 

DenseNet121+MobileNetV2+RandomForest+GA 92.71% 0.90 0.92 0.91 

 

 

Table 4. Evaluation metrics values on MSLD dataset. 
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Model Accuracy Precision Recall 
F1-

Score 

DenseNet121+MobileNetV2 88.89% 1.00 0.80 0.889 

DenseNet121+MobileNetV2+RandomForest 97.77% 0.95 1.00 0.98 

DenseNet121+MobileNetV2+RandomForest+GA 97.77% 1 0.96 0.98 

 

The classification accuracy bar graph representation accuracies across different model variants are 

shown in Error! Reference source not found.. 

 

 
Figure 3. Bar graph representation of accuracy improvements 

3.2.   Feature Importance Analysis 

To increase the interpretability of the proposed hybrid framework, feature importance plots have been 

obtained with the help of the trained Random Forest classifier. These plots measure the contribution of 

each of the selected features to the final decision in classification.Figure  describes the feature 

importance scores of the data of MSID. The importance index 27 was the highest (≈ 0.032), which states 

that it was the most effective in separating Monkeypox and normal skin conditions. Other noteworthy 

features were the ones in index 493, 18, and 110 that also had high relevance scores. Likewise, Figure  

also shows feature importance on the MSLD dataset: Feature index 128 had the greatest importance (= 

0.032), meaning that it was the most significant in the differentiation between Monkeypox and normal 

skin conditions [[26]]. The rest of the important auto features were 10, 240, and 239 which also had high 

relevancy scores.  

The overall trend showed a gradual decline in importance from left to right, indicating a strong 

rank-order of discriminative power among the selected features. Feature distribution across importance 

values showed a compact, high-contribution core set, suggesting the optimized features are both 

informative and compact. Domain experts can verify whether the model's reasoning is consistent with 

recognized dermatological markers (such as lesion texture or edge sharpness) by selecting the most 

significant aspects. The analysis supports the dimensionality reduction attained by GA by confirming 

that a small selection of features contributes most to predictive accuracy.  
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Figure 4. Bar plot of feature importances for the MSID dataset after GA optimization. 

 
Figure 5. Bar plot of feature importance for the MSLD dataset after GA optimization. 

3.3.   GA Optimization Dynamics 

We monitored the evolution of classification accuracy over multiple generations to assess the 

effectiveness of the Genetic Algorithm (GA) in choosing ideal feature subsets. The effectiveness of 

GA's convergence toward a high-performing solution is confirmed by this analysis.Figure  and Figure  

depict the progression of fitness values, defined as classification accuracy, over 10 generations for the 

MSID and MSLD datasets, respectively.The algorithm's ability to enhance classification performance 

over time was confirmed by a steady rising trend in both average and maximum fitness values. As more 

discriminative feature subsets emerged in subsequent generations, the maximum accuracy improved 

progressively. The population may have evolved toward a globally optimal or nearly optimal solution if 

the difference between minimum and maximum accuracies is getting smaller. 
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Figure 6. GA accuracy evolution across generations on the MSID dataset. 

 

Figure 7. GA accuracy evolution across generations on the MSLD dataset. 

3.4.   Visual Feature Separation 

To qualitatively assess the discriminative capacity of the features selected by the Genetic Algorithm, we 

employed widely used dimensionality reduction technique i.e. Principal Component Analysis (PCA). 

This visualization helps illustrate whether the selected feature space facilitates clear separation between 

Monkeypox and Normal classes.Figure  presents 2D PCA projections of the selected features from both 

the MSID and MSLD datasets.Blue points represent the Normal class, while orange points correspond 

to Monkeypox cases.PCA reveals a reasonable degree of class separation, suggesting that the most 

informative directions in the feature space (principal components) capture sufficient discriminatory 

variance.Although PCA preserves global variance structure, some class overlap is visible, this is 

expected given its linear transformation nature. 



 

 

02601018-011 

 

 
Figure 8. PCA visualization of GA-selected features:(a) MSID dataset (b) MSLD dataset 

3.5.   Confusion Matrix 

Confusion matrices were created for the MSID and MSLD datasets to assess the suggested hybrid 

framework's classification performance in more detail. These matrices provide light on the different 

kinds of classification errors, particularly false positives, and false negatives, which are crucial for 

making clinical decisions.Confusion metrices of MSID Dataset and MSLD Dataset are shown in Figure 

9 (a) and Figure 9 (b) respectively. 

 

 
Figure 9. Confusion Matrices (a) MSID (b) MSLD 

3.6.   Comparative analysis 

These findings support the benefits of combining evolutionary optimization, multi-CNN feature fusion, 

and ensemble learning, particularly in low-resource medical contexts where explainability, speed, and 

generalization are crucial.  
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Table 5. Comparative Analysis of previous studies with our work. 

 

Study 
Feature 

Extraction 
Feature Selection Classifier Accuracy Key Limitation 

Almars 

(2025) [2] 

Attention-based 

CNN 

GA 

(hyperparameters) 
DL head ~90% No multi-model fusion 

Özaltın et 

al. (2023) 

[3] 

MobileNetV2 None Softmax 87–90% 
No optimization, limited 

robustness 

Shateri et 

al. (2025) 

[6] 

Xception + 

NGBoost 
AVA Optimization NGBoost ~94% 

No GA-based feature 

reduction 

Alarfaj et 

al. (2024) 

[8] 

Vision 

Transformer 
None Softmax ~92% 

Computational cost, no 

ensemble learning 

Ours 
DenseNet121 

+MobileNet 
GA 

Random 

Forest 

92.71–

97.77% 

The model has not yet been 

tested in federated 

environments. 

3.7.   Comparative Evaluation of Metaheuristic Algorithms 
To evaluate the effects of various optimization methods, 4 metaheuristic algorithms Genetic Algorithm 

(GA), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), and Artificial Bee 

Colony (ABC) were combined in DenseNet121 + MobileNetV2 feature-fusion architecture to classify 

the Monkeypox disease and the findings are presented in Table 6. The overall performance of GA was 

the highest and led to the highest accuracy and smallest reduction of features. GA is an excellent 

recombiner of useful substructures, i.e. cluster of features. This has a direct positive effect on accuracy 

in classification. 

 

Table 6. Comparison of GA, GWO, WOA, and ABC for Monkeypox detection  

Metaheuristics algorithms Metrics MSLD MSID 

WOA 

Precision 91.00 94.00 

Recall 84.00 85.00 

F1-Score 88.00 89.00 

Test Accuracy (%) 86.67 90.62 

ABC 

Precision 95.83 87.8 

Recall 92.00 90.00 

F1-Score 93.88 88.89 

Test Accuracy (%) 93.33 90.62 

GWO 

Precision 95.56 88.37 

Recall 95.56 95.00 

F1-Score 95.56 91.57 

Test Accuracy (%) 95.56 92.71 

GA 

Precision 100.00 90.24 

Recall 96.00 92.50 

F1-Score 98.00 91.36 
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Test Accuracy (%) 97.77 92.71 

 

Figure 10 represents the comparison of various metaheuristic algorithms with GA used in our 

framework. The comparative analysis demonstrates that the Genetic Algorithm (GA) achieved the best 

overall performance within the proposed DenseNet121 + MobileNetV2 hybrid feature-fusion 

framework. These findings indicate that GA’s crossover–mutation dynamics are highly effective for 

selecting discriminative deep features, leading to robust generalization and superior classification 

performance. 

 

 
 Figure 10. Accuracies bar chart comparison of our framework 

3.8.   Interpretation and Limitations 

Interpretation of Results: 

These high classification accuracies of the proposed framework can be explained by the synergistic 

combination of the framework elements: Dual CNN Feature Fusion: DenseNet121 and MobileNetV2 

are used together to provide more and different feature representation, as both fine-grained and high-

level features are captured. This increases the discriminative ability of input space. Genetic Algorithm 

of Feature Selection: GA is a very useful technique to minimize the dimension of features that only 

contain valuable information. This does not only enhance the performance of the classification but also 

prevents overfitting and less computation. Random Forest Classifier: RF has great generalization power, 

noise resistant behavior, and can perform a built-in analysis of feature importance. These attributes 

render it suitable to the high-dimensional and moderately imbalanced medical image datasets. Cross-

Dataset Consistency: The framework recorded good scores on MSID and MSLD, which highlights its 

generalizability and strength to different datasets structures and class distribution. 

 

Limitations: 

Although these positive outcomes have been achieved, one should admit several limitations: • Dataset 

Size: MSID and MSLD also have rather small and slightly uneven test sets. Although augmentation and 

cross-validation are useful, to deploy in the real world, validation on more large and varied datasets is 

needed. Focus of Binary Classification: This paper deals with a binary classification problem 

(Monkeypox vs. Normal). Nonetheless, practical skin lesion classification can be associated with several 

86.67
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95.56

97.77

90.62 90.62

92.71 92.71

WOA ABC GWO GA

Accuracy(%)

MSLD MSID
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disease categories (e.g., chickenpox, measles, eczema), and it must be extended to multi-class models 

in the future. 

 

4.   Conclusion 

This paper introduces a new model of hybrid diagnosis of automated Monkeypox detection by skin 

lesion images, combining deep learning, evolutionary optimization, and ensemble classification 

advantages. The method is a combination of the DenseNet121 and MobileNetV2-based dual-feature 

extraction, Genetic Algorithm-based feature selection, and final prediction with the help of a random 

forest classifier. Genetic Algorithm was much better since it reduced redundant features, but the strength 

of the Random Forest was that it was robust, easy to interpret, and highly generalized to the data. 

Although the results are promising, there are still some limitations, including the size of the dataset, 

binary classification, and the cost of computation. The future work will focus on exploring federated 

learning or privacy-friendly modifications of secure clinical applications. Altogether, the contributions 

of this work provide a strong and practical diagnostic model that connects the world of deep learning 

with the classical machine learning and provides a scalable solution to AI-aided Monkeypox detection 

in various health settings. 
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