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Abstract. The recent resurgence of Monkeypox has highlighted the urgent need for fast and
accurate diagnostic tools. In this paper, we propose a new framework of hybrid deep learning to
combine both DenseNet121 and MobileNetV2 to obtain both rich and supplementary attributes
of the skin lesion images. By pooling the outputs of these two models in terms of features, we
get the lightweight representation of the images as well as rich representations of the images. To
improve the feature set, we use Genetic Algorithm (GA) which is useful in reducing the
dimensions and eliminating redundancy. Optimized features are then categorized with the help
of the Random Forest model, which has been selected due to its good performance and capacity
to work with high-dimensional data. Using two publicly accessible datasets, MSID and MSLD,
we tested our approach and obtained remarkable classification accuracies of 92.71% and 97.77%,
respectively. These findings highlight the success of combining ensemble learning, evolutionary
optimization, and deep learning to achieve accuracy and proper diagnosis of monkeypox through
medical images.
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Introduction

Monkeypox is a re-emerging zoonotic disease that presents with dermatological symptoms, most
notably skin lesions that can closely resemble those of other skin diseases like chickenpox and measles.
Fast and proper diagnosis is a major tool in the control of outbreaks and the provision of effective timely
treatment particularly in resource-constrained environments where laboratory tests like PCR might be
inaccessible. Consequently, there is an increasing research interest in the development of the automated
and image-based diagnostic tools. The use of deep learning (DL) specifically convolutional neural
networks (CNNs) has shown great promise in the analysis of medical images [[1]-[2]]. Deep neural
networks such as DenseNet121 and MobileNetV2 are commonly used due to their good performance


https://doi.org/10.26877/asset.v8i1.2786
mailto:alok.chauhan@galgotiasuniversity.edu.in

feature extraction with a compromise in depth and computation efficiency. Nonetheless, using one CNN
may limit the variety of characteristics that could be learnt using complex medical images. It is possible
to combine several CNN designs to enhance the feature richness and better diagnostics. One of the
primary challenges of such systems is the large dimensionality of deep features that often have redundant
or unnecessary information. This can have an adverse effect on model generalization. To overcome this,
one can use Genetic Algorithms (GAs) that imitate natural selection to be able to find the most
informative subset of features, as it is very effective at searching for very large and complex feature
spaces. Specifically, ensemble methods like Random Forests are well-posed to process various and high-
dimensional data to classify it and offer trustworthy and understandable predictions. This paper
introduces a combined model that consists of feature extraction with two CNN models (DenseNet121
and MobileNetV2), feature selection with a Genetic Algorithm, and the final classification with a
Random Forest. This model is applicable to clinical practice and remote healthcare because it aims at
the high accuracy of a diagnosis and lower computational load. Two publicly available datasets of skin
lesion images are used to determine the effectiveness of the proposed framework. Stricter validation is
maintained with greater caution such as relevant data partitioning and assessment methods to avoid
overfitting. Key contributions of this work include:

e Anovel hybrid pipeline combining dual CNN architectures, evolutionary feature selection, and
ensemble classification.

Effective fusion of deep features from DenseNet121 and MobileNetV2.

Dimensionality reduction based on GA to improve classification performance.

Integration with a Random Forest classifier to increase robustness and interpretability.
Extensive empirical validation showing notable advancements over baseline models.

Previous studies have explored various deep learning architectures for Monkeypox detection. The
study by [[3]] introduced DeepGenMon, integrating attention-based CNNs with Genetic Algorithms to
optimize hyperparameters, resulting in improved classification performance. [[4]] utilized MobileNet\V2
for feature extraction, achieving high accuracy in distinguishing Monkeypox from other skin conditions.
The advancement of computer-aided diagnostic (CAD) systems has significantly transformed
dermatological disease detection, especially with the integration of artificial intelligence (Al). In recent
years, convolutional neural networks (CNNSs) and transfer learning models have proven effective in
classifying complex dermoscopic images with high accuracy [[5]][[27]]. Transfer learning frameworks
such as VGG16, VGG19, ResNet-50, DenseNetl121, InceptionV3, and MobileNetV2 have been
leveraged to compensate for the limited availability of annotated medical image datasets, demonstrating
notable performance in multi-class skin lesion classification tasks [[6]]. Recent research has
increasingly explored hybrid approaches that combine the strengths of both deep learning (DL) and
machine learning (ML) for detecting monkeypox from skin lesion images. Eliwa, et.al uses GWO
optimization method to optimize CNNs, which are well-known for their efficacy in image classification
tasks. Accuracy, precision, recall, F1-score, and AUC are just a few of the performance measures that
significantly increase when the CNN hyperparameters are adjusted with the aid of the
GWO.[[7]].Similarly, [[7]] utilized a hybrid deep learning model for the classification of skin diseases—
including monkeypox—within the Internet of Medical Things (IoMT) context, effectively merging
CNN-based feature extraction with traditional ML classifiers like SVM and Random Forest to optimize
real-time deployment performance. [[9]] combined Vision Transformers with classic augmentation
techniques and transfer learning models such as InceptionV3 to improve robustness against small sample
sizes in monkeypox classification.

Another notable effort by [[10]] introduced a federated learning-enhanced model using pre-trained
CNNs to detect monkeypox lesions efficiently while preserving patient data privacy across decentralized
nodes. A broader synthesis by [[11]] also reviewed various hybrid frameworks that combine DL models
like CNNs and Transformers with ML classifiers to improve generalizability and reduce overfitting in
monkeypox lesion identification. [[12]] emphasized the value of hybrid texture and statistical feature
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extraction combined with DL classifiers, resulting in enhanced multiclass discrimination between
monkeypox, chickenpox, and other diseases.

Recent advancements in artificial intelligence have spurred the development of hybrid systems
combining deep learning (DL), machine learning (ML), and genetic algorithms (GA) for the early
detection of monkeypox through skin lesion images. One of the most notable efforts is [[13]][[24]] that
developed a diagnostic pipeline using binary genetic algorithms (GA) and binary firefly optimization to
refine feature selection in DL models trained on monkeypox lesions. [[14]] extended this by employing
ANN+GA ensembles in an loT-integrated DL system, emphasizing its potential for mobile-based
screening tools. Furthermore, [[15]] applied a GA-based feature selection method to optimize DL
models and demonstrated improved performance in multiclass skin lesion classification, including
monkeypox. [[16]] combined high-performing CNNs with a GA-driven feature reduction strategy to
develop a hybrid DL model for monkeypox, validating it across a noisy, unbalanced dataset with
superior precision and recall metrics. These hybrid systems illustrate a growing consensus: combining
DL's representation power with ML's interpretability and GA's optimization can yield robust, scalable
models suitable for both clinical and remote diagnostic settings.

However, limited research has combined multiple deep learning models with machine learning
classifiers and optimization techniques in a unified framework for Monkeypox detection. This study
aims to fill this gap by integrating MobileNetV2, DenseNet121, Random Forest, and Genetic Algorithm
optimization

2. Methods

The suggested hybrid diagnostic system, which combines a Random Forest (RF) classifier for
monkeypox diagnosis, a Genetic Algorithm (GA) for feature selection, and deep learning for feature
extraction, is described in this section. Dataset preparation, preprocessing, dual CNN-based feature
extraction, GA-based feature selection, Random Forest classification, and performance evaluation are
the six main parts of the procedure. This hybrid approach for detecting Monkeypox is visualized in
Error! Reference source not found..

Hybrid Deep Learning Framework for Monkeypox Detection

Data
Acquisition &
Preprocessing

Collect and prepare skin
lesion images

Model
Evaluation

Figure 1. Hybrid framework used in the study

02601018-03



2.1. Dataset
The study utilizes a publicly available Monkeypox skin lesion dataset comprising images labelled as
Monkeypox and normal skin conditions [[23]]. The dataset includes diverse skin tones and lesion
presentations to ensure model generalizability. The datasets are already pre-processed including image
normalization, resizing, and augmentation to enhance model generalization.
Monkeypox Skin Image Dataset (MSID) — 477 images categorized into Monkeypox, chickenpox, and
measles classes which are collectively placed into Normal class.
Monkeypox Skin Lesion Detection (MSLD) — 2,607 images classified as Monkeypox or normal skin
conditions. Dataset distribution for each dataset is shown in Table 1. All the datasets being used perform
binary classification.

Table 1. Dataset distribution

Dataset Label Train Validation Test Total
Monkeypox 223 56 0 279
MSID Normal (Chickenpox + 158 40 0 198
Measles)
Total 381 96 0 477
Monkeypox 980 20 168 1168
MSLD Normal 1162 25 252 1439
Total 2142 45 420 2607

Some sample images of Monkeypox disease from both the datasets are shown in Error! Reference
source not found..

Figure 2. Sample images of Monkeypox disease from the two datasets used in this study.

2.2. Feature Extraction using Deep Learning Models(MobileNetV2+DenseNet121)

This study uses a dual-model strategy employing DenseNet121 and MobileNetV2 for feature extraction
to take advantage of multiple convolutional neural networks (CNNs). These models were selected due
to their complementary characteristics. While MobileNetV2 is designed for efficiency and lightweight
deployment, especially for edge and mobile applications, DenseNet121 enables dense connectivity with
rich feature hierarchies.

Model Selection and Fine-tuning:

Both models were pretrained on ImageNet and subsequently fine-tuned on the Monkeypox skin lesion
datasets. The classification layers were removed, and Global Average Pooling (GAP) was applied to
extract fixed-length feature vectors from each architecture. [[17]]

Feature Fusion Strategy:

A complete and high-dimensional feature representation was created by concatenating features taken
from both models. Different levels of abstraction are captured by this fusion strategy: MobileNetV2
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adds lightweight and spatially efficient features, while DenseNetl21 contributes rich semantic
representations.

Let each input image be denoted as xeR#42243_DenseNet121 and MobileNetV2 extract hierarchical
features from images. Mathematically, these can be represented as (1) and (2)

fD(X)ZR224X224X3—>Rdl (1)
fM(X):RZZ4X224XS—) Rd2 (2)

where d; and d; are the dimensions of the feature vectors extracted by DenseNet121 and MobileNetV2,
respectively. The combined feature vector for an image x is represented as (3)

F(x)=[fo(X);fu(x)]ERY, where d=d:1+ d> ()

2.3. Feature Selection using Genetic Algorithm

CNN-generated high-dimensional feature vectors frequently have non-discriminative, redundant, or
irrelevant components that could negatively impact classification performance [18]. In order to address
this problem, feature selection is carried out using a Genetic Algorithm (GA), which optimizes the subset
of features for downstream classification.

Genetic Algorithm Overview:
Natural selection and genetic inheritance serve as the foundation for the GA, an evolutionary
optimization method. It finds the ideal subset of attributes that maximizes classification accuracy by
evolving a population of possible solutions (chromosomes) over several generations.
Each chromosome is encoded as a binary vector ze{0,1}9, where:

o zi=1 indicates the inclusion of the i*" feature.

o z=0 indicates exclusion of the i*" feature.
The selected features for an image x based on a chromosome z are denoted as F,(x)SF(x) [[19], [25]].

Fitness Evaluation:
The fitness of each chromosome is evaluated using the classification accuracy of a Random Forest (RF)
classifier trained on the selected features. Five-fold cross-validation is used for reliable fitness estimation
[[20]]. The fitness function is defined as:

Fitness(z)=Accuracy (Classifier trained on F(x)) 4

The GA iteratively evolves the population to maximize the fitness function, resulting in an optimal
feature subset Fopi(X).Our initial tests showed diminishing benefits beyond moderate population sizes
when combined with Optuna tuning and cross-validation, even though standard GAs employ enormous
populations. A sensitivity study was performed to evaluate population sizes € {10, 20, 40, 60} and
generations € {5, 10, 20}. Each configuration was tested on the MSID dataset using 5-fold cross-
validation. Therefore, population = 20 and generations = 10 were selected as a balanced trade-off
between performance and computational cost [[28]]. This decision was reinforced by Optuna’s trial-
based optimization, which confirmed near-plateau fitness improvements beyond these values.
Hyperparameters tuned for GA+Random Forest is shown in Table 2. When compared to manually
specified parameters, the optimized configuration consistently produced lower overfitting and higher
validation accuracy. Both the evolutionary and ensemble learning components were optimized in a
repeatable, data-driven manner due to this adaptive search technique.

Table 2. Hyperparameter tuning of GA+Random Forest parameters

GA parameters Random Forest parameters
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Number of trees (n_estimators) € {100, 200, 300, 400,
Population size € {10, 20, 30, 40} 500}

Crossover probability € [0.3, 0.8] Maximum depth (max_depth) € {None, 10 — 50}
Mutation probability € [0.05, 0.3] Minimum samples per leaf (min_samples_leaf) € {1, 2, 4}
Number of generations € {5 — 20} Criterion € {“gini”, “entropy”}

Feature subset ratio € [0.2, 0.8] Bootstrap € {True, False}

2.4. Classification with Machine Learning Classifier

A Random Forest (RF) classifier was used in this study rather than an end-to-end fine-tuned CNN
classifierfor several reasons beyond interpretability. First, heterogeneous, and high-dimensional feature
spaces, as those created by combining feature maps from several CNN architectures, are a good fit for
RFs. Unlike end-to-end fine-tuning, which requires large labeled datasets to optimize millions of
parameters, RFs can effectively learn decision boundaries from limited data without overfitting. Second,
RFs provide inherent resistance to noisy or redundant features, which is crucial even after Genetic
Algorithm (GA)based selection. By combining multiple decision trees, their ensemble structure
automatically reduces variation and stabilizes predictions across datasets and folds. Third, modular
experimentation is made possible by separating deep feature extraction from classification using a
separate RF stage. This adaptability promotes repeatability and useful deployment on constrained
hardware by enabling the same optimized features to be assessed with different traditional classifiers
(e.g., SVM, XGBoost) without retraining the deep network.Lastly, RFs are more suitable for integration
into portable or edge-based diagnostic systems as they require less processing power and training time
than fine-tuned CNNSs, particularly in low-resource healthcare settings where monkeypox detection is
crucial. Therefore, following feature selection, the optimal subset of features Fox(X) is used to train a
Random Forest (RF) classifier for the final prediction task. Random Forest is an ensemble learning
method composed of multiple decision trees, each trained on a bootstrapped subset of the data with
random feature sampling at each node split [[21]].

Prediction Mechanism:

Let the ensemble consist of M decision trees{T:,T,,...,7w}. Each tree provides an individual class
prediction yn for a given input sample x. The final class label § is determined by majority voting across
all trees as in (5):

y=mode{y1,y,...,.ym} (5)

The following algorithm describes the entire diagnostic pipeline for classifying monkeypox utilizing
Random Forest classification, Genetic Algorithm-based feature selection, and dual deep learning
models.

Algorithm: Hybrid framework

Input: Skin image dataset D=(xi,yi) where Xi € R 222243 | abels y; €{0,1} (Monkeypox or Normal)
Output: Predicted label y for each test image.
Begin
Step 1: Data Preprocessing
1. Resize all images to 224x224
2. Normalize pixel values to [0,1] or per model's requirements.
3. Applied 5-fold cross validation on both datasets.
Step 2: Deep Feature Extraction
3. Load pretrained DenseNet121 and MobileNetV2 (excluding classification head).
4. For each image xi€ D
o Extract feature vector fg«—DenseNet121(X;)
o Extract feature vector fn<—MobileNetV2(x;)
o Concatenate: Fi=[ fq;fm]
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Step 3: Genetic Algorithm-Based Feature Selection
5. Initialize population of binary chromosomes representing selected features from F;.
6. For each generation:
o For each chromosome:
= Select subset of features F; ' based on the chromosome.
= Train a Random Forest on F ' using cross-validation.
= Compute accuracy as fitness score.
o Apply genetic operators: selection, crossover, mutation.
7. Select best-performing chromosome — final selected feature indices.
Step 4: Classification using Random Forest
8. Train Random Forest classifier on GA-selected features.
9. Predict labels y on test set using selected features.
Step 5: Evaluation
10. Compute metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC.
Step 6: Visualization
11. Apply PCA on selected features for 2D visualization.
End

3. Results and Discussion

This section presents the performance evaluation of the proposed hybrid framework integrating
DenseNet121 and MobileNetV2 for deep feature extraction, Genetic Algorithm (GA) for feature
selection, and Random Forest (RF) for classification. The framework was tested on two publicly
available datasets: MSID and MSLD and evaluated using accuracy, precision, recall, F1-score, ROC-
AUC, and visual diagnostics. All experiments were implemented in Python using the Scikit-learn and
Keras libraries.

3.1 Performance Metrics
Table 3and

Table 4summarize the classification results on the MSID and MSLD datasets, respectively. Each
configuration incrementally incorporates the components of the proposed framework, demonstrating the
additive value of ensemble learning and GA-based feature selection.

For the MSID and MSLD the base dual-CNN model (DenseNet121 + MobileNetV2) achieved 83.33%
and 88.89% accuracy respectively. Incorporating a Random Forest classifier improved accuracy to
89.58% for MSID and 97.77% for MSLD. Applying Genetic Algorithm-based feature selection further
boosted accuracy to 92.71% for MSID. However, 97.77% accuracy for MSLD remains same due to
small dataset.

Table 3. Evaluation metrics values on MSID dataset.

Model Accuracy Precision  Recall L
Score

DenseNet121+MobileNetV2 83.33% 0.83 0.75 0.78
DenseNet121+MobileNetV2+RandomForest 89.58% 0.91 0.91 0.91
DenseNet121+MobileNetV2+RandomForest+GA 92.71% 0.90 0.92 0.91

Table 4. Evaluation metrics values on MSLD dataset.
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F1-

Model Accuracy Precision  Recall Score
DenseNet121+MobileNetV2 88.89% 1.00 0.80 0.889
DenseNet121+MobileNetV2+RandomForest 97.77% 0.95 1.00 0.98
DenseNet121+MobileNetV2+RandomForest+GA 97.77% 1 0.96 0.98

The classification accuracy bar graph representation accuracies across different model variants are
shown in Error! Reference source not found..

Accuracy(%)

DENSENET121+MOBILENETV2+RANDOMFOREST+GA

DENSENET121+MOBILENETV2+RANDOMFOREST

DENSENET121+MOBILENETV2

75 80 85 90 95 100

= MSLD = MSID

Figure 3. Bar graph representation of accuracy improvements

3.2. Feature Importance Analysis

To increase the interpretability of the proposed hybrid framework, feature importance plots have been
obtained with the help of the trained Random Forest classifier. These plots measure the contribution of
each of the selected features to the final decision in classification.Figure describes the feature
importance scores of the data of MSID. The importance index 27 was the highest (= 0.032), which states
that it was the most effective in separating Monkeypox and normal skin conditions. Other noteworthy
features were the ones in index 493, 18, and 110 that also had high relevance scores. Likewise, Figure
also shows feature importance on the MSLD dataset: Feature index 128 had the greatest importance (=
0.032), meaning that it was the most significant in the differentiation between Monkeypox and normal
skin conditions [[26]]. The rest of the important auto features were 10, 240, and 239 which also had high
relevancy scores.

The overall trend showed a gradual decline in importance from left to right, indicating a strong
rank-order of discriminative power among the selected features. Feature distribution across importance
values showed a compact, high-contribution core set, suggesting the optimized features are both
informative and compact. Domain experts can verify whether the model's reasoning is consistent with
recognized dermatological markers (such as lesion texture or edge sharpness) by selecting the most
significant aspects. The analysis supports the dimensionality reduction attained by GA by confirming
that a small selection of features contributes most to predictive accuracy.
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Figure 4. Bar plot of feature importances for the MSID dataset after GA optimization.
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Figure 5. Bar plot of feature importance for the MSLD dataset after GA optimization.

3.3. GA Optimization Dynamics

We monitored the evolution of classification accuracy over multiple generations to assess the
effectiveness of the Genetic Algorithm (GA) in choosing ideal feature subsets. The effectiveness of
GA's convergence toward a high-performing solution is confirmed by this analysis.Figure and Figure
depict the progression of fitness values, defined as classification accuracy, over 10 generations for the
MSID and MSLD datasets, respectively.The algorithm's ability to enhance classification performance
over time was confirmed by a steady rising trend in both average and maximum fitness values. As more
discriminative feature subsets emerged in subsequent generations, the maximum accuracy improved
progressively. The population may have evolved toward a globally optimal or nearly optimal solution if
the difference between minimum and maximum accuracies is getting smaller.
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Figure 6. GA accuracy evolution across generations on the MSID dataset.
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Figure 7. GA accuracy evolution across generations on the MSLD dataset.

3.4. Visual Feature Separation

To qualitatively assess the discriminative capacity of the features selected by the Genetic Algorithm, we
employed widely used dimensionality reduction technique i.e. Principal Component Analysis (PCA).
This visualization helps illustrate whether the selected feature space facilitates clear separation between
Monkeypox and Normal classes.Figure presents 2D PCA projections of the selected features from both
the MSID and MSLD datasets.Blue points represent the Normal class, while orange points correspond
to Monkeypox cases.PCA reveals a reasonable degree of class separation, suggesting that the most
informative directions in the feature space (principal components) capture sufficient discriminatory
variance.Although PCA preserves global variance structure, some class overlap is visible, this is

expected given its linear transformation nature.
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Figure 8. PCA visualization of GA-selected features:(a) MSID dataset (b) MSLD dataset

3.5. Confusion Matrix

Confusion matrices were created for the MSID and MSLD datasets to assess the suggested hybrid
framework's classification performance in more detail. These matrices provide light on the different
kinds of classification errors, particularly false positives, and false negatives, which are crucial for
making clinical decisions.Confusion metrices of MSID Dataset and MSLD Dataset are shown in Figure

9 (a) and Figure 9 (b) respectively.

Confusion Matrix

True label

Predicted label

3.6. Comparative analysis

These findings support the benefits of combining evolutionary optimization, multi-CNN feature fusion,
and ensemble learning, particularly in low-resource medical contexts where explainability, speed, and

generalization are crucial.
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Confusion Matrix
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Table 5. Comparative Analysis of previous studies with our work.

Study EFeature Feature Selection Classifier Accuracy Key Limitation
xtraction
Almars  Attention-based GA —ono . .
(2025) [2] CNN (hyperparameters) DL head 90% No multi-model fusion
Ozaltin et No optimization, limited
al. (2023)  MobileNetV2 None Softmax  87-90% P '
robustness
[3]
Shateri et .
al.(2025) PO E AVA Optimization NGBoost  ~94% No GA-based feature
[6] oost reduction
Alarfaj et . .
Vision 070 Computational cost, no
al. ([%?24) Transformer None Softmax 92% ensemble learning
The model has not yet been
DenseNet121 Random 92.71- .
Ours +MobileNet GA Forest 97 77% tested in federated

environments.

3.7.  Comparative Evaluation of Metaheuristic Algorithms

To evaluate the effects of various optimization methods, 4 metaheuristic algorithms Genetic Algorithm
(GA), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), and Artificial Bee
Colony (ABC) were combined in DenseNet121 + MobileNetV2 feature-fusion architecture to classify
the Monkeypox disease and the findings are presented in Table 6. The overall performance of GA was
the highest and led to the highest accuracy and smallest reduction of features. GA is an excellent
recombiner of useful substructures, i.e. cluster of features. This has a direct positive effect on accuracy
in classification.

Table 6. Comparison of GA, GWO, WOA, and ABC for Monkeypox detection

Metaheuristics algorithms Metrics MSLD MSID
Precision 91.00 94.00
Recall 84.00 85.00
WOA
F1-Score 88.00 89.00
Test Accuracy (%) 86.67 90.62
Precision 95.83 87.8
Recall 92.00 90.00
ABC
F1-Score 93.88 88.89
Test Accuracy (%) 93.33 90.62
Precision 95.56 88.37
Recall 95.56 95.00
GWO
F1-Score 95.56 91.57
Test Accuracy (%) 95.56 92.71
Precision 100.00 90.24
GA Recall 96.00 92.50
F1-Score 98.00 91.36
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Test Accuracy (%) 97.77 92.71

Figure 10 represents the comparison of various metaheuristic algorithms with GA used in our
framework. The comparative analysis demonstrates that the Genetic Algorithm (GA) achieved the best
overall performance within the proposed DenseNetl21 + MobileNetV2 hybrid feature-fusion
framework. These findings indicate that GA’s crossover—mutation dynamics are highly effective for
selecting discriminative deep features, leading to robust generalization and superior classification
performance.

Accuracy(%)

WOA ABC GWO GA

m MSLD = MSID

Figure 10. Accuracies bar chart comparison of our framework

3.8.  Interpretation and Limitations

Interpretation of Results:

These high classification accuracies of the proposed framework can be explained by the synergistic
combination of the framework elements: Dual CNN Feature Fusion: DenseNet121 and MobileNetV2
are used together to provide more and different feature representation, as both fine-grained and high-
level features are captured. This increases the discriminative ability of input space. Genetic Algorithm
of Feature Selection: GA is a very useful technique to minimize the dimension of features that only
contain valuable information. This does not only enhance the performance of the classification but also
prevents overfitting and less computation. Random Forest Classifier: RF has great generalization power,
noise resistant behavior, and can perform a built-in analysis of feature importance. These attributes
render it suitable to the high-dimensional and moderately imbalanced medical image datasets. Cross-
Dataset Consistency: The framework recorded good scores on MSID and MSLD, which highlights its
generalizability and strength to different datasets structures and class distribution.

Limitations:

Although these positive outcomes have been achieved, one should admit several limitations: ¢ Dataset
Size: MSID and MSLD also have rather small and slightly uneven test sets. Although augmentation and
cross-validation are useful, to deploy in the real world, validation on more large and varied datasets is
needed. Focus of Binary Classification: This paper deals with a binary classification problem
(Monkeypox vs. Normal). Nonetheless, practical skin lesion classification can be associated with several
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disease categories (e.g., chickenpox, measles, eczema), and it must be extended to multi-class models
in the future.

4. Conclusion

This paper introduces a new model of hybrid diagnosis of automated Monkeypox detection by skin
lesion images, combining deep learning, evolutionary optimization, and ensemble classification
advantages. The method is a combination of the DenseNet121 and MobileNetV2-based dual-feature
extraction, Genetic Algorithm-based feature selection, and final prediction with the help of a random
forest classifier. Genetic Algorithm was much better since it reduced redundant features, but the strength
of the Random Forest was that it was robust, easy to interpret, and highly generalized to the data.
Although the results are promising, there are still some limitations, including the size of the dataset,
binary classification, and the cost of computation. The future work will focus on exploring federated
learning or privacy-friendly modifications of secure clinical applications. Altogether, the contributions
of this work provide a strong and practical diagnostic model that connects the world of deep learning
with the classical machine learning and provides a scalable solution to Al-aided Monkeypox detection
in various health settings.
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