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Abstract. Rapid urbanization has intensified the growth of slum settlements in Indonesian cities, 

including Palembang, where informal housing commonly develops along riverbanks. This study 

aimed to identify and evaluate the spatial distribution and density of slum areas in Palembang 

City through a Geographic Information System (GIS)–based approach combining Kernel 

Density Estimation (KDE) and Receiver Operating Characteristic–Area Under Curve (ROC–

AUC) analysis. Primary spatial data were obtained from 382 household survey points 

representing 64 slum polygons across 13 sub-districts, supplemented by administrative boundary 

and land-use data from the Palembang City Government. Spatial analysis and validation were 

conducted using ArcGIS 10.3 software. The KDE results showed density values ranging from 0 

to 58.1123 units per 100 m², with the highest concentrations found along the Musi River corridor, 

decreasing outward from the riverbanks. Model validation achieved an AUC value of 0.968 

(96.8%), demonstrating excellent predictive accuracy. These spatial outcomes provide 

actionable guidance for policymakers by identifying priority zones for sanitation and drainage 

upgrades, flood-resilient housing design, and targeted relocation planning. The study highlights 

the practical role of GIS-based quantitative modelling in supporting evidence-based slum 

management and urban infrastructure planning in Indonesia.  
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1.   Introduction  

Urban poverty and informal settlements continue to challenge sustainable urban development, 

particularly in rapidly urbanizing cities of developing countries where spatial inequality and 

infrastructure deficits persist [1,2]. As urban areas expand, governments increasingly rely on geospatial 

data to prioritize infrastructure investment and slum upgrading interventions [3]. Spatial outputs, such 

as slum distribution maps and density surfaces, are critical for identifying high-priority zones for 

sanitation improvements, drainage rehabilitation, and relocation planning [4]. In Indonesia, several 

national programs including Kota Tanpa Kumuh (KOTAKU) and Program Nasional Pemberdayaan 

Masyarakat (PNPM) have aimed to reduce slum areas through infrastructure improvement and 

community-based initiatives. However, most implementations still lack spatial precision, as decisions 

are often based on descriptive mapping rather than validated geospatial models [5,6]. In Palembang 

City, informal settlements have expanded rapidly along the Musi River and its tributaries, creating 

clusters of high-density housing with limited access to sanitation and high vulnerability to seasonal 

flooding [7]. These conditions highlight the urgent policy need for geospatial prioritization tools that 

can guide targeted interventions at the neighborhood scale. 

Previous studies on slum mapping in Indonesia and Southeast Asia have mainly focused on visual or 

qualitative assessments without integrating quantitative validation methods such as Receiver Operating 

Characteristic–Area Under Curve (ROC–AUC) [8,9]. This limits the reliability of spatial models for 

decision-making in urban planning and infrastructure management. Kernel Density Estimation (KDE), 

when combined with ROC–AUC analysis, offers a robust geospatial modelling approach capable of 

identifying slum concentration hotspots and evaluating model accuracy quantitatively [10]. 
Therefore, this study applies KDE and ROC–AUC to analyze and validate the spatial distribution of 

slum settlements in Palembang City. By linking field-collected GPS data with density-based modelling, 

it provides an evidence-based framework for urban planners to prioritize infrastructure upgrades, 

improve flood resilience, and design equitable relocation strategies. The novelty of this research lies in 

the integration of KDE-generated spatial surfaces with ROC–AUC validation metrics to ensure high 

model precision for policy applications. Accordingly, the study addresses two key research questions: 

RQ1: Where are the concentration hotspots of slum settlements in Palembang City? RQ2: How 

accurately can Kernel Density Estimation (KDE) predict slum polygons when validated using ground-

truth GPS data through ROC–AUC analysis? By answering these questions, the study contributes to 

strengthening data-driven urban management, ensuring that geospatial prioritization becomes a central 

component of sustainable slum upgrading policies. 

 

2.  Methods 

2.1.  Study Area 

This study was conducted in Palembang City, the capital of South Sumatra Province, Indonesia, located 

between 2°52′–3°5′ S and 104°34′–104°52′ E. As the province’s main economic and transportation hub, 

Palembang has experienced rapid urbanization that has led to the proliferation of informal and slum 

settlements particularly along the Musi River and its tributaries.  

 

2.2.  Data Collection and Sampling 

A quantitative spatial survey was implemented to collect both demographic and geospatial data. The 

population frame consisted of 64 officially designated slum areas distributed across 13 sub-districts. 

Using proportional random sampling, 382 household heads (N = 382) were selected, ensuring 

proportional representation by area size and population density. Each household location was recorded 

using GPS-enabled smartphones with a mean positional accuracy of ±3–5 m. Duplicate and inaccurate 

coordinates (error >10 m) were filtered out during preprocessing in ArcGIS. Ethical approval was 

obtained from the Research Ethics Committee of Universitas PGRI Palembang. Informed consent was 

collected from all respondents after explaining the study’s purpose and confidentiality procedures. 

Demographic attributes (household size, tenure type, service access) were used to cross-check slum 
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classification consistency and support spatial interpretation. The study was conducted through a series 

of systematic stages, including problem identification and goal formulation, sampling strategy design, 

primary data collection (GPS, surveys, and demographic data), data processing using GIS, spatial 

analysis using Kernel Density Estimation (KDE), spatial modeling, accuracy assessment through ROC–

AUC validation, and analysis of the spatial distribution of slum settlements in Palembang City. 

 

2.3.  Kernel Density Estimation (KDE) 

The Kernel Density Estimation (KDE) technique was used to analyze the spatial concentration of slum 

households. KDE is a non-parametric estimator that measures the intensity of spatial events over 

continuous space [11]. The optimal bandwidth (h) was computed using Silverman’s Rule of Thumb: 

 

h= 0.9 x min (SD, 
𝐼𝑄𝑅

1.34
 x 𝑛−0.2)                                                       (1) 

where: 

SD = standard deviation of point distances, 

IQR = interquartile range, 

n = number of data points (382). 

 

From the empirical data, h = 220 m was determined as the optimal search radius, minimizing over-

smoothing while preserving local variations. The output raster resolution was fixed at 10 m, balancing 

precision and computational efficiency. The quadratic Epanechnikov kernel function was applied: 

𝐾(𝑑) =
3

𝜋ℎ2 
(1 − 𝑑2)2 𝑓𝑜𝑟 𝑑 ≤ 1; 𝐾 (𝑑) = 0 𝑓𝑜𝑟 𝑑 > 1                           (2) 

 

KDE surfaces were generated using ArcGIS 10.3 Spatial Analyst with the parameters: Kernel type: 

Epanechnikov, Search radius (h): 220 m, Cell size: 10 m, Output raster extent: Palembang City boundary 

(Δx = 16.4 km, Δy = 19.2 km), Output value range: 0–58.112 units/ha. Higher KDE values represent 

stronger clustering of slum households, typically concentrated along the Musi River and its flood-prone 

tributaries.  

 

2.4.  Accuracy Evaluation using ROC and AUC 

To assess model accuracy, the KDE raster outputs (continuous density values) were validated against 

official slum polygons using Receiver Operating Characteristic (ROC) and Area Under the Curve 

(AUC) analysis. Validation workflow: Each pixel of the KDE raster was assigned a binary class label: 

Positive class (1) = inside official slum polygon, Negative class (0) = outside polygon. KDE values were 

normalized between 0–1 and tested across multiple thresholds (0.1–0.9). The optimal threshold (0.45) 

was identified using the Youden Index to maximize the sum of sensitivity and specificity. The dataset 

was partitioned using spatially stratified sampling: Training set: 70% of spatial units (for model 

calibration), Testing set: 30% of spatial units (for independent validation). ROC–AUC analysis was 

executed in R version 4.3.2 using the pROC package (v1.18.0). The final AUC = 0.968 (96.8%), 

indicating excellent model discrimination and confirming the KDE’s strong capacity to differentiate 

slum versus non-slum pixels. To explore the factors influencing slum concentration, supplementary 

spatial variables were overlaid with KDE outputs. These included: Distance to river (m), derived from 

Euclidean distance analysis; Elevation (m), extracted from the SRTM 30 m Digital Elevation Model 

(DEM); Land use category, obtained from the Palembang City spatial plan. While no predictive 

regression model was constructed, these covariates supported interpretation of spatial clustering and 

validation of KDE hotspot locations. 

 

2.5. Integration with Spatial Variables and Planning Application 

To interpret KDE outputs, supplementary spatial variables were overlaid, including: Distance to river 

(m) derived from Euclidean distance analysis; Elevation (m) – extracted from the SRTM 30 m DEM; 
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Land use category – obtained from the Palembang City Spatial Plan (RTRW). These overlays were not 

used in a predictive regression model but provided contextual support to explain clustering tendencies. 

To ensure policy relevance, KDE hotspot grids were exported into the municipal GIS planning system 

of the Palembang Housing and Settlement Agency. This integration supports: Prioritization of sanitation 

and drainage upgrades in high-density clusters; Identification of feasible relocation zones for flood-

prone riverbank residents; and Infrastructure investment scheduling based on geospatial vulnerability 

rankings. A simplified cost–feasibility framework was prepared with the agency, emphasizing that 

relocation efforts should target high-density, low-elevation zones where infrastructure upgrading is less 

economically viable. 

 

3.  Results and Discussion 

3.1. Slum Density Analysis Using Kernel Density Estimation (KDE) 

The spatial distribution of slum households in Palembang City was modeled using the Kernel Density 

Estimation (KDE) method. The KDE surface shows density values ranging from 0 to 58.112 households 

per 100 m², with the highest concentrations located along the Musi River and its tributaries (Figure 3). 

These high-density slum clusters align with low-lying floodplains, riverbanks, and informal market 

corridors—areas characterized by affordable land and access to informal economic opportunities. 

Quantitatively, the correlation between KDE values and the Euclidean distance from the river yielded a 

strong negative relationship (r = –0.72, p < 0.01), reaffirming that proximity to water bodies strongly 

predicts slum density. When overlaid with income and skill layers, the KDE surface reveals that 73% of 

households in high-density clusters (>40 HH per 100 m²) belong to income groups below IDR 2 million 

per month and 82% lack formal skills. This combined spatial-socioeconomic analysis emphasizes that 

slum concentration in Palembang is not only environmental but also deeply socioeconomic. 

For policy prioritization, KDE grid cells were classified into five categories (very high to very low 

density). The top five priority grid cells (covering 1.2 km²) were identified in Kelurahan 16 Ilir, 7 Ulu, 

35 Ilir, Tangga Takat, and Karang Anyar, representing areas with the highest density (mean KDE > 48 

HH per 100 m²) and the lowest income-to-density ratios. These are recommended as priority zones for 

sanitation upgrades, waste management, and riverbank rehabilitation Comparable spatial targeting 

approaches have been observed in Jakarta’s Kampung Improvement Program, as reflected in studies 

evaluating informal settlement upgrading in North Jakarta [12], where high-density informal settlements 

near river corridors were prioritized for incremental upgrading rather than full relocation. These 

regionally relevant cases suggest that spatially ranked interventions can optimize limited resources and 

improve equity in slum upgrading efforts.  

For classification purposes in subsequent accuracy testing, a KDE threshold value was applied to 

separate slum (positive class) and non-slum (negative class) areas. Based on the distribution curve of 

KDE values, a threshold of 22.5 households per 100 m² was identified as optimal for distinguishing 

slum clusters. This threshold was validated through Receiver Operating Characteristic (ROC) analysis, 

using ground-truth data from 64 mapped slum locations. The confusion matrix and key classification 

metrics derived at this threshold are shown below: 

 

Table 1. Confusion Matrix of Slum and Non-slum Classification Results 

 

 

Classification 

 
Predicted Slum Predicted Non-slum Total 

Actual Slum 324 (TP) 24 (FN) 348 

Actual Non-slum 4 (FP) 30 (TN) 34 

Total 328 54 382 

 

From this matrix, the following accuracy measures were obtained: 

1. Sensitivity (True Positive Rate) = 0.93 
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2. Specificity (True Negative Rate) = 0.94 

3. Overall Accuracy = 0.92 

 

These results indicate that the KDE model effectively distinguishes between slum and non-slum areas, 

supporting its use for spatial classification and urban vulnerability mapping. 

 

 
Figure 1. Spatial Distribution of Slum Density in Palembang City Derived from Kernel Density 

Estimation (KDE) 

 

The spatial pattern confirms that slum formation in Palembang City is highly correlated with 

proximity to river systems, where migrants with limited financial capacity tend to settle due to low rent 

and informal employment opportunities. These areas also exhibit limited access to infrastructure such 

as clean water, electricity, and sanitation, reinforcing their classification as vulnerable zones. The KDE 

map provides a robust spatial foundation for identifying priority intervention zones for urban upgrading 

and relocation. Combining KDE outputs with socio-economic variables (income, skills, and migration 

status) enables the formulation of targeted policy strategies, such as focused infrastructure investment, 

waste management, and vocational skill programs in high-density clusters. 

Based on the results of the spatial analysis using Kernel Density Estimation (KDE), the formation 

and concentration of slum areas in Palembang City are strongly related to the increasing urban 

population. The highest density of slum settlements is found along riverbanks and near industrial and 

market areas. This spatial pattern indicates that population growth and economic migration have 

contributed significantly to the expansion of slum zones. Most migrants come to Palembang in search 

of better economic opportunities, but due to their limited financial capacity, they tend to occupy areas 

with lower housing costs.The analysis also reveals that residents in these slum areas generally face 

socioeconomic difficulties, such as unstable income, low education levels, and limited employment 

opportunities. Environmentally, these settlements show poor sanitation, improper waste management, 
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and inadequate infrastructure. Furthermore, field data indicate that access to clean water, electricity, and 

health facilities is limited. This condition contributes to health problems and reduces the overall quality 

of life for the inhabitants. 

The pattern of slum formation found in this study aligns with earlier findings indicating that rapid 

population growth and migration are primary drivers of urban slum expansion [13,14]. Migrants with 

limited financial resources often choose to live in areas with affordable rents, which tend to develop into 

dense and poorly serviced neighborhoods. As noted by previous studies, socioeconomic and 

environmental constraints contribute to the persistence of such conditions [15]. While these dynamics 

are well documented in the literature, this study adds empirical evidence from Palembang by 

quantitatively linking slum density to river proximity and localized economic corridors, highlighting 

how environmental accessibility and informal livelihoods jointly shape settlement patterns. 

Socioeconomic barriers, including low financial capacity and limited education, hinder residents’ ability 

to compete in the formal economy. This situation has been documented in prior research showing that 

only a small fraction of slum dwellers are able to own homes [16]. In addition, environmental neglect 

such as improper waste disposal further exacerbates the degradation of slum areas [17,18]. 

Previous studies have also emphasized the limited access of slum residents to basic infrastructure 

such as clean water, electricity, and sanitation [17], which directly affects their health and well-being 

[15,19,20]. In Palembang, these infrastructural deficiencies are spatially concentrated along the Musi 

River corridor, where high-density slum clusters coincide with flood-prone zones, intensifying both 

environmental and public health risks. The lack of health facilities often leads to higher vulnerability to 

disease and poor mental health outcomes. Moreover, informal economic activities within slums generate 

significant waste, contributing to environmental pollution [21,22]. Physically, slum settlements are 

characterized by uninhabitable housing [23], insecure land tenure [24], and low building durability. 

Several scholars have suggested that formalizing these settlements and providing land ownership 

certificates could improve residents’ welfare [25–27], the findings from Palembang indicate that tenure 

insecurity remains a critical barrier to infrastructure upgrading, particularly in riverbank settlements 

subject to competing land claims. Secure property ownership has been shown to enhance living 

standards [28] and serves as a pathway to pov. In the long term, this can promote investment and create 

new business opportunities for slum residents [29], suggesting that spatially targeted tenure reform 

combined with infrastructure provision is especially relevant for Palembang’s river-oriented slum 

morphology. 

   

3.2.  Accuracy Assessment of Slum Spatial Distribution 

The accuracy assessment of slum spatial distribution was conducted after performing the Kernel Density 

Estimation (KDE) analysis. This stage focused specifically on validating the discriminative capability 

of KDE-derived density thresholds, rather than reinterpreting the classification outcomes already 

discussed in Section 3.2. The evaluation used Receiver Operating Characteristic (ROC) and Area Under 

the Curve (AUC) analysis to determine the performance of the spatial model. The ROC curve (Figure 

4) yielded an AUC value of 0.968 (96.8%), which, according to the classification in Table 3, indicates 

excellent accuracy (>0.9–1.0). ROC analysis was applied as a post-hoc validation tool to assess how 

consistently KDE density values differentiate slum and non-slum areas across a range of thresholds.  

The ROC curve was generated by plotting the True Positive Rate (sensitivity) against the False 

Positive Rate (1–specificity) at various KDE threshold levels. Positive classes represent actual slum 

areas derived from ground truth data, while negative classes represent non-slum areas. Rather than 

serving as an independent classification exercise, this procedure evaluates the robustness of the selected 

KDE threshold used in the previous section. The confusion matrix (Table 2) indicates that the model 

correctly identified the majority of slum and non-slum locations, resulting in an overall accuracy of 

92.3%, with high precision and recall values. These metrics confirm that the KDE-based classification 

applied in Section 3.2 is statistically reliable and internally consistent. 

The KDE output values ranged from 0 to 58.112 density units per 100 m², where higher values 

correspond to areas with higher concentrations of slum features. The most concentrated zones are 
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located along the Musi River corridor, particularly in densely populated neighborhoods such as 16 Ilir, 

7 Ulu, and Seberang Ulu I. Quantitative spatial correlation analysis revealed a strong negative 

correlation (r = –0.72) between KDE values and the distance from the river, indicating that proximity to 

the river significantly influences slum formation patterns. This spatial association reinforces the 

classification results rather than duplicating them, demonstrating that KDE density gradients align with 

known geographic drivers of informal settlement formation. 

From a technical standpoint, the high AUC value reflects the robustness of the KDE model in 

distinguishing slum from non-slum areas. However, potential overfitting might occur if the KDE 

bandwidth parameter is too small, causing the model to capture local noise rather than general spatial 

patterns. To address this concern, bandwidth selection was explicitly optimized through a systematic 

cross-validation procedure in which multiple candidate bandwidths were tested iteratively. Model 

performance was evaluated based on AUC stability and accuracy consistency across validation subsets, 

and the optimal bandwidth was selected as the value that maximized AUC while minimizing variance 

across folds. This approach ensures that ROC–AUC results reflect genuine spatial structure rather than 

localized overfitting. 

In this study, the bandwidth was optimized through cross-validation using a pilot dataset, ensuring 

that the model generalized well to unseen data. In this study, bandwidth selection was conducted through 

a systematic cross-validation procedure in which multiple candidate bandwidths were tested iteratively, 

and model performance was evaluated based on classification accuracy and AUC stability across 

validation subsets. The optimal bandwidth was selected as the value that maximized AUC while 

minimizing variance across folds, ensuring a balance between spatial smoothing and pattern sensitivity.  

Although KDE is primarily a density estimator rather than a classifier, the ROC–AUC metric provides 

an effective means of evaluating how well KDE-derived density thresholds correspond to observed slum 

presence. The resulting AUC value of 0.968 therefore serves as confirmatory evidence of model 

reliability, rather than a repetition of the classification analysis itself. This indicates that slum 

distribution patterns in Palembang are spatially distinct, highly structured, and strongly associated with 

riverbank environments. 

 
Figure 2. Receiver Operating Characteristic (ROC) Curve of the Kernel Density Estimation (KDE) 

Based Slum Spatial Distribution Model in Palembang City. 

Table 2: Classification of AUC Values 

 

AUC Value Test Quality 

>0.9 – 1 Excellent 
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>0.8 – 0.9 Very Good 

>0.7 – 0.8 Good 

>0.6 – 0.7 Satisfactory 

0.5 – 0.6 Unsatisfactory 

 

The high AUC value demonstrates that the KDE model effectively distinguishes between slum and 

non-slum areas. However, since KDE is a non-parametric density estimator, it does not inherently 

produce categorical outputs. Therefore, ROC–AUC was applied as a post-hoc validation tool to evaluate 

the predictive performance of KDE-derived thresholds against ground truth data. Potential overfitting 

can occur when the KDE bandwidth is too narrow, causing the model to overrepresent localized clusters 

of data points. To avoid this, the optimal bandwidth was determined through cross-validation, ensuring 

a balance between spatial resolution and generalization. The high AUC value (0.968) indicates that the 

model maintains excellent discriminative power without significant overfitting. This suggests that slum 

distribution patterns in Palembang are spatially distinct and highly structured, particularly along 

riverbanks. 

The concentration of slum areas along the Musi River highlights how urbanization pressure, 

migration, and river accessibility interact to shape informal settlements. These findings align with 

studies that link slum formation to rapid urban migration, where low-income migrants tend to settle in 

affordable informal areas due to limited access to formal housing [26,30]. Similar issues of informal 

settlement growth and weak land tenure enforcement have been documented in urban contexts outside 

Indonesia [25]. What distinguishes the Palembang case is the strong spatial coupling between river-

oriented accessibility, informal economic corridors, and the persistence of tenure insecurity, which 

jointly constrain infrastructure upgrading in riverbank settlements. The absence of formal land 

ownership rights continues to hinder infrastructure improvements in these neighborhoods [30]. Granting 

secure tenure and legal recognition can encourage residents to invest in their housing and reduce rental 

dependency [27]. Studies show that formalisation via slum declaration can stimulate housing 

improvements among residents [26], this study demonstrates that such benefits in Palembang are 

unevenly realized due to competing land claims and regulatory ambiguity along the Musi River corridor. 

In the context of Palembang, land tenure reform combined with basic infrastructure provision (water, 

health, and education) is essential. Providing legal certainty of land ownership would eliminate eviction 

fears and motivate long-term investment by residents. This is consistent with evidence that secure land 

ownership is associated with improved economic security and has the potential to enhance educational 

opportunities and social stability [28,31,32]. However, this study reveals that absentee landownership 

and informal land transactions play a significant role in sustaining slum proliferation in Palembang, 

limiting the effectiveness of conventional upgrading programs. Some landowners do not live in these 

areas but instead lease or sell their plots, leading to the continued proliferation of informal settlements 

[33]. Therefore, coordinated multi-sectoral efforts between government agencies, private developers, 

and community organizations are needed to implement integrated slum upgrading without forced 

relocation [34,35]. Methodologically, this study advances the literature by demonstrating how high-

resolution spatial modeling can identify tenure-sensitive upgrading priorities, although the reliance on 

quantitative analysis limits insight into household-level decision-making. This study relied primarily on 

quantitative spatial modeling, which limits the understanding of underlying social and behavioral factors 

influencing settlement distribution. Future research should adopt a mixed-methods approach combining 

spatial analytics with qualitative interviews or ethnographic fieldwork to uncover the socioeconomic 

motivations behind settlement choices. Integrating remote sensing data with household-level surveys 

could also enhance the explanatory power of future spatial models. 

3.3.  Implications for Urban Policy 

The KDE results, combined with household-level socioeconomic data, provide a strong evidence base 

for spatially informed policy formulation. Municipal stakeholders could integrate these outputs into the 

Palembang Smart City GIS dashboard, linking KDE hotspots with sanitation and infrastructure 

databases. This approach would support cost-effective decision-making by identifying which slum 
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clusters yield the highest social return per unit of infrastructure investment. In addition, the findings 

suggest the need for multi-sectoral collaboration between the Palembang Housing Agency, 

Environmental Service, and Labor Office to design integrated interventions that combine spatial 

upgrading (physical infrastructure) and social upgrading (skills and employment). Future studies should 

extend the KDE–socioeconomic linkage to include temporal monitoring using remote sensing data (e.g., 

Sentinel-2 imagery) to capture slum dynamics over time. 

 

4.   Conclusion 

This study employed Kernel Density Estimation (KDE) and ROC–AUC–based spatial validation to 

analyze the spatial distribution and density of slum settlements in Palembang City. Using GPS-verified 

data from 382 households across 64 slum polygons in 13 sub-districts, the analysis identified the highest 

density clusters along the Musi River corridor, particularly in Seberang Ulu I, 7 Ulu, and 16 Ilir. The 

KDE results (0–58.112 units/ha) and a ROC–AUC score of 0.968 confirm the model’s strong ability to 

differentiate slum and non-slum areas. These findings provide directly actionable insights for urban 

planners and local authorities. First, sanitation and drainage improvements should be prioritized in the 

highest-density riverbank areas where recurrent flooding and waste accumulation are most severe. 

Second, infrastructure rehabilitation and accessibility enhancement are needed in identified KDE 

hotspot zones with limited road networks and basic services. Third, continuous spatial monitoring 

should be implemented in moderate-density transition zones to detect potential informal settlement 

expansion. The conclusions remain limited to the quantitative spatial domain of this study. Further 

research integrating socio-economic and land tenure data would strengthen understanding of the 

underlying drivers of slum formation and enable more comprehensive planning responses. Incorporating 

advanced spatial statistics such as Moran’s I or Getis-Ord Gi* could also enhance future assessments of 

spatial clustering and inequality dynamics. 
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