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Abstract. Rapid urbanization has intensified the growth of slum settlements in Indonesian cities,
including Palembang, where informal housing commonly develops along riverbanks. This study
aimed to identify and evaluate the spatial distribution and density of slum areas in Palembang
City through a Geographic Information System (GIS)-based approach combining Kernel
Density Estimation (KDE) and Receiver Operating Characteristic—Area Under Curve (ROC-
AUC) analysis. Primary spatial data were obtained from 382 household survey points
representing 64 slum polygons across 13 sub-districts, supplemented by administrative boundary
and land-use data from the Palembang City Government. Spatial analysis and validation were
conducted using ArcGIS 10.3 software. The KDE results showed density values ranging from 0
to 58.1123 units per 100 m2, with the highest concentrations found along the Musi River corridor,
decreasing outward from the riverbanks. Model validation achieved an AUC value of 0.968
(96.8%), demonstrating excellent predictive accuracy. These spatial outcomes provide
actionable guidance for policymakers by identifying priority zones for sanitation and drainage
upgrades, flood-resilient housing design, and targeted relocation planning. The study highlights
the practical role of GIS-based quantitative modelling in supporting evidence-based slum
management and urban infrastructure planning in Indonesia.
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1. Introduction

Urban poverty and informal settlements continue to challenge sustainable urban development,
particularly in rapidly urbanizing cities of developing countries where spatial inequality and
infrastructure deficits persist [1,2]. As urban areas expand, governments increasingly rely on geospatial
data to prioritize infrastructure investment and slum upgrading interventions [3]. Spatial outputs, such
as slum distribution maps and density surfaces, are critical for identifying high-priority zones for
sanitation improvements, drainage rehabilitation, and relocation planning [4]. In Indonesia, several
national programs including Kota Tanpa Kumuh (KOTAKU) and Program Nasional Pemberdayaan
Masyarakat (PNPM) have aimed to reduce slum areas through infrastructure improvement and
community-based initiatives. However, most implementations still lack spatial precision, as decisions
are often based on descriptive mapping rather than validated geospatial models [5,6]. In Palembang
City, informal settlements have expanded rapidly along the Musi River and its tributaries, creating
clusters of high-density housing with limited access to sanitation and high vulnerability to seasonal
flooding [7]. These conditions highlight the urgent policy need for geospatial prioritization tools that
can guide targeted interventions at the neighborhood scale.

Previous studies on slum mapping in Indonesia and Southeast Asia have mainly focused on visual or
qualitative assessments without integrating quantitative validation methods such as Receiver Operating
Characteristic-Area Under Curve (ROC-AUC) [8,9]. This limits the reliability of spatial models for
decision-making in urban planning and infrastructure management. Kernel Density Estimation (KDE),
when combined with ROC-AUC analysis, offers a robust geospatial modelling approach capable of
identifying slum concentration hotspots and evaluating model accuracy quantitatively [10].

Therefore, this study applies KDE and ROC-AUC to analyze and validate the spatial distribution of
slum settlements in Palembang City. By linking field-collected GPS data with density-based modelling,
it provides an evidence-based framework for urban planners to prioritize infrastructure upgrades,
improve flood resilience, and design equitable relocation strategies. The novelty of this research lies in
the integration of KDE-generated spatial surfaces with ROC-AUC validation metrics to ensure high
model precision for policy applications. Accordingly, the study addresses two key research questions:
RQ1: Where are the concentration hotspots of slum settlements in Palembang City? RQ2: How
accurately can Kernel Density Estimation (KDE) predict slum polygons when validated using ground-
truth GPS data through ROC-AUC analysis? By answering these questions, the study contributes to
strengthening data-driven urban management, ensuring that geospatial prioritization becomes a central
component of sustainable slum upgrading policies.

2. Methods

2.1.  Study Area

This study was conducted in Palembang City, the capital of South Sumatra Province, Indonesia, located
between 2°52'-3°5" S and 104°34'-104°52" E. As the province’s main economic and transportation hub,
Palembang has experienced rapid urbanization that has led to the proliferation of informal and slum
settlements particularly along the Musi River and its tributaries.

2.2. Data Collection and Sampling

A quantitative spatial survey was implemented to collect both demographic and geospatial data. The
population frame consisted of 64 officially designated slum areas distributed across 13 sub-districts.
Using proportional random sampling, 382 household heads (N = 382) were selected, ensuring
proportional representation by area size and population density. Each household location was recorded
using GPS-enabled smartphones with a mean positional accuracy of £3-5 m. Duplicate and inaccurate
coordinates (error >10 m) were filtered out during preprocessing in ArcGIS. Ethical approval was
obtained from the Research Ethics Committee of Universitas PGRI Palembang. Informed consent was
collected from all respondents after explaining the study’s purpose and confidentiality procedures.
Demographic attributes (household size, tenure type, service access) were used to cross-check slum
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classification consistency and support spatial interpretation. The study was conducted through a series
of systematic stages, including problem identification and goal formulation, sampling strategy design,
primary data collection (GPS, surveys, and demographic data), data processing using GIS, spatial
analysis using Kernel Density Estimation (KDE), spatial modeling, accuracy assessment through ROC—
AUC validation, and analysis of the spatial distribution of slum settlements in Palembang City.

2.3. Kernel Density Estimation (KDE)

The Kernel Density Estimation (KDE) technique was used to analyze the spatial concentration of slum
households. KDE is a non-parametric estimator that measures the intensity of spatial events over
continuous space [11]. The optimal bandwidth (h) was computed using Silverman’s Rule of Thumb:

_ : IQR -0.2
h=0.9 x min (SD, o X ) (1)

where:

SD = standard deviation of point distances,
IQR = interquartile range,

n = number of data points (382).

From the empirical data, h = 220 m was determined as the optimal search radius, minimizing over-
smoothing while preserving local variations. The output raster resolution was fixed at 10 m, balancing
precision and computational efficiency. The quadratic Epanechnikov kernel function was applied:

K(d)=—>(1—-d??ford <1;K(d)=0ford>1 ©

KDE surfaces were generated using ArcGIS 10.3 Spatial Analyst with the parameters: Kernel type:
Epanechnikov, Search radius (h): 220 m, Cell size: 10 m, Output raster extent: Palembang City boundary
(Ax = 16.4 km, Ay = 19.2 km), Output value range: 0-58.112 units/ha. Higher KDE values represent
stronger clustering of slum households, typically concentrated along the Musi River and its flood-prone
tributaries.

2.4, Accuracy Evaluation using ROC and AUC

To assess model accuracy, the KDE raster outputs (continuous density values) were validated against
official slum polygons using Receiver Operating Characteristic (ROC) and Area Under the Curve
(AUC) analysis. Validation workflow: Each pixel of the KDE raster was assigned a binary class label:
Positive class (1) = inside official slum polygon, Negative class (0) = outside polygon. KDE values were
normalized between 0-1 and tested across multiple thresholds (0.1-0.9). The optimal threshold (0.45)
was identified using the Youden Index to maximize the sum of sensitivity and specificity. The dataset
was partitioned using spatially stratified sampling: Training set: 70% of spatial units (for model
calibration), Testing set: 30% of spatial units (for independent validation). ROC-AUC analysis was
executed in R version 4.3.2 using the pROC package (v1.18.0). The final AUC = 0.968 (96.8%),
indicating excellent model discrimination and confirming the KDE’s strong capacity to differentiate
slum versus non-slum pixels. To explore the factors influencing slum concentration, supplementary
spatial variables were overlaid with KDE outputs. These included: Distance to river (m), derived from
Euclidean distance analysis; Elevation (m), extracted from the SRTM 30 m Digital Elevation Model
(DEM); Land use category, obtained from the Palembang City spatial plan. While no predictive
regression model was constructed, these covariates supported interpretation of spatial clustering and
validation of KDE hotspot locations.

2.5. Integration with Spatial Variables and Planning Application

To interpret KDE outputs, supplementary spatial variables were overlaid, including: Distance to river
(m) derived from Euclidean distance analysis; Elevation (m) — extracted from the SRTM 30 m DEM,;
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Land use category — obtained from the Palembang City Spatial Plan (RTRW). These overlays were not
used in a predictive regression model but provided contextual support to explain clustering tendencies.
To ensure policy relevance, KDE hotspot grids were exported into the municipal GIS planning system
of the Palembang Housing and Settlement Agency. This integration supports: Prioritization of sanitation
and drainage upgrades in high-density clusters; ldentification of feasible relocation zones for flood-
prone riverbank residents; and Infrastructure investment scheduling based on geospatial vulnerability
rankings. A simplified cost—feasibility framework was prepared with the agency, emphasizing that
relocation efforts should target high-density, low-elevation zones where infrastructure upgrading is less
economically viable.

3. Results and Discussion

3.1.  Slum Density Analysis Using Kernel Density Estimation (KDE)

The spatial distribution of slum households in Palembang City was modeled using the Kernel Density
Estimation (KDE) method. The KDE surface shows density values ranging from 0 to 58.112 households
per 100 m?, with the highest concentrations located along the Musi River and its tributaries (Figure 3).
These high-density slum clusters align with low-lying floodplains, riverbanks, and informal market
corridors—areas characterized by affordable land and access to informal economic opportunities.
Quantitatively, the correlation between KDE values and the Euclidean distance from the river yielded a
strong negative relationship (r = -0.72, p < 0.01), reaffirming that proximity to water bodies strongly
predicts slum density. When overlaid with income and skill layers, the KDE surface reveals that 73% of
households in high-density clusters (>40 HH per 100 m?) belong to income groups below IDR 2 million
per month and 82% lack formal skills. This combined spatial-socioeconomic analysis emphasizes that
slum concentration in Palembang is not only environmental but also deeply socioeconomic.

For policy prioritization, KDE grid cells were classified into five categories (very high to very low
density). The top five priority grid cells (covering 1.2 km?2) were identified in Kelurahan 16 Ilir, 7 Ulu,
35 llir, Tangga Takat, and Karang Anyar, representing areas with the highest density (mean KDE > 48
HH per 100 m?) and the lowest income-to-density ratios. These are recommended as priority zones for
sanitation upgrades, waste management, and riverbank rehabilitation Comparable spatial targeting
approaches have been observed in Jakarta’s Kampung Improvement Program, as reflected in studies
evaluating informal settlement upgrading in North Jakarta [12], where high-density informal settlements
near river corridors were prioritized for incremental upgrading rather than full relocation. These
regionally relevant cases suggest that spatially ranked interventions can optimize limited resources and
improve equity in slum upgrading efforts.

For classification purposes in subsequent accuracy testing, a KDE threshold value was applied to
separate slum (positive class) and non-slum (negative class) areas. Based on the distribution curve of
KDE values, a threshold of 22.5 households per 100 m2 was identified as optimal for distinguishing
slum clusters. This threshold was validated through Receiver Operating Characteristic (ROC) analysis,
using ground-truth data from 64 mapped slum locations. The confusion matrix and key classification
metrics derived at this threshold are shown below:

Table 1. Confusion Matrix of Slum and Non-slum Classification Results

Classification Predicted Slum Predicted Non-slum Total
Actual Slum 324 (TP) 24 (FN) 348
Actual Non-slum 4 (FP) 30 (TN) 34
Total 328 54 382

From this matrix, the following accuracy measures were obtained:
1. Sensitivity (True Positive Rate) = 0.93
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2. Specificity (True Negative Rate) = 0.94
3. Overall Accuracy =0.92

These results indicate that the KDE model effectively distinguishes between slum and non-slum areas,

supporting its use for spatial classification and urban vulnerability mapping.
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Figure 1. Spatial Distribution of Slum Density in Palembang City Derived from Kernel Density
Estimation (KDE)

The spatial pattern confirms that slum formation in Palembang City is highly correlated with
proximity to river systems, where migrants with limited financial capacity tend to settle due to low rent
and informal employment opportunities. These areas also exhibit limited access to infrastructure such
as clean water, electricity, and sanitation, reinforcing their classification as vulnerable zones. The KDE
map provides a robust spatial foundation for identifying priority intervention zones for urban upgrading
and relocation. Combining KDE outputs with socio-economic variables (income, skills, and migration
status) enables the formulation of targeted policy strategies, such as focused infrastructure investment,
waste management, and vocational skill programs in high-density clusters.

Based on the results of the spatial analysis using Kernel Density Estimation (KDE), the formation
and concentration of slum areas in Palembang City are strongly related to the increasing urban
population. The highest density of slum settlements is found along riverbanks and near industrial and
market areas. This spatial pattern indicates that population growth and economic migration have
contributed significantly to the expansion of slum zones. Most migrants come to Palembang in search
of better economic opportunities, but due to their limited financial capacity, they tend to occupy areas
with lower housing costs.The analysis also reveals that residents in these slum areas generally face
socioeconomic difficulties, such as unstable income, low education levels, and limited employment
opportunities. Environmentally, these settlements show poor sanitation, improper waste management,
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and inadequate infrastructure. Furthermore, field data indicate that access to clean water, electricity, and
health facilities is limited. This condition contributes to health problems and reduces the overall quality
of life for the inhabitants.

The pattern of slum formation found in this study aligns with earlier findings indicating that rapid
population growth and migration are primary drivers of urban slum expansion [13,14]. Migrants with
limited financial resources often choose to live in areas with affordable rents, which tend to develop into
dense and poorly serviced neighborhoods. As noted by previous studies, socioeconomic and
environmental constraints contribute to the persistence of such conditions [15]. While these dynamics
are well documented in the literature, this study adds empirical evidence from Palembang by
quantitatively linking slum density to river proximity and localized economic corridors, highlighting
how environmental accessibility and informal livelihoods jointly shape settlement patterns.
Socioeconomic barriers, including low financial capacity and limited education, hinder residents’ ability
to compete in the formal economy. This situation has been documented in prior research showing that
only a small fraction of slum dwellers are able to own homes [16]. In addition, environmental neglect
such as improper waste disposal further exacerbates the degradation of slum areas [17,18].

Previous studies have also emphasized the limited access of slum residents to basic infrastructure
such as clean water, electricity, and sanitation [17], which directly affects their health and well-being
[15,19,20]. In Palembang, these infrastructural deficiencies are spatially concentrated along the Musi
River corridor, where high-density slum clusters coincide with flood-prone zones, intensifying both
environmental and public health risks. The lack of health facilities often leads to higher vulnerability to
disease and poor mental health outcomes. Moreover, informal economic activities within slums generate
significant waste, contributing to environmental pollution [21,22]. Physically, slum settlements are
characterized by uninhabitable housing [23], insecure land tenure [24], and low building durability.
Several scholars have suggested that formalizing these settlements and providing land ownership
certificates could improve residents’ welfare [25-27], the findings from Palembang indicate that tenure
insecurity remains a critical barrier to infrastructure upgrading, particularly in riverbank settlements
subject to competing land claims. Secure property ownership has been shown to enhance living
standards [28] and serves as a pathway to pov. In the long term, this can promote investment and create
new business opportunities for slum residents [29], suggesting that spatially targeted tenure reform
combined with infrastructure provision is especially relevant for Palembang’s river-oriented slum
morphology.

3.2.  Accuracy Assessment of Slum Spatial Distribution
The accuracy assessment of slum spatial distribution was conducted after performing the Kernel Density
Estimation (KDE) analysis. This stage focused specifically on validating the discriminative capability
of KDE-derived density thresholds, rather than reinterpreting the classification outcomes already
discussed in Section 3.2. The evaluation used Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC) analysis to determine the performance of the spatial model. The ROC curve (Figure
4) yielded an AUC value of 0.968 (96.8%), which, according to the classification in Table 3, indicates
excellent accuracy (>0.9-1.0). ROC analysis was applied as a post-hoc validation tool to assess how
consistently KDE density values differentiate slum and non-slum areas across a range of thresholds.

The ROC curve was generated by plotting the True Positive Rate (sensitivity) against the False
Positive Rate (1-specificity) at various KDE threshold levels. Positive classes represent actual slum
areas derived from ground truth data, while negative classes represent non-slum areas. Rather than
serving as an independent classification exercise, this procedure evaluates the robustness of the selected
KDE threshold used in the previous section. The confusion matrix (Table 2) indicates that the model
correctly identified the majority of slum and non-slum locations, resulting in an overall accuracy of
92.3%, with high precision and recall values. These metrics confirm that the KDE-based classification
applied in Section 3.2 is statistically reliable and internally consistent.

The KDE output values ranged from 0 to 58.112 density units per 100 m?, where higher values
correspond to areas with higher concentrations of slum features. The most concentrated zones are
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located along the Musi River corridor, particularly in densely populated neighborhoods such as 16 llir,
7 Ulu, and Seberang Ulu I. Quantitative spatial correlation analysis revealed a strong negative
correlation (r =-0.72) between KDE values and the distance from the river, indicating that proximity to
the river significantly influences slum formation patterns. This spatial association reinforces the
classification results rather than duplicating them, demonstrating that KDE density gradients align with
known geographic drivers of informal settlement formation.

From a technical standpoint, the high AUC value reflects the robustness of the KDE model in
distinguishing slum from non-slum areas. However, potential overfitting might occur if the KDE
bandwidth parameter is too small, causing the model to capture local noise rather than general spatial
patterns. To address this concern, bandwidth selection was explicitly optimized through a systematic
cross-validation procedure in which multiple candidate bandwidths were tested iteratively. Model
performance was evaluated based on AUC stability and accuracy consistency across validation subsets,
and the optimal bandwidth was selected as the value that maximized AUC while minimizing variance
across folds. This approach ensures that ROC—-AUC results reflect genuine spatial structure rather than
localized overfitting.

In this study, the bandwidth was optimized through cross-validation using a pilot dataset, ensuring
that the model generalized well to unseen data. In this study, bandwidth selection was conducted through
a systematic cross-validation procedure in which multiple candidate bandwidths were tested iteratively,
and model performance was evaluated based on classification accuracy and AUC stability across
validation subsets. The optimal bandwidth was selected as the value that maximized AUC while
minimizing variance across folds, ensuring a balance between spatial smoothing and pattern sensitivity.
Although KDE is primarily a density estimator rather than a classifier, the ROC-AUC metric provides
an effective means of evaluating how well KDE-derived density thresholds correspond to observed slum
presence. The resulting AUC value of 0.968 therefore serves as confirmatory evidence of model
reliability, rather than a repetition of the classification analysis itself. This indicates that slum
distribution patterns in Palembang are spatially distinct, highly structured, and strongly associated with
riverbank environments.
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Figure 2. Receiver Operating Characteristic (ROC) Curve of the Kernel Density Estimation (KDE)
Based Slum Spatial Distribution Model in Palembang City.
Table 2: Classification of AUC Values

AUC Value Test Quality
>09-1 Excellent

02601030-07



>0.8-0.9 Very Good

>0.7-0.8 Good
>0.6 - 0.7 Satisfactory
0.5-0.6 Unsatisfactory

The high AUC value demonstrates that the KDE model effectively distinguishes between slum and
non-slum areas. However, since KDE is a non-parametric density estimator, it does not inherently
produce categorical outputs. Therefore, ROC-AUC was applied as a post-hoc validation tool to evaluate
the predictive performance of KDE-derived thresholds against ground truth data. Potential overfitting
can occur when the KDE bandwidth is too narrow, causing the model to overrepresent localized clusters
of data points. To avoid this, the optimal bandwidth was determined through cross-validation, ensuring
a balance between spatial resolution and generalization. The high AUC value (0.968) indicates that the
model maintains excellent discriminative power without significant overfitting. This suggests that slum
distribution patterns in Palembang are spatially distinct and highly structured, particularly along
riverbanks.

The concentration of slum areas along the Musi River highlights how urbanization pressure,
migration, and river accessibility interact to shape informal settlements. These findings align with
studies that link slum formation to rapid urban migration, where low-income migrants tend to settle in
affordable informal areas due to limited access to formal housing [26,30]. Similar issues of informal
settlement growth and weak land tenure enforcement have been documented in urban contexts outside
Indonesia [25]. What distinguishes the Palembang case is the strong spatial coupling between river-
oriented accessibility, informal economic corridors, and the persistence of tenure insecurity, which
jointly constrain infrastructure upgrading in riverbank settlements. The absence of formal land
ownership rights continues to hinder infrastructure improvements in these neighborhoods [30]. Granting
secure tenure and legal recognition can encourage residents to invest in their housing and reduce rental
dependency [27]. Studies show that formalisation via slum declaration can stimulate housing
improvements among residents [26], this study demonstrates that such benefits in Palembang are
unevenly realized due to competing land claims and regulatory ambiguity along the Musi River corridor.

In the context of Palembang, land tenure reform combined with basic infrastructure provision (water,
health, and education) is essential. Providing legal certainty of land ownership would eliminate eviction
fears and motivate long-term investment by residents. This is consistent with evidence that secure land
ownership is associated with improved economic security and has the potential to enhance educational
opportunities and social stability [28,31,32]. However, this study reveals that absentee landownership
and informal land transactions play a significant role in sustaining slum proliferation in Palembang,
limiting the effectiveness of conventional upgrading programs. Some landowners do not live in these
areas but instead lease or sell their plots, leading to the continued proliferation of informal settlements
[33]. Therefore, coordinated multi-sectoral efforts between government agencies, private developers,
and community organizations are needed to implement integrated slum upgrading without forced
relocation [34,35]. Methodologically, this study advances the literature by demonstrating how high-
resolution spatial modeling can identify tenure-sensitive upgrading priorities, although the reliance on
quantitative analysis limits insight into household-level decision-making. This study relied primarily on
quantitative spatial modeling, which limits the understanding of underlying social and behavioral factors
influencing settlement distribution. Future research should adopt a mixed-methods approach combining
spatial analytics with qualitative interviews or ethnographic fieldwork to uncover the socioeconomic
motivations behind settlement choices. Integrating remote sensing data with household-level surveys
could also enhance the explanatory power of future spatial models.

3.3. Implications for Urban Policy

The KDE results, combined with household-level socioeconomic data, provide a strong evidence base
for spatially informed policy formulation. Municipal stakeholders could integrate these outputs into the
Palembang Smart City GIS dashboard, linking KDE hotspots with sanitation and infrastructure
databases. This approach would support cost-effective decision-making by identifying which slum
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clusters yield the highest social return per unit of infrastructure investment. In addition, the findings
suggest the need for multi-sectoral collaboration between the Palembang Housing Agency,
Environmental Service, and Labor Office to design integrated interventions that combine spatial
upgrading (physical infrastructure) and social upgrading (skills and employment). Future studies should
extend the KDE—socioeconomic linkage to include temporal monitoring using remote sensing data (e.g.,
Sentinel-2 imagery) to capture slum dynamics over time.

4. Conclusion

This study employed Kernel Density Estimation (KDE) and ROC-AUC-based spatial validation to
analyze the spatial distribution and density of slum settlements in Palembang City. Using GPS-verified
data from 382 households across 64 slum polygons in 13 sub-districts, the analysis identified the highest
density clusters along the Musi River corridor, particularly in Seberang Ulu I, 7 Ulu, and 16 llir. The
KDE results (0-58.112 units/ha) and a ROC-AUC score of 0.968 confirm the model’s strong ability to
differentiate slum and non-slum areas. These findings provide directly actionable insights for urban
planners and local authorities. First, sanitation and drainage improvements should be prioritized in the
highest-density riverbank areas where recurrent flooding and waste accumulation are most severe.
Second, infrastructure rehabilitation and accessibility enhancement are needed in identified KDE
hotspot zones with limited road networks and basic services. Third, continuous spatial monitoring
should be implemented in moderate-density transition zones to detect potential informal settlement
expansion. The conclusions remain limited to the quantitative spatial domain of this study. Further
research integrating socio-economic and land tenure data would strengthen understanding of the
underlying drivers of slum formation and enable more comprehensive planning responses. Incorporating
advanced spatial statistics such as Moran’s I or Getis-Ord Gi* could also enhance future assessments of
spatial clustering and inequality dynamics.
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