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Abstract. Corrosion is an issue that has a significant impact on the oil and gas industry, resulting 

in significant losses. This is worth investigating because corrosion contributes to a large part of 

the total annual costs of oil and gas production companies worldwide, and can cause serious 

problems for the environment that will impact society. The use of inhibitors is one way to prevent 

corrosion that is quite effective. This study is an experimental study that aims to implement 

machine learning (ML) on the efficiency of corrosion inhibitors. In this study, the use of the 

Quantum Support Vector Regression (QSVR) algorithm in the ML approach is used considering 

the increasingly developing quantum computing technology with the aim of producing better 

evaluation matrix values than the classical ML algorithm. From the experiments carried out, it 

was found that the QSVR algorithm with a combination of (TrainableFidelityQuantumKernel, 

ZZFeatureMap/ PauliFeatureMap, and linear entanglement) obtained better Root Mean Square 

Error (RMSE) and model training time with a value of 6,19 and 92 compared to other models in 

this experiment which can be considered in predicting the efficiency of corrosion inhibitors. The 

success of the research model can provide a new insights of the ability of quantum computer 

algorithms to increase the evaluation value of the matrix and the ability of ML to predict the 

efficiency of corrosion inhibitors, especially on a large industrial scale. 
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1.  Introduction  

Corrosion is an electrochemical process between metal surfaces and corrosive environments, 

which can cause significant losses in various industries, especially in the oil and gas industry [1-3]. 

Corrosion is worth investigating, especially in oil field applications, as corrosion issues contribute to 

a significant portion of the annual costs of oil and gas production companies worldwide. 
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Additionally, proper corrosion protection can help avoid various potential disasters that could lead 

to serious issues such as loss of life, negative impacts on society, and pollution of water resources 

and the environment [4-6]. 

Among many corrosion control and prevention methods, the use of corrosion inhibitors is very 

common. Corrosion inhibitors are substances that reduce or prevent metal reactions with the 

corrosive environment when added in small concentrations [7-10]. Corrosion inhibitors generally 

consist of organic compounds whose molecules contain heteroatoms such as phosphorus (P), 

nitrogen (N), oxygen (O), sulfur (S), and arsenic (As), which can enable strong interactions between 

organic molecules and metal atoms in forming a protective layer on the metal surface absorbed at the 

corrosive metal solution interface due to the presence of free electrons in double bonds [11-14]. 

In its application, prevention is better than cure. Machine Learning (ML) can assist in this 

regard, but classical ML would take a long time to predict if the processed data is very large. In 

technological developments, Quantum Computing (QC) has attracted wide attention due to its 

unprecedented computational efficiency in solving specific problems compared to classical 

computation. As in recent research, it has been revealed that quantum computing can provide better 

evaluation results than classical computing within the limits of the same or similar problem topics 

and datasets [15-19]. 

In 1982, after Richard Feynman proposed his QC theory, Feynman argued that quantum 

problems could only be solved using QC [20]. In 1985, David Deutsch provided a new perspective 

on computation by developing the Quantum Turing Machine (QTM) [21]. Unlike ordinary classical 

Turing machines, QTM employs quantum mechanics principles, opening up new phenomena such 

as superposition. For example, if a classical Turing machine processes a step-by-step algorithm 

model, then QTM will execute the algorithm model as a whole where many calculations can be done 

simultaneously. We can still study this phenomenon with ordinary classical Turing machines and 

QTM which are still being developed [22]. 

In this study, an investigation is conducted by applying the Quantum Support Vector 

Regression (QSVR) algorithm on the Quantum Turing Machine (QTM) to study the regression of 

pharmaceutical compounds as corrosion inhibitors. This approach evaluates several aspects, 

including model training ability, accuracy measured using the R2 matrix, Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and computational efficiency 

by measuring execution time. Those evaluations are to measure the results of how the ML works. 

2.  Methods 

2.1.  Dataset 

This study uses a published dataset containing 260 data points with 14 molecular descriptors 

[22]. These features include molecular weight (MW), acid dissociation constant (pKa), octanol-

water partition coefficient (log P), water solubility (log S), polar surface area (PSA), polarizability 

(α), energy of highest occupied molecular orbital (E-HOMO), energy of lowest unoccupied 

molecular orbital (E-LUMO), Ionization Energy (I), Electron Affinity (A), Electronegativity (eV), 

Electrophilicity (ω), Hardness (eV), and The Faction Electron Shared (∆N). All those features to 

calculate the overall inhibitor efficiency in general. 

2.2.  Preprocessing 

The preprocessing stage is performed because some data points have missing values, resulting 

in data cleaning with 78 clean data points. Then, feature scaling is performed using the Min-max 

scaler method, which will then be divided into variables X and y. In variable X, Principal 

Component Analysis (PCA) is performed. PCA is a technique that reduces the dimension of a large 

dataset to facilitate interpretation while minimizing information loss by creating new variables that 

are uncorrelated and maximizing data variance [23]. Thus, it simplifies data complexity without 

reducing important information in the dataset. With PCA, features are reduced to the 5 most 
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significant features while retaining 95% of the data information. PCA was chosen to make model 

execution more time efficient because some features were pruned. Next, the data is divided into 

training and testing data sets to validate the model's performance on data not involved in the training 

process, thus reducing overfitting, and divided into 80% training data and 20% testing data. 

2.3.  ML Model 

In this case study, the ML model uses the Quantum Support Vector Regression (QSVR) 

algorithm, where QSVR itself is a development of the classical Support Vector Regression (SVR) 

algorithm. In this implementation, some aspects are combined in ML to obtain the best results, 

including Quantum Kernel, Feature map, and entanglement influence, as shown in Figure 1. In the 

initial experiment, the clean data input is transformed from classical to quantum input with a 

quantum map. Then it will be processed by calling functions from the quantum kernel, which will 

then be trained and evaluated following the steps as shown in Figure 2.  

A quantum kernel is a kernel that has a positive definite symmetric conjugate function κ that 

maps two variables x, y ∈ X to a complex space, κ:X × X → C. The function of the quantum kernel 

must meet the kernel function requirements and can be evaluated by a quantum computer. The 

important result of the kernel function is known as the kernel trick, which depends on the fact that 

any kernel function can be written as a product in the potentially high-dimensional feature space, 

κ(x, y) = φ†(x)φ(y) [24]. 

The feature map used is a quantum map that takes a Hilbert space representation that states 

that the quantum state of n qubits will result in a 2n-dimensional space, where the quantum state 

can encompass superposition and entanglement [25]. This experiment uses several feature maps 

such as ZZFeatureMap, Pauli Feature Map, and ZfeatureMap as shown in Figures 3 and 4. Those 

feature maps are some features of the Qiskit library to change data from classical numeric to 

quantum data that is by the QSVR algorithm. 

Entanglement is a state where the quantum system and particles at each point are 

interconnected and inseparable. If the quantum state of a composite system cannot be directly 

expressed as a direct product of the quantum state of two combined subsystems, then the pure state 

of the system can be either a pure quantum state or an entangled state [26]. This study uses "linear" 

entanglement because this feature is most suitable for the combination of QSVR algorithms, to find 

out whether the entanglement feature can produce a better evaluation matrix. 

 
Figure 1. ML model combination 
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Figure 2. Work steps 

 

 
Figure 3. ZZFeatureMap dan PauliFeatureMap 

 
Figure 4. ZFeatureMap 
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Table 1. Model parameter 

Model Kernel Feature Map Entanglement 

Model01 FidelityQuantumKernel ZZFeatureMap Linear 

Model02   Non-entanglement 

Model03  PauliFeatureMap Linear 

Model04   Non-entanglement 

Model05  ZFeature Map Non-entanglement 

Model06 TrainableFidelityQuantumKernel ZZFeatureMap Linear 

Model07   Non-entanglement 

Model08  PauliFeatureMap Linear 

Model09   Non-entanglement 

Model10  ZFeature Map Non-entanglement 

 

 

2.4 Evaluation 

Evaluation is carried out to determine a good ML model through a comparison of the 

experiment results conducted in Table 1. Evaluation in this case study uses several matrices such 

as R2, MSE, RMSE, MAE, and model training time [27]. This evaluation matrix is used because it 

is often and commonly used in the evaluation of ML models in regression cases to determine the 

performance of the ML model. 

3.  Results and Discussion 

 

Table 2. Experiment Results 

Model R2 MAE MSE RMSE Training time 

Model01 -0,16 4,93 38,32 6,19 102 

Model02 -0,18 4,88 38,92 6,24 100 

Model03 -0,16 4,93 38,32 6,19 100 

Model04 -0,18 4,88 38,92 6,24 92 

Model05 -0,25 5,07 41,13 6,41 227 

Model06 -0,16 4,93 38,32 6,19 92 

Model07 -0,18 4,88 38,92 6,24 93 

Model08 -0,16 4,93 38,32 6,19 92 

Model09 -0,18 4,88 38,92 6,24 94 

Model10 -0,25 5,07 41,13 6,41 92 

 

  The results of experiments with various combinations of ML models from Table 1 are then 

presented in the evaluation matrix shown in Table 2. The presented experiment results showcase the 

performance of ten distinct machine learning (ML) models, denoted as Model01 to Model10, in a 

regression task. Various evaluation metrics such as R2 (coefficient of determination), MAE (mean 

absolute error), MSE (mean squared error), and RMSE (root mean squared error) are utilized to 

assess the efficacy of these models. Additionally, the training time for each model is recorded. 

  The MAE and RMSE values across all models range from 4.88 to 5.07 and from 6.19 to 6.41, 

respectively. Despite the negative R2 values observed in all models, indicating poor fit to the data 

and was obtained due to the combination of ML models that were not yet suitable and needed further 

development, other evaluation metrics yield noteworthy results. These findings suggest that while 
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the models may not explain the variance in the data adequately, they still provide relatively accurate 

predictions, as indicated by the low MAE and RMSE values. 

  Moreover, an intriguing observation arises from Models 01, 03, 06, and 08, which exhibit 

entanglement during the training process. Entanglement, a phenomenon rooted in quantum 

mechanics, has been proposed as a mechanism to enhance ML model performance. The presence of 

entanglement in these models suggests a potential avenue for improving predictive accuracy, albeit 

further investigation is warranted. 

  Furthermore, the considerable disparity in model training times underscores the ongoing 

development of quantum computation. Despite advancements in quantum computing technologies, 

the training times remain inefficient for practical applications. This highlights the current limitations 

in harnessing quantum computing power for complex ML tasks. 

  In conclusion, the experiment results highlight the performance and potential of ML models 

in regression tasks, emphasizing the significance of alternative methodologies such as quantum 

entanglement. These findings suggest that refining quantum computing techniques could unlock its 

full potential in enhancing ML model performance. Future research should focus on advancing these 

quantum methods to further improve ML outcomes. 

 

 
Figure 5. Graph of the prediction results of Model06 and Model08 

4.  Conclusion 

For the regression study of drug compounds as corrosion inhibitors, considering the RMSE 

value and model training time, Model06 and Model08 can be proposed as superior ML models. In 

the combination of these models, the selection of quantum kernel and entanglement usage can 

enhance the evaluation results. The results of this experiment can be used as a learning experience 

and additional reference on how to solve regression cases with the QSVR algorithm, which is 

relatively new and can be an option in solving regression cases, especially on a large scale. However, 

this study needs to be improved. Optimization in the selection of ML combinations such as quantum 

kernels can be one way to achieve better results, especially in terms of efficiency, particularly model 

training time. Therefore, further research is needed so that the overall evaluation matrix results of 

the models can yield better values. 
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