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Abstract. Silkworm diseases pose a major threat to the sericulture industry, with early detection 

remaining a challenge due to limited infrastructure. This study focuses on detecting Grasserie 

disease, which can rapidly spread in silkworm rearing units, leading to significant economic 

losses. A novel dataset of 668 healthy and 574 Grasserie-affected silkworm images forms the 

basis of this research. The study applies machine learning techniques, using the Histogram 

Oriented Gradient (HOG) feature descriptor combined with Kernel Principal Component 

Analysis (KPCA) and supervised classifiers. The integration of Support Vector Machines (SVM) 

with HOG and KPCA achieved high accuracy (93.16%), recall (93.38%), and precision 

(91.94%), offering a faster, more accurate alternative to manual detection methods. This 

approach holds great potential for developing real-time, IoT-based diagnostic tools that enable 

farmers to quickly identify infected silkworms, reducing disease spread and economic losses, 

and can be extended to other agricultural applications requiring early disease detection. 
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1. Introduction 

Sericulture, the art and science of silk production, has a rich history that dates back thousands of years. 

Among the various species of silk-producing insects, Bombyx mori, commonly known as the silkworm, 

has been the primary focus of sericulture due to its exceptional ability to produce high-quality silk [1, 

2]. The process of rearing silkworms and cultivating silk, known as sericulture, has played a significant 

role in the socio-economic development of numerous regions worldwide. One such region renowned for 

its long-standing tradition of sericulture is South India, where the climate and conducive environment 

have fostered the thriving growth of the Bombyx mori species. The life cycle of silkworms is a 

fascinating and intricate process that comprises several distinct stages, each crucial to the production of 

silk [3]. Understanding this lifecycle is essential for successful sericulture. The typical life cycle of a 

silkworm can be divided into four main stages: egg, larva (caterpillar), pupa (cocoon), and adult moth 

[4, 5]. While sericulture has been a source of livelihood and cultural heritage in South India, it has faced 

challenges over the years, with one of the most detrimental being the outbreak of grasserie disease in 

silkworms. In recent times, the advent of machine learning methods has opened up new avenues for the 

early detection and control of grasserie disease, revolutionizing the sericulture industry [5-7]. 

Among the various challenges faced in sericulture, one of the most detrimental diseases affecting 

silkworms is grasserie disease [8]. Grasserie, caused by Bombyx mori nuclear polyhedrosis virus (Bm 

NPV), a baculovirus, is a highly contagious and devastating infection that poses a significant threat to 

the silkworm population [8-10]. When infected with Bm NPV, silkworm larvae experience severe 

pathology, leading to symptoms such as lethargy, loss of appetite, sluggish movement, and a failure to 

spin proper cocoons [11]. The disease's symptoms do not become evident until several days have passed. 

Initial indications start to manifest approximately 5 to 7 days after infection. During the early stages of 

infection, the silkworm's skin takes on a shiny and fragile appearance, and the larvae experience 

difficulties in the moulting process. As the infection progresses, the intersegmental areas swell, causing 

the larvae to move around restlessly on their rearing tray or rack. Additionally, the haemolymph (the 

insect's blood) becomes cloudy and milky white, containing a substantial number of hexagonal 

polyhedra, while the silkworm's outer covering becomes susceptible to easy ruptures [12-14]. The virus 

can spread rapidly within the silkworm rearing units and can cause significant economic losses in the 

sericulture industry. Additionally, infected silkworms may also exhibit abnormal spinning behavior, 

resulting in the production of weak and low-quality cocoons. The rapid spread of grasserie disease within 

silkworm rearing units can decimate entire populations, leading to considerable financial repercussions 

for sericulturists and impacting the silk industry on a larger scale. As the prevention and early detection 

of grasserie disease remain vital for sustaining the sericulture industry, novel approaches utilizing 

machine learning methods hold promise in combating this formidable threat and safeguarding the silk 

production process. 

As of the current state of the sericulture industry, the detection of Grasserie disease in silkworms 

primarily relies on conventional methods that involve manual inspection and visual assessment by 

experienced sericulturists [15, 16]. These methods are time-consuming, labor-intensive, and subjective, 

which can lead to inconsistent results and delayed diagnosis. Sericulturists closely monitor the behavior 

and appearance of silkworms during their growth stages, looking for telltale signs of infection such as 

reduced appetite, abnormal spinning, and lethargy [17]. Furthermore, microscopic examination of 

infected silkworm tissues, including gut and excreta, can provide insight into the presence of nuclear 

polyhedrosis virus, confirming the occurrence of the disease [18]. However, these traditional diagnostic 

approaches may not always be reliable, especially when dealing with early-stage infections or subtle 

manifestations of the disease. As the sericulture industry faces the ongoing threat of Grasserie disease 

and its detrimental impact on silk production, researchers are exploring advanced approaches, including 

molecular diagnostics and machine learning-based systems, to develop more efficient and reliable 

detection methods for timely intervention and effective disease management. 

Despite the critical importance of early detection and control of Grasserie disease in sustaining the 

sericulture industry, current methods rely heavily on manual inspection and visual assessments, which 

are time-consuming, subjective, and often insufficient for identifying early-stage infections. There is a 
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clear need for more reliable, efficient, and scalable diagnostic techniques that can overcome these 

limitations. This study addresses this gap by applying, the HOG feature descriptor integrated with KPCA 

and SVM to detect Grasserie disease in silkworms using camera images. The novel use of these machine 

learning techniques demonstrates a significant advancement over traditional methods, offering a more 

accurate, rapid, and objective approach to disease detection, and paving the way for developing practical 

IoT-based tools for real-time monitoring in sericulture. 
 

2. Materials and Methods 

The process for detecting Grasserie disease in Bombyx mori silkworms through image analysis begins 

with the collection of samples. These samples are photographed using a mobile camera, and the resulting 

images are saved on a computer for subsequent steps. The acquired images undergo preprocessing to 

eliminate any noise or unwanted elements. Following this preprocessing step, relevant features are 

extracted from the silkworm images. To simplify and streamline the data, dimensionality reduction 

techniques are applied. Finally, the reduced feature matrix is inputted into machine-learning algorithms 

to identify and detect the presence of the disease. In our work, we present a robust framework designed 

for the identification of Grasserie diseases in silkworms. Emphasizing the significance of deep and high- 

dimensional features, these attributes play a crucial role in the accurate detection and characterization 

of diseases in silkworm populations. 
 

2.1. Sample Collection and Image acquisition 

This study utilized a double hybrid variety of silkworm known as FC1 x FC2 double hybrid silkworm. 

In the southern region of India, CSR (Central Sericultural Research) hybrids FC1 (CSR6 x CSR26) and 

FC2 (CSR2 x CSR27) are commonly employed to create these double hybrids, which are known for 

their resilience, higher productivity, and ability to thrive in various climatic conditions. The research 

collected samples from farmers located in Namakkal district within the Tamil Nadu state of India. These 

samples were specifically obtained from silkworm rearers authorized by the sericulture department. In 

total, 1242 samples were gathered for this study, consisting of 668 healthy silkworms and 574 silkworms 

affected by Grasserie disease. Initially, the differentiation between diseased and healthy silkworms was 

carried out in collaboration with experienced farmers. 

Starting from the fifth day following infection, an expert meticulously inspected each infected 

silkworm individually, identifying and selecting them as diseased samples. The process of capturing 

images took place within a single day, and the photographs of the silkworms were taken using a Samsung 

Galaxy S20 FE smartphone equipped with a 12-megapixel camera. The smartphone was positioned at a 

height of 30 cm above the silkworms, with a tripod ensuring that the camera lens pointed downward and 

that the silkworms maintained their natural posture. To maintain the silkworms' original body shape 

after resizing the images, the aspect ratio of the capture device's screen was set to 1:1. The silkworms 

were placed on a black background. Figure 1a and 1b shows the images of a diseased and healthy 

silkworm respectively. 
 

Figure 1. (a) Diseased silkworm (b) Healthy silkworm 



 

02404015-04 

Preprocessing is a critical step in preparing the collected images for analysis. Initially the original 

images were cropped to focus on the region of interest, eliminating any irrelevant background areas that 

could interfere with feature extraction. The cropped images were then resized to a standard resolution 

of 640 × 480 pixels, ensuring uniformity across the dataset while preserving the aspect ratio to maintain 

the silkworms’ natural proportions. A binary segmentation process was then employed to distinguish 

the silkworm from the background. This involved converting the images to a binary format where the 

silkworm was represented in white pixels and the background in black. This step was crucial to remove 

any extraneous noise, such as shadows or reflections, and to create a clean input for feature extraction. 

Each image was converted to grayscale to simplify the data and focus on essential structural features, 

which are more informative for detecting disease-related patterns than color information. Grayscale 

images reduce computational complexity by decreasing the number of channels from three (RGB) to 

one, making subsequent processing steps faster and less resource-intensive. 

To ensure consistency in feature extraction, the pixel values were normalized to a standard scale 

(typically between 0 and 1). Normalization helps in enhancing the convergence rate during training by 

eliminating variations in lighting conditions and ensuring that all images contribute equally to the 

training process. Finally, to address the potential issue of limited data and to improve the generalization 

capability of the model, data augmentation techniques such as rotation, flipping, and scaling were 

applied to artificially expand the dataset. This step helps prevent overfitting by ensuring the model is 

exposed to a variety of scenarios, making it more robust to real-world variations. 
 

2.2. Feature Extraction 

Feature extraction is the process by which relevant information is distilled from the silkworm images to 

create a set of distinctive attributes that characterize the visual aspects of the silkworms. These features 

can include details such as texture, color, shape, and various other visual characteristics. Extracting these 

informative features is fundamental to our approach as it enables us to transform complex image data 

into a format that machine learning algorithms can readily analyze [19]. The efficacy of our disease 

detection model greatly depends on the selection and quality of these extracted features, allowing us to 

accurately differentiate between healthy and diseased silkworms, contributing to the advancement of 

silkworm health management in sericulture practices. We have used the feature extraction method 

Histogram Oriented Gradient (HOG). 

Histogram Oriented Gradient (HOG) stands as a pivotal feature extraction technique employed for 

addressing object identification challenges within the realm of computer vision. Initially introduced by 

Robert K. McConnell, this concept gained significant prominence when researchers Navneet Dalal and 

Bill Triggs demonstrated its high-accuracy capabilities for human detection [12]. HOG's advantage in 

object identification is rooted in its utilization of gradient magnitude and orientation to characterize 

objects. The HOG feature extraction process comprises several key steps. 

To begin, the original image, as seen in figures 2.a and 3.a, with dimensions 640 × 480, is transformed 

into grayscale and resized to 128x64, as depicted in figures 2.b and 3.b, to enhance the quality of results. 

Subsequently, the gradients of this resized image are calculated using equations 1 and 2 given below. 

𝐺𝑥(𝑟, 𝑐) = 𝐼(𝑟, 𝑐 + 1) − 𝐼(𝑟, 𝑐 − 1) (1) 

𝐺𝑦(𝑟, 𝑐) = 𝐼(𝑟 − 1, 𝑐) − 𝐼(𝑟 + 1, 𝑐) (2) 

Where 𝐺𝑥is the gradient in x direction and 𝐺𝑦 is the gradient in the y direction, r and c refer to the 

rows and columns respectively, I is the intensity value of a pixel. 
Once G_x and G_y have been determined, magnitude and orientation are computed using equations 

3 and 4. Figures 2.c, 3.c, 2.d, and 3.d represent the magnitude and orientation of these gradients. 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝜇) = √𝐺2 + 𝐺2 (3) 

 
𝐴𝑛𝑔𝑙𝑒 

 
(𝜃) 

 
= |𝑡𝑎𝑛 

𝑥 

−1(
𝐺𝑦 

𝐺𝑥 

𝑦 
 

)| (4) 
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The next step involves dividing the magnitude and angle arrays into 8x8 blocks. The gradient angle 

is partitioned into nine bins, each with a step size (∆θ) of 20 degrees. Bin boundaries [∆θ.j, ∆θ.(j+1)] are 

established for each bin, with its center, denoted as c_j, given by equation 5. For each angle value (θ), 

magnitude values are assigned to the corresponding bins using equations 6, 7, and 8. 

 

𝑐𝑗 = ∆𝜃. (𝑗 + 0.5) (5) 

𝑗 = ⌊ 
𝜃 
− 

1
⌋ (6) 

∆𝜃 2 
𝑉 = 𝜇. [ 

𝜃   
− 

1
] (7) 

  

𝑗+1 ∆𝜃 2 

𝑉𝑗+1 
= 𝜇. [

𝜃−𝑐𝑗
] (8) 

∆𝜃 

The Histogram of the HOG feature descriptor is computed for 8x8 patches of the image. Each cell 

within the patch contains 9x1 values. Subsequently, four 9x1 blocks are combined to create new 2x2 

blocks, each comprising 36 features. The values in these feature blocks are then normalized using the 

L2 norm, as specified in equation 9, with the inclusion of a small value (ε) to prevent zero division error. 

𝑓𝑏 =
 𝑓𝑏  

 

√‖𝑓𝑏‖2+𝗌 
(9) 

In the end, the final feature vector for an image consists of 7x15x36, resulting in a total of 3780 

features. The conclusive visualization of the HOG feature is presented in Figures 2e and 2e. 
 

Figure 2. HOG feature descriptor of infected silkworm a) Original Image b) resized image c) 

magnitude visualization d) orientation visualization e) HOG feature descriptor 
 

Figure 3. HOG feature descriptor of healthy silkworm a) Original Image b) resized image c) 

magnitude visualization d) orientation visualization e) HOG feature descriptor 
 

2.3. Dimensionality reduction 

Following the HOG feature extraction phase, the subsequent critical step is dimensionality reduction. In 

this context, dimensionality reduction techniques play a pivotal role in optimizing the effectiveness and 

efficiency of our machine learning model. The feature vectors derived from the HOG descriptors are 

typically high-dimensional, containing a multitude of components. However, this abundance of features 

can lead to increased computational complexity and may even introduce noise into the analysis. 
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Dimensionality reduction methods are employed to address these challenges by selecting a subset of the 

most informative features while reducing the overall dimensionality of the data. This not only 

streamlines the model's training process but also helps prevent overfitting, ultimately enhancing the 

model's ability to discern between healthy and diseased silkworms with improved accuracy and 

reliability. In this work, kernel principal component analysis (KPCA), is used. 

KPCA is an extension of principal component analysis (PCA) that addresses non-linear data 

relationships. It employs a kernel trick, which transforms the data into a higher-dimensional space, 

where a linear PCA can then be applied. KPCA allows for the capture of complex, non-linear 

relationships among data points [19]. KPCA starts by selecting an appropriate kernel function (e.g., 

polynomial, radial basis function) to map the data into a higher-dimensional space. In this space, linear 

PCA is applied to reduce dimensionality. The resulting principal components are then projected back 

into the original space. KPCA is used in various fields, such as image processing, food quality analysis, 

and medical diagnosis, where non-linear patterns need to be extracted from high-dimensional data. 
 

2.4. Classification 
The classification algorithm, support vector machine (SVM) is used in this work. 

SVM is a supervised classification method used for both linearly separable and non-separable 

datasets. Its primary aim is to identify the optimal hyperplane that effectively distinguishes between 

different classes. To achieve this, SVM seeks to maximize the margin, which is the distance between the 

support vectors (the data points closest to the hyperplane) and the hyperplane itself [20]. The overarching 

objective in finding this optimal hyperplane is to enhance the separation between classes by maximizing 

the minimum distance. The distance from a data point (x0 ,y0 ) to the hyperplane is obtained by 
 

𝑑𝐻 (Φ(𝑥0 )) = 
|𝑤𝑇(Φ(𝑥0))+𝑏| 

‖𝑤‖2 
(10) 

Where Φ(𝑥0) represents the point vector, w stands for the weight vector, b is the bias term, and ‖w‖2 

represents the Euclidean norm. The objective at hand is to optimize the hyperplane's minimum distance, 
specifically by maximizing the distance to the support vector from the hyperplane. 

 

𝑤⋇ = 𝑎𝑟𝑔𝑚𝑎𝑥[𝑚𝑖𝑛𝑛 𝑑𝐻(Φ(𝑥𝑛))] (11) 

Where 𝑤⋇ weight vector for the optimum hyperplane, Φ(𝑥𝑛) is the minimum distance data point. 
The decision is based on the hyperplane, and when dealing with non-linear data, a kernel function is 

employed to project the data points into a higher-dimensional space. 

𝐾(𝑋, 𝑍) =< ɸ(𝑋), ɸ(𝑍) > (12) 

In this context, the kernel function, denoted as K, takes inputs X and Z in an n-dimensional space, 

while ɸ is a function responsible for mapping data from n dimensions to m dimensions. The kernel  

function essentially takes data from the initial feature space and transforms it into the target feature 

space. Many research studies have commonly utilized the RBF (Radial Basis Function) kernel because 

it offers computational efficiency, particularly in high-dimensional spaces [18-20]. 
 

2.5. Validation 

To ensure the reliability and generalizability of the proposed machine learning model for detecting 

Grasserie disease in silkworms, a robust validation strategy was employed. The dataset was randomly 

partitioned into training and testing subsets using an 80/20 split, where 80% of the data was used for 

training the model and 20% for testing. Cross-validation, specifically 10-fold cross-validation, was 

performed to further evaluate the model's performance. 

Potential biases in this study could arise from several sources, including the sample collection 

process, the imaging technique, and the choice of features. For instance, since the silkworm samples 

were collected from a specific geographical region (Namakkal district in Tamil Nadu, India), the model 

might not fully capture the variability present in silkworm populations from other regions or countries, 
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potentially limiting its generalizability. Additionally, the use of a single camera type and fixed image 

acquisition settings could introduce biases related to lighting conditions, camera angle, and background, 

affecting the model's robustness in different real-world scenarios. To address these potential biases, the 

study utilized a diverse dataset representing various silkworm images and ensured consistent imaging 

conditions. However, future work could benefit from expanding the dataset to include samples from 

different regions, silkworm breeds, and varying environmental conditions. Moreover, incorporating a 

broader range of imaging devices and settings could enhance the model's adaptability and performance 

in diverse practical applications. 
 

3. Results and Discussion 
 

3.1. Performance Evaluation Metrics 

To assess the effectiveness of our trained machine learning model, we employ a range of metrics. When 

it comes to predicting new data or images, we rely on a confusion matrix as a visual tool to gauge the 

model's performance. This confusion matrix comprises four key components: True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). TP and TN denote instances where the 

model's predictions align correctly with reality. FP signifies erroneous positive predictions, and FN 

indicates incorrect negative predictions. We derive more distinct metrics from this confusion matrix to 

thoroughly evaluate our model's performance. These precise metrics include Accuracy, Precision, Recall 

(or Sensitivity), Specificity, and the F1 score, each calculated using specific formulas. 
 

Accuracy = 
TP+TN

 
TP+FP+TN+FN 

Precision = 
TP

 
TP+FP 

Recall or Sensitivity = 
TP

 
TP+FN 

Specificity = 
TN

 
TN+FP 

f1 score = 
2×Recall×Precision 

Recall+Precision 

(13) 

(14) 

(15) 

(16) 

(17) 

 

For further evaluation, we utilize the Receiver Operating Characteristics (ROC) curve. By assessing 

the value of the ROC, we can estimate the area under the ROC curve (AUC). The ROC curve provides 

a straightforward way to gauge a model's or classifier's performance in distinguishing between classes. 

A higher AUC indicates a more effective predictive ability of the classifier or model. 

 
 

3.2. Disease detection using SVM 

 

In this work we have used cross validation method of evaluation. K-fold cross-validation is a common 

technique in machine learning for assessing the performance of a model. It involves dividing the dataset 

into K subsets, using K-1 subsets for training and the remaining subset for testing, and repeating this 

process K times to ensure comprehensive evaluation and mitigate potential overfitting issues. In this 

study we have performed 10-fold cross validation for classification. 

The classification evaluation of our proposed SVM classifier, employing HOG feature descriptors 

and three dimensionality reduction techniques, is detailed in Table 1. Among these variations, the HOG- 

KPCA-SVM classifier stands out, demonstrating superior classification results compared to HOG- 

MDS-SVM and HOG-Isomap-SVM. This is evident in its high sensitivity at 93.38% and an accuracy of 

93.16%. Additionally, it showcases commendable precision, F1 score, and specificity at 91.94%, 

92.65%, and 92.96%, respectively. In Figure 5, we present an ROC curve, which provides a 

comprehensive view of the classification performance of the HOG-KPCA-SVM model by examining 

the relationship between the true positive rate (TPR) and the false positive rate (FPR). Notably, the mean 
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AUC score, as depicted in Figure 5, is calculated at 0.94, underscoring the model's strong classification 

capabilities. 
Table 1. Classification results of SVM 

 

Model Hog-Kpca-Svm 

Accuracy (%) 93.16 

Recall (%) 93.38 

Specificity (%) 92.96 

Precision (%) 91.94 

F1 Score (%) 92.65 
 

 

Figure 5. ROC curve for HOG-KPCA-SVM 

 
 

The proposed HOG-KPCA-SVM classifier demonstrates a significant advancement over traditional 

methods, such as manual inspection and microscopic examination, for detecting Grasserie disease in 

silkworms. Manual inspection is labor-intensive, subjective, and often prone to inconsistencies due to 

human error or variability in expertise. Microscopic examination, while more accurate, is still time- 

consuming, requires specialized equipment, and may not detect early-stage infections effectively. In 

contrast, our method offers a systematic, automated approach that relies on robust feature extraction and 

machine learning, achieving a high classification accuracy of 93.16%. This automated approach 

minimizes human error, reduces the need for specialized training or equipment, and enables scalable 

deployment across various sericulture farms. However, potential limitations of our approach include the 

need for sufficient computational resources for training and the dependency on image quality for 

accurate detection. 

In their study, Nagashetti et al. achieved an impressive accuracy of 97% in differentiating between 

670 healthy silkworms and 527 silkworms affected by Grasserie disease, utilizing deep learning 

techniques [21]. Zhen et al. utilized 600 silkworm images of nuclear polyhedrosis virus and white 

Muscardine disease to evaluate the performance of the Attention-Concatenation Dense Convolutional 

Neural Network (AC-DenseNet). They achieved a remarkable maximum accuracy of 85.6%, 

demonstrating the effectiveness of AC-DenseNet for distinguishing between the two diseases in 

silkworms [6]. Xia et al. developed an application for Silkworm Disease Recognition using the Local 
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Binary Pattern (LBP) feature extraction technique and an SVM-based classification method, achieving 

an accuracy of 73.8% [22]. The system employs client/server network architecture, allowing users to 

capture silkworm disease images in real-time using a mobile app and seamlessly upload them to a cloud 

server platform. In comparison to existing methods, our study demonstrates a competitive performance 

with a 93.16% accuracy in distinguishing between healthy and Grasserie-infected silkworms, utilizing 

a combination of HOG feature extraction, KPCA for dimensionality reduction, and SVM for 

classification. 
 

4. Conclusions 

 

In this research, we have introduced a significant machine learning-based classification model designed 

to identify infected silkworms. Our primary objective is to classify silkworms into two distinct 

categories, affected by Grasserie and healthy. We have rigorously evaluated our model using various 

metrics and have presented the classification outcomes with visual representations of these results. In 

addition to developing our classifier, we have applied cutting-edge image processing techniques to make 

input images more adaptable for our classification model. This research represents a substantial step 

towards the creation of an advanced automated silkworm disease detection system. Our approach 

leverages not only modern image processing techniques but also integrates in-demand supervised 

learning methods. Notably, our developed classifier outperforms other systems in terms of accuracy, 

particularly when applied to our real-world, novel dataset. Looking ahead, our future efforts will center 

on the practical implementation of an IoT device using the proposed system. This endeavor aims to 

provide a specific solution for sericulture farmers, enabling them to promptly identify infected 

silkworms and take necessary measures to avert unexpected losses in their farming activities. 

Additionally, we intend to expand the usability of our system in various sectors of sericulture by working 

with different silkworm datasets. Our research not only advances the field of silkworm disease detection 

but also paves the way for practical, real-world solutions with the potential to revolutionize sericulture 

practices and enhance the economic security of farmers in the industry. Future research will focus on 

implementing an IoT-based device using the developed model to enable rapid detection of infected 

silkworms, reducing losses for sericulture farmers. Additionally, the model's applicability will be 

expanded by testing it with diverse silkworm datasets under various rearing conditions to enhance its 

generalizability and robustness. 
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