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Abstract. Ovarian cancer ranks sixth globally as a major cause of death among women, with a 

five-year survival rate below 50%, largely due to late detection. Early detection is crucial to lower 

mortality rates. This paper introduces an Optimized Stacking Ensemble Classifier (OSEC) for 

early ovarian cancer detection using biomarkers. The model comprises two layers: the first layer 

includes base classifiers optimized with Particle Swarm Optimization (PSO), while the second 

layer is a meta-classifier integrating Support Vector Machine (SVM), Logistic Regression (LR), 

and Random Forest(RF) models fine-tuned through grid search. Among the three datasets 

evaluated, the Blood Routine dataset showed the best performance with a stacked RF meta-

classifier, achieving: 94.29% accuracy. The Stacked RF model also outperformed others, reaching 

92.82% accuracy on the Serum dataset and 92.77% on the Malignant Ovarian Tumor (MOT) 

dataset, consistently excelling in precision, recall, and f1-score. 
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1. Introduction 

Ovarian cancer (OC) is a serious and prevalent condition among women, currently with no definitive 

cure. It accounts for 2.5% of all female cancers [1], with patients facing a lifetime risk of 2.7% and a 

fatality rate of 5%. This high fatality rate is largely due to late-stage diagnosis and the lack of early 

symptom detection. Early identification of OC can significantly enhance survival rates. Traditional 

diagnostic methods such as chemotherapy, ultrasonography, and helical CT scanning [2], though 

valuable, have limitations. Chemotherapy, while effective in treating advanced OC, has a high recurrence 

rate of 60% to 80% within five years. Ultrasonography and Helical CT scanning are essential for tumor 

detection and treatment planning but struggles to reliably distinguish between benign and malignant 
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pelvic masses, complicating early diagnosis [3].  Gynecologists [4] often face the challenge of 

distinguishing between benign and malignant pelvic masses, which may indicate tumors. Both 

ultrasonography and helical CT scanning are crucial for early-stage tumor detection. Several biomarkers 

[5], including CA125, CA72-4, and HE4, provide valuable information about the presence, progression, 

or response to treatment of OC. Higher levels of CA-125, CA-72-4 and HE4 in the blood indicate the 

presence of ovarian cancer. Normal blood values are typically less than 35 U/mL for CA-125, less than 

140 pmol/L for HE4, and below 6.9 U/mL for CA 72-4. Levels within these ranges suggest the presence 

of a benign ovarian tumor. Bast and Mills [6] considered the properties of combined biomarkers with 

special emphasis on CA 125, HE 4, and CA 72-4 in the finding of ovarian cancer at an early stage. 

Concluding their review of the literature, the authors opined that the integration of these biomarkers 

improves the diagnostic performance compared to the use of individual biomarkers. Nonetheless, a 

pointed weakness is methodological fluctuations in biomarker levels; they remain influenced by the 

different characteristics of patients, and, therefore, research that includes numerous and highly diverse 

populations of patients is required. Medeiros [7] examined the diagnostic performance of CA-125 in 

ovarian cancer. Although CA-125 is useful in diagnosing ovarian cancer, it is not very sensitive or 

specific, especially in stage I disease. This stresses the need for more biomarkers and better diagnostics. 

Moore and Miller [8] reported on clinical trials regarding HE4 test efficiency in the case of ovarian 

cancer, stating that HE4 raises the overall test sensitivity when complemented with CA-125. However, 

they often include small numbers of patients and must be reproduced in greater numbers of racially 

diverse subjects. However, existing methods using these biomarkers often lack the precision needed for 

early detection [9-12], leading to a gap in the effective early diagnosis of OC. This research gap 

highlights the need for more accurate and reliable predictive models. To address these shortcomings, this 

study introduces an Optimized Stacking Ensemble Classifier (OSEC) developed to improve early 

detection of ovarian cancer by analyzing biomarkers within clinical datasets. The clinical dataset includes 

various biomarkers categorized into three types: blood routine ( Red Blood Cell Distribution Width, 

Lymphocyte Cell Count, Basophil Percentage, Mean Corpuscular Hemoglobin, ect), serum (Anion Gap, 

Albumin, Sodium, Phosphorus,  Alkaline Phosphatase, Aspartate Aminotransferase (AST), Potassium, 

Chlorine, ect), and Malignant Ovarian Tumor (MOT) (Carbohydrate Antigen 125, Alpha-Fetoprotein, 

Carbohydrate Antigen 19-9,  Human Epididymic Protein 4, Carbohydrate Antigen 72-4, 

Carcinoembryonic Antigen) markers. Unlike existing methods, which often rely on single or non-

optimized models [15], the proposed OSEC uses a two layered ensemble approach. Initially, it uses four 

distinct base ensemble classifiers such as Gradient Boosting (GBClassifier), Random Forest 

(RFClassifier), Extra Trees (ETClassifier), and XGBoost (XGBClassifier), along with non-ensemble 

classifiers such as Decision Trees, Logistic Regression, SVM, KNN, and Naive Bayes. These base 

models are individually tuned using Particle Swarm Optimization (PSO) for hyperparameter optimization 

(HPO). The prediction from these optimized base classifiers are then aggregated and used to train the 

meta-classifiers such as LR, SVM, and RF in the second layer. Here, Grid search-based hyperparameter 

optimization is applied to fine-tune the hyperparameter of the meta-classifiers. This two-stage HPO 

refines the overall predictive performance of the OSEC model. 

1.1. Contributions 

This sub-section outlines the key contributions of the proposed OSEC model. They are 

1. Two-layered Ensemble Approach: Proposes a novel two layered ensemble method for early 

detection ovarian cancer, enhancing predictive accuracy and robustness 

2. Two-stage Hyperparameter Optimization: Uses advanced hyperparameter tuning through PSO 

 

The rest of this paper is organized as follows: Section 2 sums up the outcomes of ensemble and non-

ensemble methods, as well as the techniques related to hyperparameters tuning. Section 3 further explains 

the conceptual framework and by extension the methodology to be used in the research study. The last 

section is devoted to the further discussion of the results of using the proposed methodology for analysis. 

Hence, Section 5 concludes with the following summary of the findings. 
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2. Methodology 

The research study used a clinically approved raw dataset comprising samples from individuals with 

both benign and malignant ovarian tumors. The OSEC applied classification techniques to detect ovarian 

cancer at an early stage. 

2.1. Data Processing  

 The raw dataset went through multiple preprocessing stages, such as data cleaning, data scaling, 

SMOTE and splitting. It contains information from 349 individual patients along with 49 biomarkers. For 

data scaling, the values were standardized using the equation 1 Here, 𝑥𝑖 – each individual, µ - mean of the 

population.Following these preprocessing steps, SMOTE was applied to manage class imbalance. 

σ = √
1

𝑛
 ∑ (𝑥𝑖 −  µ) 2𝑛

𝑖=1                                                              (1) 

 

2.2. Optimized Stacking Ensemble Classifier (OSEC) 

The proposed OSEC methodology incorporated a comprehensive approach to developing a two-

layer ensemble classifier model for early ovarian cancer detection. The process began with a cancer 

dataset specifically curated for training and testing purposes. A subset of this dataset was used as the 

training set to train individual base classifiers. These base models, included both ensemble methods 

(GBClassifier, RFClassifier, ETClassifier, XGBClassifier) and non ensemble methods (DT, LR, KNN, 

KVM, Naive Bayes). These base models underwent hyperparameter tuning using Particle Swarm 

Optimization (PSO). In PSO [13], each particle represents a set of hyperparameters and moves through 

the search space based on its velocity. The velocity of 𝑉𝑖 of each particle updated using the following 

equation 2 

𝑉𝑖
𝑡+1 = 𝑤. 𝑉𝑖

𝑡 + 𝑐1. 𝑟1. (𝑃𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2. 𝑟2. (𝐺𝑡 − 𝑋𝑖
𝑡)   (2) 

Where w is inertia weight, 𝑐1 and 𝑐2 are coefficient controlling the influence of personal global best 

position, 𝑟1 and 𝑟2 are random factors.  The particle position 𝑋𝑖 updated by adding this velocity as 

mentioned in equation 3 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1     (3) 

The performance of these configurations was evaluated using a fitness function, and the optimal 

hyperparameters were identified through multiple iterations of this process, thus enhancing the models' 

performance and accuracy. The base models then generated predictions on the training set, which were 

aggregated into meta ( P_1, P_2,… P_n). These meta features served as input for a meta model, a 

classifier trained to make final predictions. Integration techniques such as Stacked LR, Stacked SVM, 

Stacked RF were implemented, with grid search used to optimize the meta model. This ensured the 

accurate and robust predictions.  

Grid search systematically work through multiple combinations of hyperparameter values. It is to 

find the optimal set of hyperparameters for a meta classifier that maximizes the model’s accuracy. Define 

the hyperparameters space 𝑋𝑖 to search space in equation 4. Each hyperparameter ℎ𝑖, a set of possible 

values.  

𝑋𝑖 = (ℎ1, ℎ2, … ℎ𝑚)     (4) 

The total number of combinations of grid points) as follows in equation 5 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  ∏ 𝑛𝑖
𝑚
𝑖=1      (5) 

Select the set of hyperparameters ℎ∗ that provides the best average performance 𝑀(ℎ𝑚) in equation 6 

ℎ∗ = arg 𝑀(ℎ𝑚)ℎ𝑚𝜖𝑋𝑖

𝑚𝑎𝑥      (6) 
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Algorithm 1 outlines the hyperparameter optimization of the classifiers used in the two stage HPO 

approach. This optimization process enhances the performance of the base Models, allowing them to 

better capture complex patterns within the data. 

Algorithm 1. Hyperparameter Optimization  

Input :  hyperparameters 𝑋𝑖of each models M 

Output : fitness Score of 𝑋𝑖 

• Initialize model with Hyperparameters 𝑋𝑖 

• Train the model 𝑀(𝑋𝑖) using training data 

• Evaluate the model 𝑀(𝑋𝑖) on validation data. 

• Calculate the performance metric such as accuracy 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀(𝑋𝑖)) 

• Return the fitness score 

 

The model’s performance was assessed using a designated performance metrics to assess its 

effectiveness in ovarian cancer detection. Finally, the trained model was tested on a separate test set to 

provide valuable insights into its performance and delivered the final prediction for ovarian cancer 

detection. Algortihm-2 illustrates the steps of the proposed OSEC. 

Algorithm -2 : Optimized Stacking Ensemble Classifier  

Input: { X: Input features (biomarkers) , y: True labels (0 for benign, 1 for malignant) , K: Number of 

folds for cross-validation, Base classifiers: {C₁, C₂, …, Cₘ}, Meta-classifier: M } 

Output: Predicted labels for new data instances 

Procedure: 

1. Data Preprocessing: 

o Handle missing values and outliers in X. 

o Standardize X to have zero mean and unit variance. 

2. Class Imbalance Handling: Apply SMOTE to balance class distribution in X and y. 

3. Split Data: Split X and y into training and test sets. 

4. Initialize meta_features: 

o Create an empty array meta_features to store predictions from base classifiers. 

5. First Layer - Hyperparameter Tuning of Base Classifiers using PSO: 

o For each base classifier 𝐶𝑖 in {C₁, C₂, …, Cₘ}: 

▪ Initialize pBest (best score using algorithm 1) and gBest (best parameters). 

▪ For each hyperparameter set: 

▪ Train and validate the base classifier 𝐶𝑖 using cross-validation (calculate fitness 

using Algorithm 1). 

▪ If the current fitness is better, update pBest and gBest using equations (2) and (3). 

▪ Train the final classifier 𝐶𝑖 with gBest parameters. 

▪ Store predictions of 𝐶𝑖 on training data in meta_features. 

6. Second Layer - Hyperparameter Tuning of Meta-classifier using Grid Search: 

o Train meta-classifier M on meta_features using grid search to optimize hyperparameters. 

7. Evaluate Performance: 

o Predict the test data using the trained meta-classifier M. 

o Calculate performance metrics (e.g., Accuracy, ROC AUC) for the final predictions yfinal 

 

3. Result and Discussion 

The study data involved data of 349 patients and the data was collected from the Soochow 

University’ Affiliated Hospital [14]. This analysis is a retrospective study based on 171 patients with 
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ovarian cancer diagnosed between July 2011 and July 2018 as well as 178 patients with benign ovarian 

tumors. The dataset comprises a set of 49 attributes that were identified through pathological diagnosis. 

 The dataset is categorized into three subgroups: Blood Routine contains 19 biomarkers, Serum 

contains 22 biomarkers, and MOT contains 6 biomarkers. For the experiment, both for datasets, the data 

was split into two sets: 80% for training and 20% for testing. The performance of the classifiers was 

evaluated using the following metrics Accuracy, Precision, recall, F1-score and log-loss. Table 1 explains 

the best hyperparameters settings of each classifier model along with Two-stage HPO technique.  

 

Table 1. Hyperparameters values of Ensemble and non ensemble Classifier models 

ML 

Models 

HPO 

Techniques 

Best values 

DT 

Classifier 

PSO criterion: entropy, max-depth: 5, max-features: None , max-leaf-

nodes: 12 , min-samples_leaf: 2 , min-samples_split:10, splitter: best,  

Logistic 

Regression 

Grid Search Regularization Strength NAÏVE : 10.0, Solver : liblinear,  Multi-class 

: ovr,  Class-weight : balanced 

SVM Grid Search Kernel : poly,  Gamma : auto, C : 1, degree : 2 

KNN PSO n_neighbors-values : 5,      weights-values : distance,   

algorithm-values:auto,  

Naive  

Bayes 

PSO Smoothing Parameter (alpha): 1.5 

GB 

Classifier 

PSO Learning-rate: 0.1, n-estimators: 50 , max-depth: 2, subsample: 0.8, 

min-samples_split:2 , min_samples-leaf: 1 ,  

ET  

Classifier 

PSO n-estimators: 100, max-depth : 20, min-samples_split:5, min-

samples-leaf: 1,  

XGB 

Classifier 

PSO Max-depth: 2, n-estimators: 60, learning-rate:0.1, 

RF  

Classifier 

Grid Search n-estimators: 50, max-depth: 5, min-samples_split:15, min-samples-

leaf:6 

Table 1 presents the results of applying Two-stage HPO like PSO and grid search across 

various classifiers. Listing the best hyperparameter values for each classifier. The performance 

analysis of experiments using these HPO to the proposed two-layered ensemble approach namely 

OSEC. Table 2 presents the performance analyses of the non-ensemble base models and the OSEC on 

different test sets namely Blood sentinels of routine, Serum, MOT. 

 

Table 2. Comparative Performance analysis of  non ensemble base models and OSEC 

Data 

set 
Metric 

Benchmark non ensemble Models  Proposed OSEC Models 

DT LR SVM KNN 
Naive  

Bayes  

Stacked 

LR 

Stacked  

SVM 

Stacked 

Random 

Forest 

Blood  

Routine 

Accuracy(M) 0.914 0.944 0.885 0.914 0.914 0.914 0.911 0.919 

Precision(M) 0.846 0.889 0.846 0.860 0.874 0.874 0.860 0.904 

Recall(M) 0.794 0.841 0.811 0.815 0.838 0.838 0.815 0.651 

f1(M) 0.850 0.890 0.846 0.862 0.874 0.874 0.862 0.910 

Logloss(M) 4.661 3.116 4.661 4.146 3.631 3.631 4.146 3.087 

Serum 

Accuracy(M) 0.852 0.882 0.823 0.852 0.852 0.872 0.852 0.882 

Precision(M) 0.784 0.827 0.784 0.798 0.812 0.812 0.798 0.847 

Recall(M) 0.732 0.779 0.749 0.753 0.776 0.776 0.753 0.809 
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f1(M) 0.788 0.828 0.784 0.800 0.812 0.812 0.800 0.848 

Logloss(M) 4.720 3.175 4.720 4.030 3.690 3.690 4.205 3.146 

MOT 

Accuracy(M) 0.872 0.902 0.843 0.872 0.872 0.892 0.872 0.902 

Precision(M) 0.804 0.847 0.804 0.818 0.832 0.832 0.818 0.867 

Recall(M) 0.752 0.799 0.769 0.773 0.796 0.796 0.773 0.829 

f1(M) 0.808 0.848 0.804 0.820 0.832 0.832 0.820 0.868 

Logloss(M) 4.703 3.158 4.703 4.188 3.673 3.673 4.188 3.129 

 Table 2 shows the comparative performance analysis of hyperparameter tuned non-

Ensemble base classifier and OSEC for OC Classification. The stacked RF model achieved the 

highest accuracy of 91.86% on the Blood Routine dataset, with exceptional precision (90.38%) 

and a strong recall of 82.94% on the MOT dataset. The model also recorded a balanced F1 score 

of 90.97% and the lowest log loss of 3.0865 on the Blood Routine dataset. Among the three 

datasets, the Blood Routine dataset shows the best overall performance with the stacked random 

forest. Figure 1 shows the comparative analyses of the non ensemble base models and the 

stacked models. 

 

Figure 1. Comparative analyses of the non ensemble base models and the OSEC performances 

The figure 1 presents performance metrics of various non-ensemble models across three 

different datasets. The x-axis denotes the metrics, while the left y axis scales performance scores (0 to 1) 

of base models. The right y axis highlights meta models, helping in comparing performance across 

datasets. Table 3, presents the comparative analyses of the ensemble base models and the OSEC 

on diverse test sets: Blood Routine, Serum, and MOT.  

 
Table 3. Comparative Performance analysis of Ensemble base models and OSEC  

Data 

set 
Metric 

Benchmark ensemble Models  Proposed OSEC Models  

GB RF ET XGB 
Stacked 

LR 

Stacked 

SVM 

Stacked 

Random 

Forest 

Blood  

Routine 

Accuracy(M) 0.921 0.931 0.921 0.921 0.928 0. 9483 0.943 

Precision(M) 0.881 0.896 0.853 0.867 0.908 0.938 0.933 

Recall(M) 0.845 0.849 0.801 0.822 0.872 0.849 0.906 
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f1(M) 0.882 0.897 0.857 0.869 0.909 0.896 0.944 

Logloss(M) 3.560 3.045 4.590 4.075 3.533 4.036 2.989 

Serum 

Accuracy(M) 0.859 0.889 0.859 0.859 0.912 0.898 0.928 

Precision(M) 0.828 0.876 0.845 0.849 0.896 0.849 0.906 

Recall(M) 0.783 0.787 0.739 0.760 0.872 0.872 0.849 

f1(M) 0.884 0.924 0.880 0.896 0.909 0.904 0.896 

Logloss(M) 3.649 3.134 4.698 3.989 3.563 4.088 3.019 

 

MOT 

Accuracy(M) 0.879 0.909 0.879 0.879 0.927 0.908 0.928 

Precision(M) 0.839 0.854 0.811 0.825 0.908 0.894 0.913 

Recall(M) 0.803 0.807 0.759 0.780 0.872 0.849 0.906 

f1(M) 0.840 0.855 0.815 0.827 0.909 0.896 0.924 

Logloss(M) 3.622 3.107 4.652 4.137 3.553 4.068 3.009 

Table 3 shows the comparative performance analysis of hyperparameter tuned Ensemble base 

classifier and OSEC for OC Classification. The stacked RF attained the maximum Accuracy of 94.29% 

on the Blood Routine dataset, along with peak precision (93.27%) high recall (90.55%) and the f1 score 

of 94.38%, indicating the balanced performance. Figure 2 shows the comparative analyses of the 

ensemble base models and the OSEC. 

  

Figure 2. Comparative analyses of the ensemble base models and the OSEC performance 

The figure3 presents performance metrics of various ensemble models across three different datasets. 

The x-axis denotes the metrics, while the left y axis scales performance scores (0 to 1) of base models. 

The right y axis highlights meta models, helping in comparing performance across datasets. 
 

4. Conclusion 

 Ovarian cancer (OC) remains a critical global health challenge for women, often diagnosed at 

advanced stages due to lack of awareness and limited screening methods. Early detection is crucial for 

improving survival rates. This study introduced the Optimized Stacking Ensemble Classifier (OSEC), 

which utilized biomarkers CA-125, CA-72-4, and HE4 commonly assessed in blood, to differentiate 

between malignant and benign ovarian tumors. The proposed novel OSEC methodology employed a two-

layered approach and use of two stage HPO for base classifier and meta classifier models. The Stacked 

Random Forest model outperformed all other models across the datasets, achieving the highest accuracy: 
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94.29% on the Blood Routine dataset, 92.82% on the Serum dataset, and 92.77% on the MOT dataset. 

These results highlight OSEC model’s potential to enhance early detection and improve patient health. 

Future research should focus on integrating additional biomarkers and validating the model across a 

broader hyperparameters search space.  Practical applications include its potential use in routine screening 

to guide treatment plans and reduce mortality. 

Data Availability: The Ovarian cancer dataset is publicly available in the UCI repository. 
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