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This study investigates the potential of Monoterpene
Indole Alkaloids (MIAs) derived from six genera
within the Apocynaceae family as inhibitors of the
beta-lactamase enzyme (bla-SHV-1), which plays a
key role in antibiotic resistance in Klebsiella
pneumoniae. Using the PyRx program for molecular
docking, we assessed the binding affinity and
interaction profiles of various MIAs with bla-SHV-1.
Our results identified Paucidisine, (-)-19-
Oxoisoeburnamine, and Paucidactine A as the most
promising candidates, based on their interaction
energies and binding modes. These findings highlight
the potential of these specific MIAs as candidates for
antibiotic resistance treatment, marking a significant
step towards developing alternative treatment options
for antibiotic-resistant Klebsiella infections.

INTRODUCTION

Klebsiella pneumoniae, a Gram-negative, nonmotile, encapsulated rod-shaped

bacterium, has emerged as a significant nosocomial pathogen causing a variety of clinical

infectious diseases,

including pneumonia,

urinary tract infections,

bacteremia,

cholecystitis, osteomyelitis, meningitis, and thrombophlebitis (Abbas et al., 2024; Zhu et

al., 2021). The severity of these infections cannot be overstated, with Klebsiella

pneumoniae being the third most common cause of bloodstream infections globally,

following Staphylococcus aureus and Escherichia coli (Ikuta et al., 2022). Infection

occurs only when it can evade and overcome the primary and secondary immune
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responses of the host, and this is a particularly tangible possibility in hospital settings
(Jenkins, 2021; Khan et al., 2017). Over the past decade, the emergence of multiple
antibiotic-resistant K. pneumoniae has rapidly increased worldwide. This increase is
attributed to the frequent and extensive use of antibiotics in hospitals, which leads to the
development of resistant strains and severely limits treatment options (Assefa, 2022).

A key protein contributing to antibiotic resistance in Enterobacteriaceae, including
Salmonella, is beta-lactamase (Parawidnyaningsih et al., 2023). Beta-lactamases are a
diverse class of enzymes produced by bacteria that inactivate beta-lactam antibiotics by
breaking open the beta-lactam ring (Tooke et al., 2019). SHV-type beta-lactamases from
K. pneumoniae hydrolyze penicillin and cephalosporins, rendering these antibiotics
ineffective and contributing significantly to bacterial resistance (Liakopoulos et al.,
2016). A previous study observed that the resistant property is not only encoded within
the plasmid but also within the chromosomes (Ferdosi-Shahandashti et al., 2024).

Monoterpenes, the smallest of terpenes, are compounds containing C10H16 and are
primary components of essential oils derived from various plant parts. Many plants'
bioactive compounds, including monoterpenes, have demonstrated antifungal
(Vasconcelos et al.,, 2024), antibacterial, and antiviral (Syarifah et al., 2022).
Monoterpene indole alkaloids (MIAs), metabolites with a bicyclic structure comprising a
benzene ring fused to a five-membered pyrrole ring, have shown diverse physiological
and pharmacological effects (Liu et al., 2019). The Apocynaceae family, which includes
genera such as Alstonia, Rauvolfia, Kopsia, Ervatamia, Tabernaemontana, and Rhazya,
is noted for producing biologically active natural metabolites, some of which have shown
potential as antimicrobial agents. This makes them a promising source for the
development of new antibiotics and inhibitors against antibiotic-resistant bacteria like K.
pneumoniae (Diekema et al., 2019).

In this study, the effects of MIAs on the SHV-1 protein were evaluated using in
silico analysis. In silico methods, particularly molecular docking, are computational
techniques used to investigate pharmacological hypotheses and design drug therapies by
determining interactions between ligands and target molecules (Prasad et al., 2018).
Molecular docking has proven to be more accurate than high-throughput screening for
drug discovery (Agu et al., 2023). In recent years, in silico models have become

increasingly popular, and the use of such methods can help identify ways to control the
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virulence of pathogenic bacteria, including K. pneumoniae. By exploring the potential of
MIAs as potent inhibitors of the SHV-1 protein, this study aims to inspire hope and
contribute to the development of new treatment strategies for combating antibiotic-
resistant K. pneumoniae infections. The findings could pave the way for future
experimental and clinical research, ultimately enhancing patient outcomes and addressing

the global challenge of antibiotic resistance.

MATERIALS AND METHODS

Tools

The computational study employed several specialized software tools, each chosen
for its specific role in predicting interactions between ligands and the target protein. These
tools included PyRx version 1.1 for molecular docking, PyMOL version 3.1 and UCSF
ChimeraX for visualization, YASARA version 18.4.24 for ligand preparation, LigPlot+
version 2.2 for interaction analysis, and Discovery Studio Visualizer 2020 for detailed
visualization and analysis. Each of these tools was selected for its unique capabilities and

its ability to contribute to the overall understanding of the ligand-protein interactions.

Selection of the target protein and ligand

Selection of the target protein and ligand For the selection of the target protein and
ligands, we relied on a strong foundation of previous research. We utilized open-access
databases, including PubMed, UniProt, PubChem, DrugBank, SciFinder, and ChEMBL.
The beta-lactamase enzyme (bla-SHV-1) from Klebsiella pneumoniae was chosen as the
target protein due to its role in antibiotic resistance. Monoterpene Indole Alkaloids
(MIAs) were selected as potential ligands based on previous research, which identified
over 400 MIA compounds (Mohammed et al., 2021). We applied Lipinski's "Rule of
Five" to ensure the selected compounds had favorable drug-like properties, demonstrating

the strong foundation of our selection process.

Preparation of Target Protein and Ligands
The protein preparation was performed according to the previous protocol (Yuan et
al., 2017). The target protein's structure was obtained from the Protein Data Bank (PDB).

PyMOL was used to visualize and prepare the protein structure. Chain A and its co-crystal
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ligands MA4, EPE, and 10G were identified. The MA4 and EPE ligands were removed,
while the 10G ligand was retained to facilitate identification of the active site and ensure
stability. The prepared protein was then saved in PDB format. Ligand Preparation: Ligand
structures were obtained in SDF format from the respective databases and converted to
PDB format using YASARA (Sepehri et al., 2022). The ligands were then loaded into
PyRx, where energy minimization was performed to optimize their structures. The

minimized ligands were saved in PDB format for subsequent docking studies.
Active-Site Determination

Active site determination was performed using PyMOL to identify the receptor regions
where the ligands would dock. Two docking methods were employed: a) Targeted
Docking: A three-dimensional map of the receptor's active site was created to focus on
specific docking (Tallei et al., 2020). b) Blind Docking: A three-dimensional map
encompassing the entire receptor SHV-1 was generated to allow docking to all possible
receptor sites. These methods ensured a comprehensive analysis of potential binding sites
for the ligands (Alfaridza et al., 2025).

Molecular Docking

Docking Procedure: Molecular docking was conducted using PyRx, which utilizes
the AutoDock Vina algorithm. Both blind and specific docking were performed in
triplicate to ensure reproducibility. The receptor and ligand PDB files were loaded into
the software, and docking was executed using the forward command. Docking results
were evaluated by selecting the optimal pose with the lowest Gibbs free energy of binding
(-AG), indicating the highest binding affinity between the ligand and receptor. The
configurations were saved in CSV format. Visualization of the docking results was
performed using PyMOL and LigPlot++ to identify residues involved in hydrogen bonds
and hydrophobic interactions. Validation: The docking method was rigorously validated
by redocking the native ligand (7-Alkylidenecephalosporin Sulfones) with the target
protein. The method's validity was confirmed by obtaining an RMSD (root-mean-square
distance) value <2 A, indicating accurate and reliable docking. This thorough validation
process reinforces the scientific rigor of the study and assures the reader of the reliability

of the results.
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RESULTS AND DISCUSSION

Selection of Target Protein and Ligands

The target protein selected for this study is SHV-1, a well-characterized beta-
lactamase enzyme that plays a critical role in antibiotic resistance, particularly in K.
pneumoniae. The 3D structure of SHV-1 was obtained from the Protein Data Bank (PDB
ID: 4JPM) (Figure 1). SHV-1 was chosen as a target due to its clinical significance and
its role in conferring resistance to beta-lactam antibiotics, making it a relevant target for
investigating new antimicrobial agents (Sepehri et al., 2022). From an initial collection
of over 400 terpene compounds isolated in previous studies, a subset was meticulously
refined using database searches and Lipinski's rule of five (Ro5) criteria. The Lipinski's
rule of five is a set of guidelines predicting the drug likeness of a compound, which
suggests that poor absorption or permeation is more likely when there are more than five
hydrogen bond donors (OH and NH groups), more than ten hydrogen bond acceptors (N
and O atoms), a molecular weight greater than 500 Dalton, a partition coefficient log P

greater than 5, and molar refractivity outside the range of 40-130.

Beta sheet

3-10-Helices

Alpha Helices

Figure 1. The 3D structure of SHV-1, [PDB ID: 4JPM]. Alpha Helices (the spiral
shape), Beta sheet (the arrow shape) and 3-10 Helices (the short structure)
Out of the 180 terpene compounds identified, 130 emerged as potential game-
changers. A further screening based on Lipinski's rule, which emphasizes the
significance of solubility and permeability, revealed that these 130 compounds did not

violate more than one of the Ro5 criteria. This suggests that these compounds are likely
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to have favorable pharmacokinetic properties, making them promising candidates for
further study. These compounds were prepared as ligands for molecular docking
studies, with detailed information presented in Table 1.

Table 1. Ligand parameters to comply with Lipinski’s rules

No Compound Name CID* Mass Log P H H Bond Molar
(g/mol) Bond  Accept Refractivi
Donor ors ty
1  Scholarisine A 101840191 306.35842  1.6963 0 4 94.169
2 (16R)-E-Isositsnikine 6436828 275.27 2.7527 2 4 105.6635
3 Nareline 24883687 352.3838 1.0856 1 6 100.8088
4 5-Methoxystrictamine 102004590 352.42686  2.1998 0 5 106.568
5  Leuconolam 14442600 326.38958  2.5992 2 5 986.525
6  19-Epischolaricine 14707744 356.41556  1.6633 3 6 103.5665
7  Scholaricine 50900051 356.41556  1.6633 3 6 103.5665
8 Vallesamine 13783712 340.41616  2.2907 2 4 100.7395
9  Akuammidine 15558574 352.42686  2.5051 2 4 103.2895
10 Strictosamide 10345799 498.525 0.4104 5 9 130.6519
11 Methyl 25104767 352.42686  2.1848 1 5 103.5267

Demethoxycarbonylch
anofruticosinate

12 Singaporentine A 25179277 378.42108  1.9066 0 6 109.541
13 15-Hydroxykopsamine 102314958  428.47822  1.1794 2 8 117.0706
14 Singaporentinidine 102314960 309.38224  2.9737 2 2 943.175
15 Kopsininate 102584119 324.41676  2.9174 2 4 990.065
16 Kopsinilam 21607614 352.42686  2.5324 1 5 103.5267
17 12-Methoxykopsine 102520721  410.46294  1.7089 1 7 114.6548
18 19(R)- 23627132 354.44274  2.6118 1 5 106.2737
Methoxytubotaiwine
19 (-)-Eburnamonine 71203 294.39078  3.7125 0 2 922.185
20 Kopsilongine 44326354 442.5048 2.2172 1 8 122.4008
21 Kopsamine 11015920 456.48832  1.9373 1 9 121.9718
22 Arboridinine 122231131 294.39078  2.0466 1 3 955.238
23 Paucidirisine 132966069 390.47484  3.0886 1 5 115.3597
24 Paucidactinine 132966070  440.44586  1.5047 1 9 115.0508
25 Paucidactine B 101699203  454.42938  0.8262 1 10 115.2508
26 paucidactine A 73345269 470.42878  0.1462 2 11 116.4506
27 Paucidisine 132966071 378.42108  2.2561 0 6 106.903
28 (—)-19- 139051313 310.39018  2.7422 1 931.588
Oxoisoeburnamine
29 (-)-19(R)- 127030478 294.39078  3.1237 1 2 932.768
Hydroxyeburnamenine
30 (-)-19(R)-Hydroxy-O- 127030479 340.45922  3.5782 1 3 103.6578
Ethylisoeburnamine
31 Paucidactine C 102382648  470.47184  1.1147 1 10 122.1718
32 Eburnamenine 6857502 278.39138  4.1529 0 1 92.115
33 (+)-Isoeburnamine 118701077 296.40666  3.5632 1 2 929.588
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No Compound Name CID* Mass Log P H H Bond Molar
(g/mol) Bond  Accept Refractivi
Donor ors ty
34 (+)-19-Oxoeburnamine 102445440 310.39018  2.7422 1 3 931.588
35 Arborisidine 132557639 280.3642 2.0871 0 3 90.489
36 Arbornamine 132557640 310.39018  2.0956 2 3 937.896
37 Kopsinidine C 132576284 32441676  1.5483 3 4 974.823
38 Kopsinidine D 132576285 354.44274  1.5569 3 5 103.9743
39 Kopsinidine E 132576286 368.42626  1.277 3 6 103.5453
40 11,12- 132576287  440.44586  1.913 1 9 116.6518
Methylenedioxychanof
ruticosinic Acid
41 12- 132576288  426.46234  2.1929 1 8 117.0808
Methoxychanofruticosi
nic Acid
42 Chanofruticosinic Acid 132576289 396.43636  2.1843 1 7 110.5888
43  Methyl 44326005 396.43636  2.4582 0 7 110.035
11,12-
Methylenedioxychanof
ruticosinate
44 Kopsininic Acid 102597247 324.41676  2.9174 4 990.065
45 (-)-11,12- 137832348  398.45224  1.8494 7 110.5895
Methylenedioxykopsin
aline
46 Kopsinoline 137832351 354.44274  3.0393 1 3 106.6937
47 Kopsinine B 102597920 354.44274  2.1207 2 5 104.5265
48 Rhazinilam 11312435 294.39078  4.467 1 2 930.337
49 Kaopsifoline A 12116551 382.45284  2.1104 2 6 110.2465
50 20-Oxoeburnamenine 11279548 350.41098  2.8751 0 4 103.214
51 12- 44326005 396.43636  2.4582 0 7 110.035
Methylenedioxychanof
ruticosinate
52 Oxayohimban-16- 3055759 338.40028  3.0283 2 4 991.525
Carboxylic Acid
53 Peraksine 78146432 310.39018  2.3766 2 3 920.955
54  Alstoyunine A 46882285 340.41616  2.3491 2 4 979.875
55 Lochnerine 6436184 32441676  2.9705 2 3 991.425
56 Serpentinic Acid 73073 348.3951 3.4536 0 4 995.91
57 Ajmalicine 441975 352.42686  3.1167 1 4 103.4727
58 Sitsirikine 5321352 354.44274  2.6086 2 4 105.6635
59 Spegatrine 6441055 325.4247 2.833 3 2 100.5375
60 19(S),20(R)- 636655 312.40606  2.0126 3 3 942.863
Dihydroperaksine
61 Coronaridine 14061706 354.44274  2.0173 1 5 106.8588
Hydroxyindolenine
62 10- 156852 354.44274  2.8987 2 4 104.7677
Hydroxycoronaridine
63 Voacangine 73255 368.46932  3.2017 1 4 109.2367
64 19(S)-Heyneanine 44566752 384.46872  2.1725 2 5 110.3985
65 19(R)-Heyneanine 44566753 384.46872  2.1725 2 5 110.3985
66 Vobasine 320369 352.42686  2.9004 1 4 104.9232
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No Compound Name CID* Mass Log P H H Bond Molar
(g/mol) Bond  Accept Refractivi
Donor ors ty
67 Ervahainine A 73213144 379.4522 2.52808 1 6 110.1587
68 Iboluteine 21589055 326.43264  3.2584 1 4 101.8322
69 Conopharyngine 453209 398.4953 3.2103 1 5 115.7287
70 Voacristine 196982 384.46872  2.1725 2 5 110.3985
71 3-Oxo-7r-Coronaridine 139201774  409.47818  2.07378 1 7 118.5358
Hydroxyindolenine
72 Pseudoindoxyl 102121233 354.44274  2.793 1 5 105.9792
Coronaridine
73 Lirofoline A 46184733 324.41676  3.5754 0 3 989.705
74 Lirofoline B 46186635 354.44274  2.9379 1 4 104.9393
75 19-Epi-Voacristine 44566748 400.46812  0.9967 2 7 114.5126
76 Ervatamine 161765 354.44274 2.9819 1 4 105.1372
77 20-Epi-Ervatamine 12308875 354.44274  2.9819 1 4 105.1372
78 Dregamine 99108 354.44274  2.9803 1 4 105.3972
79 Tabernaemontanine 12309360 354.44274  2.9803 1 4 105.3972
80 Isovoacangine 44393473 368.46932  3.2017 1 4 109.2367
81 Conodusine C 132566483 310.39018  3.0784 1 1 955.297
82 Apocidine A 132566484  368.42626  1.8299 2 6 105.0995
83 Apocidine B 132566485 368.42626  1.4807 2 6 105.0615
84 Conoduzidine A 132566486  308.3743 2.7013 0 3 911.895
85 (+)-Catharanthine 5458190 336.42746  3.1132 1 3 102.2707
86 Isoakuammiline 132584660 394.46354  2.1606 0 6 116.122
87 18- 132584661 354.44274  2.3494 2 5 106.3505
Hydroxypseudovincadi
fformine
88 Tubotaiwine 13783720 324.41676  2.9869 1 4 100.3817
89 Voachalotine 11969553 366.45344  2.555 1 4 108.1908
90 Rhazimal 101967159  350.41098  1.7964 0 5 105.423
91 Strictamine-N-Oxide 101407506 338.40028  2.2629 0 3 104.002
92 Akuammicine 10314057 322.40088  2.907 1 4 999.077
93 16R-E-Isositsirikine 6436828 354.44274  2.7527 2 4 105.6635
94 Dihydrositsirikine 5316739 356.45862  2.8326 2 4 106.1375
95 Antirhine 5462421 296.40666  3.2095 2 2 947.645
96 Eburenine 10945856 280.40726  3.4423 0 2 947.98
97 Quebrachamine 92990 282.42314  4.0867 1 1 938.167
98 Strictanol 12314913 298.42254  3.0099 1 3 980.738
99 Strictamine 21159178 322.40088  2.2273 0 4 100.676
100 (—)-Minovincinine 138911111 355.45068  2.7061 3 5 107.0532
101 Echitovenaldine 102090470  426.5054 3.0713 1 7 122.3197
102 Echitovenidine 23650 436.54328  4.009 1 6 129.7747
103 Lochnericine 11382599 352.42686  2.5083 1 5 103.8997
104 Tabersonine 20485 336.42746  3.2971 1 4 104.4547
105 Perakine 453213 350.41098  1.6255 0 5 104.043
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No Compound Name CID* Mass Log P H H Bond Molar
(g/mol) Bond  Accept Refractivi
Donor ors ty

106 Picrinine 46229104 338.40028  2.3217 1 5 99.3907

107 Picralinal 46229103 366.41038  1.8908 1 6 104.1377
108 Rhazimol 101986486  338.40028  1.5014 2 5 102.0646
109 Alsmaphorazine B 102041783  368.3832 0.4276 1 7 101.5588
110 Oxovincadifformine 101999102  352.42686  3.0477 1 5 105.1287
111 Vinorine 5281974 334.41158  2.3682 0 4 103.369

112 Alsmaphorazine C 101571300  384.42566  1.3304 1 7 107.7458
113 Alsmaphorazine D 101571301  372.41496  0.4454 2 7 103.5116
114 Alsmaphorazine E 101571302 402.44094  0.454 2 8 110.0036
115 Scholarisin | 102226202  396.43636  1.8649 1 7 110.0677
116 Scholarisin Il 102226203  398.45224  1.6583 2 7 111.0295
117 Scholarisin 111 102226204  440.48892  2.2291 1 8 120.7667
118 Scholarisin IV 102226205 386.44154 1.8442 2 7 106.7854
119 Scholarisin VI 102226207  382.45284  1.4781 1 6 111.2298
120 Scholarisin VII 102226208  382.45284  1.5623 1 6 112.2768
121 (3R,5S,7R,15R,16R,19 102226209  368.42626  2.2958 1 6 105.3207

E)- Scholarisine F
122 3-Epi- 102226210  384.46872  1.2715 2 6 112.1916
Dihydrocorymine

123 Alstolactine A 101894075  370.39908  0.6955 2 7 101.2645
124 Alstolactine B 101894076  370.39908  0.6955 2 7 101.2645
125 Alstolactine C 101894077  414.45164  0.6209 1 8 112.0578
126 Alistonitrine A 102222299  367.4415 1.386 1 6 109.4067
127 Alstonerinal 71720002 336.42746  3.153 0 3 102.482

128 Alstonerine 10382386 336.42746  3.153 0 3 102.482

129 (-)-Eburnamine 101699 296.40666  3.5632 1 2 929.588

130 Methyl 91895274 410.46294  2.2727 0 7 114.909

Chanofruticosinate

* CID = Chemical Identifier from PubChem

Docking Validation

To validate the docking protocol used in this study, a redocking approach was

employed. This approach is significant as it involves docking the native ligand back into

the SHV-1 receptor, thereby assessing the accuracy of the docking method. The redocking

process was performed using the defined binding site coordinates: X = 11.729, Y = 37.5,

and Z = -1.2519. The results of this validation are depicted in Figure 2.

One of the key parameters for evaluating the accuracy of docking simulations is the
Root Mean Square Deviation (RMSD). An RMSD value within 3.0 A is generally

considered acceptable, indicating that the docking method can reliably reproduce the

native ligand binding mode and the accuracy of ligand-protein interactions (Meng et al.,
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2011; Ramirez & Caballero, 2018). The RMSD value obtained from the redocking of the
native ligand with the SHV-1 receptor was found to be 3.8 A. Although slightly above
the typically acceptable threshold of 3.0 A, this value suggests that the docking method
used in this study is nearly acceptable for predicting ligand-protein interactions. This
RMSD indicates that, although the docking protocol may exhibit minor deviations, it
remains capable of providing reasonably accurate predictions of the ligand binding poses
within the active site of SHV-1. The nearly acceptable RMSD value highlights the
potential of this validation step and underscores the need for further optimization of the
docking parameters to enhance accuracy. Nonetheless, the docking method employed in
this study is sufficient to provide insights into the potential interactions between terpene
compounds and the SHV-1 receptor, supporting the subsequent analysis of docking

results and interpretation of ligand efficacy.

Co-crystal ligand

Figure 2. a) Binding site area of SHV-1 and co-crystal ligand (X: 11.729, Y: 37.5, and
Z: -1.2519). b) The native ligand of SHV-1 before and after docking (Purple: before
docking, blue: after docking) and RMSD 3.7°A

Visualization of the Docking Results

The docking experiment evaluated the free energy of binding between inhibitors
and the SHV-1 receptor, both through blind and specific docking approaches. Both
methods yielded consistent results, identifying the top ten compounds with significant
binding affinities, as illustrated in Figure 3a. The interactions between these active
compounds and the receptor, specifically at the binding site, are primarily stabilized by
hydrogen bonds and hydrophobic interactions, as shown in Figure 3b. The amino acids
involved in these interactions exhibit significant similarities, as detailed in Tables 2 and
3. Paucidisine forms five hydrogen bonds with SHV-1 at the amino acid residues Ser-A:
130, Ser-A: 70, Asn-A: 132, Arg-A: 244, and Asn-A: 170. The (-)-19-Oxoisoeburnamine
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establishes three hydrogen bonds with SHV-1 at Ser-A: 70, Ala-A: 237, and Asn-A: 132,
Paucidactine A is hydrogen-bonded with SHV-1 at Ser-A: 130, Ser-A: 70, Ala-A: 237,
and Asn-A: 132.

W Ajmalicine

M Kopsinidine E

M Oxayohimban-16-Carboxylic Acid
W 12-Methoxykopsine

M Kopsininate

W 12-Methoxychanofruticosinic Acid
® Rhazimol

M paucidactine A

M (-)-19-Oxoisoeburnamine

WPa
95 9 85 -8 75 Paucidisine b Hydrogen bonds

a bindingaffinity
- Hydrophobic interactions

Figure 3. (a) The binding energy value (—kcal/mol) for the top ten MIA compound
candidates resulted from docking analysis. (b) The interaction between
paucidisine and SHV-1 protein. Hydrogen bonds and hydrophobic interaction
support the interaction

Specific Ligand Interactions

Hydrophobic interactions are instrumental in further stabilizing these complexes by
clustering the inner globular structures of proteins, thereby avoiding liquid environments
(Gembloux dan Biophysique, 1995). Three lead compound candidates, as shown in
Figure 4a-e, exhibited the best poses: Paucidisine, (-)-19-Oxoisoeburnamine, and
paucidactine A. They yielded the lowest values and were found to be the most effective
inhibitors of SHV-1.

The strength of hydrogen bonds formed with amino acid residues is a key factor in
the formation of strong interactions. The more hydrogen bonds formed, the stronger the
interactions, leading to lower energy scores and greater stability (Suhartono et al., 2019).
(Gtowacki et al., 2013), Hydrogen bonds involve interactions between hydrogen atoms
and atoms such as fluorine (F), nitrogen (N), and oxygen (O) to which they are covalently
bonded. This finding aligns with more recent studies (Glowacki et al., 2013). Three main
criteria are essential for molecular docking: bond intensity, molecular linkages, and bond
characterization. Lead compounds typically exhibit low bond energies, strong hydrogen
bonds, and favorable drug-likeness profiles (Prasanth et al., 2021). In this study, each top
ligand displayed varying numbers of hydrogen bonds at different amino acid residues
(Table 2).
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(c)

Figure 4. Docking position on SHV-1 protein. (a) Blind docking, (b) specific docking,
(c) Paucidisine, (d) (-)-19-Oxoisoeburnamine, (e) paucidactine A on shv-1 protein.
Table 2. Hydrogen bond between SHV-1 and native ligand

Compound name Hydrogen bonds

Residues

Lys234 Serl130 Ser70 Ala237 Asn132 Arg244 Thr235 Asnl70 Glul66 Lys73
Native ligand (10G) o o o o o o] o X X X
Paucidisine X o ¢ X o] 0 X 0 X X
(-)-19- X X o] o] o} X X X X X
Oxoisoeburnamine
Paucidactine A X o o ¢ o X X X X X
Rhazimol X X o] o] X X X X o] o]
12-Methoxychano- X o o) o 0 X X X X X
fruticosinic Acid
Oxayohimban-16- X X o X X o] X X X X
carboxylic Acid
Kopsininate X X X X o} X X o] X X
Kopsininic Acid X X X X o X X o X X
Kopsinidine E X o X X X o] X X X X
Alsmaphorazine B X o o ¢ o X X X X X

*nd: not determined
O means exists, X means does not exist
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Table 3 Hydrophobic interaction between SHV-1 and native ligand (continued)

Compound name Hydrophobic interaction

Residues

Met Gly Tyr Val Gly Ala Asn Met Glu Glu Ser Asn Thr Asp Ser Thr

69 238 105 216 236 237 170 272 240 166 130 132 167 104 70 235
Native ligand (1OG) 0O O O O O X X X X X X X X X x X
Paucidisine X X 0 o 0O O X o 0 0o X X X X X X
(-)-19-Oxoisoeburnamine X © © X O X o0 O O O X X X X X X
paucidactine A X X 0 X 0 X 0O X X X 0 X X X Xx o
Rhazimol X X 0 O X X o X o o o0 o o o X X
12- X X 0 o X X o X 0 X X X X X X X
Methoxychanofruticosinic
Acid

X
X
o
X
o
X
e}
X
X
X
X
o
(e}
o
X
o

Oxayohimban-16-
Carboxylic Acid
Kopsininate
Kopsininic Acid
Kopsinidine E
Alsmaphorazine B

X X X X
O X OO
OO O0Oo
O O X X
O O X X
X O 0O
O O X X
X O X X
O O X X
X X O O
X X OO
X X X X
X X X X
X X X X
X X OO
O O X X

*nd: not determined
O means exist, X means does not exist

The identification of lead compounds holds promising implications for combating
antibiotic resistance associated with SHV-1, offering a ray of hope in the battle against
superbugs. The molecular docking analysis in this study identified Paucidisine, (-)-19-
Oxoisoeburnamine, and Paucidactine A as the top three ligands against SHV-1 -
lactamase. This is the first report on the potential of MIA compounds to bind to the SHV-
1 protein through an in silico study. A previous study reported the activity of a synthetic
compound, avibactam, in inhibiting the SHV-1 protein (Krishnan et al., 2015). Therefore,
the development of natural compounds such as Paucidisine, (-)-19-Oxoisoeburnamine,
and Paucidactine, which show high affinity to SHV1, serves as a potential application in
treating K. pneumoniae, offering a promising future in the fight against antibiotic
resistance.

The observed binding energy trends in this study align with the activity of synthetic
B-lactamase inhibitors such as tazobactam and avibactam. Indeed, these synthetic
compounds, which also rely on strong hydrogen bonding with Ser70 and Asn132,
combined with hydrophobic interactions near the Q-loop region (de Sousa Coelho &
Mainardi, 2021). The top three ligands identified in this study represent potential
scaffolds for the development of novel B-lactamase inhibitors, addressing a critical need
in public health. However, it is essential to acknowledge the limitations of our study,
including the reliance on computational modelling. The need for experimental validation

of three potential compounds through in vitro and in vivo studies is crucial to confirm
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their inhibitory activity, pharmacokinetics, and safety, highlighting the importance of

future research in this area.

CONCLUSION

The study underscores the remarkable potential of natural compounds in drug
discovery. Leveraging advanced Bioinformatics resources and PyRx, we identified
several potent molecules against the SHV-1 protein. The monoterpene indole alkaloids
Paucidisine, (-)-19-Oxoisoeburnamine, and paucidactine A exhibited the best binding
free energies while bonded to -lactamase, opening the door for further optimization. This
research not only demonstrates the power of nature in drug discovery but also paves the
way for innovative product design and production initiatives that have the potential to

revolutionize healthcare.
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