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This study investigates the potential of Monoterpene 

Indole Alkaloids (MIAs) derived from six genera 

within the Apocynaceae family as inhibitors of the 

beta-lactamase enzyme (bla-SHV-1), which plays a 

key role in antibiotic resistance in Klebsiella 

pneumoniae. Using the PyRx program for molecular 
docking, we assessed the binding affinity and 

interaction profiles of various MIAs with bla-SHV-1. 

Our results identified Paucidisine, (-)-19-

Oxoisoeburnamine, and Paucidactine A as the most 

promising candidates, based on their interaction 

energies and binding modes. These findings highlight 

the potential of these specific MIAs as candidates for 

antibiotic resistance treatment, marking a significant 

step towards developing alternative treatment options 

for antibiotic-resistant Klebsiella infections. 
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INTRODUCTION  

Klebsiella pneumoniae, a Gram-negative, nonmotile, encapsulated rod-shaped 

bacterium, has emerged as a significant nosocomial pathogen causing a variety of clinical 

infectious diseases, including pneumonia, urinary tract infections, bacteremia, 

cholecystitis, osteomyelitis, meningitis, and thrombophlebitis (Abbas et al., 2024; Zhu et 

al., 2021). The severity of these infections cannot be overstated, with Klebsiella 

pneumoniae being the third most common cause of bloodstream infections globally, 

following Staphylococcus aureus and Escherichia coli (Ikuta et al., 2022). Infection 

occurs only when it can evade and overcome the primary and secondary immune 
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responses of the host, and this is a particularly tangible possibility in hospital settings 

(Jenkins, 2021; Khan et al., 2017). Over the past decade, the emergence of multiple 

antibiotic-resistant K. pneumoniae has rapidly increased worldwide. This increase is 

attributed to the frequent and extensive use of antibiotics in hospitals, which leads to the 

development of resistant strains and severely limits treatment options (Assefa, 2022).  

A key protein contributing to antibiotic resistance in Enterobacteriaceae, including 

Salmonella, is beta-lactamase (Parawidnyaningsih et al., 2023). Beta-lactamases are a 

diverse class of enzymes produced by bacteria that inactivate beta-lactam antibiotics by 

breaking open the beta-lactam ring (Tooke et al., 2019). SHV-type beta-lactamases from 

K. pneumoniae hydrolyze penicillin and cephalosporins, rendering these antibiotics 

ineffective and contributing significantly to bacterial resistance (Liakopoulos et al., 

2016). A previous study observed that the resistant property is not only encoded within 

the plasmid but also within the chromosomes (Ferdosi-Shahandashti et al., 2024).  

Monoterpenes, the smallest of terpenes, are compounds containing C10H16 and are 

primary components of essential oils derived from various plant parts. Many plants' 

bioactive compounds, including monoterpenes, have demonstrated antifungal 

(Vasconcelos et al., 2024), antibacterial, and antiviral (Syarifah et al., 2022). 

Monoterpene indole alkaloids (MIAs), metabolites with a bicyclic structure comprising a 

benzene ring fused to a five-membered pyrrole ring, have shown diverse physiological 

and pharmacological effects (Liu et al., 2019). The Apocynaceae family, which includes 

genera such as Alstonia, Rauvolfia, Kopsia, Ervatamia, Tabernaemontana, and Rhazya, 

is noted for producing biologically active natural metabolites, some of which have shown 

potential as antimicrobial agents. This makes them a promising source for the 

development of new antibiotics and inhibitors against antibiotic-resistant bacteria like K. 

pneumoniae (Diekema et al., 2019).  

In this study, the effects of MIAs on the SHV-1 protein were evaluated using in 

silico analysis. In silico methods, particularly molecular docking, are computational 

techniques used to investigate pharmacological hypotheses and design drug therapies by 

determining interactions between ligands and target molecules (Prasad et al., 2018). 

Molecular docking has proven to be more accurate than high-throughput screening for 

drug discovery (Agu et al., 2023). In recent years, in silico models have become 

increasingly popular, and the use of such methods can help identify ways to control the 
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virulence of pathogenic bacteria, including K. pneumoniae. By exploring the potential of 

MIAs as potent inhibitors of the SHV-1 protein, this study aims to inspire hope and 

contribute to the development of new treatment strategies for combating antibiotic-

resistant K. pneumoniae infections. The findings could pave the way for future 

experimental and clinical research, ultimately enhancing patient outcomes and addressing 

the global challenge of antibiotic resistance. 

 

MATERIALS AND METHODS 

Tools 

The computational study employed several specialized software tools, each chosen 

for its specific role in predicting interactions between ligands and the target protein. These 

tools included PyRx version 1.1 for molecular docking, PyMOL version 3.1 and UCSF 

ChimeraX for visualization, YASARA version 18.4.24 for ligand preparation, LigPlot+ 

version 2.2 for interaction analysis, and Discovery Studio Visualizer 2020 for detailed 

visualization and analysis. Each of these tools was selected for its unique capabilities and 

its ability to contribute to the overall understanding of the ligand-protein interactions. 

Selection of the target protein and ligand 

Selection of the target protein and ligand For the selection of the target protein and 

ligands, we relied on a strong foundation of previous research. We utilized open-access 

databases, including PubMed, UniProt, PubChem, DrugBank, SciFinder, and ChEMBL. 

The beta-lactamase enzyme (bla-SHV-1) from Klebsiella pneumoniae was chosen as the 

target protein due to its role in antibiotic resistance. Monoterpene Indole Alkaloids 

(MIAs) were selected as potential ligands based on previous research, which identified 

over 400 MIA compounds (Mohammed et al., 2021). We applied Lipinski's "Rule of 

Five" to ensure the selected compounds had favorable drug-like properties, demonstrating 

the strong foundation of our selection process. 

Preparation of Target Protein and Ligands 

The protein preparation was performed according to the previous protocol (Yuan et 

al., 2017). The target protein's structure was obtained from the Protein Data Bank (PDB). 

PyMOL was used to visualize and prepare the protein structure. Chain A and its co-crystal 
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ligands MA4, EPE, and 1OG were identified. The MA4 and EPE ligands were removed, 

while the 1OG ligand was retained to facilitate identification of the active site and ensure 

stability. The prepared protein was then saved in PDB format. Ligand Preparation: Ligand 

structures were obtained in SDF format from the respective databases and converted to 

PDB format using YASARA (Sepehri et al., 2022). The ligands were then loaded into 

PyRx, where energy minimization was performed to optimize their structures. The 

minimized ligands were saved in PDB format for subsequent docking studies. 

Active-Site Determination 

Active site determination was performed using PyMOL to identify the receptor regions 

where the ligands would dock. Two docking methods were employed: a) Targeted 

Docking: A three-dimensional map of the receptor's active site was created to focus on 

specific docking (Tallei et al., 2020). b) Blind Docking: A three-dimensional map 

encompassing the entire receptor SHV-1 was generated to allow docking to all possible 

receptor sites. These methods ensured a comprehensive analysis of potential binding sites 

for the ligands (Alfaridza et al., 2025). 

Molecular Docking 

Docking Procedure: Molecular docking was conducted using PyRx, which utilizes 

the AutoDock Vina algorithm. Both blind and specific docking were performed in 

triplicate to ensure reproducibility. The receptor and ligand PDB files were loaded into 

the software, and docking was executed using the forward command.  Docking results 

were evaluated by selecting the optimal pose with the lowest Gibbs free energy of binding 

(-ΔG), indicating the highest binding affinity between the ligand and receptor. The 

configurations were saved in CSV format. Visualization of the docking results was 

performed using PyMOL and LigPlot++ to identify residues involved in hydrogen bonds 

and hydrophobic interactions. Validation: The docking method was rigorously validated 

by redocking the native ligand (7-Alkylidenecephalosporin Sulfones) with the target 

protein. The method's validity was confirmed by obtaining an RMSD (root-mean-square 

distance) value ≤ 2 Å, indicating accurate and reliable docking. This thorough validation 

process reinforces the scientific rigor of the study and assures the reader of the reliability 

of the results. 
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RESULTS AND DISCUSSION 

Selection of Target Protein and Ligands 

The target protein selected for this study is SHV-1, a well-characterized beta-

lactamase enzyme that plays a critical role in antibiotic resistance, particularly in K. 

pneumoniae. The 3D structure of SHV-1 was obtained from the Protein Data Bank (PDB 

ID: 4JPM) (Figure 1).  SHV-1 was chosen as a target due to its clinical significance and 

its role in conferring resistance to beta-lactam antibiotics, making it a relevant target for 

investigating new antimicrobial agents (Sepehri et al., 2022). From an initial collection 

of over 400 terpene compounds isolated in previous studies, a subset was meticulously 

refined using database searches and Lipinski's rule of five (Ro5) criteria. The Lipinski's 

rule of five is a set of guidelines predicting the drug likeness of a compound, which 

suggests that poor absorption or permeation is more likely when there are more than five 

hydrogen bond donors (OH and NH groups), more than ten hydrogen bond acceptors (N 

and O atoms), a molecular weight greater than 500 Dalton, a partition coefficient log P 

greater than 5, and molar refractivity outside the range of 40-130. 

 

Figure 1. The 3D structure of SHV-1, [PDB ID: 4JPM]. Alpha Helices (the spiral 

shape), Beta sheet (the arrow shape) and 3-10 Helices (the short structure) 

Out of the 180 terpene compounds identified, 130 emerged as potential game-

changers. A further screening based on Lipinski's rule, which emphasizes the 

significance of solubility and permeability, revealed that these 130 compounds did not 

violate more than one of the Ro5 criteria. This suggests that these compounds are likely 
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to have favorable pharmacokinetic properties, making them promising candidates for 

further study. These compounds were prepared as ligands for molecular docking 

studies, with detailed information presented in Table 1. 

Table 1. Ligand parameters to comply with Lipinski’s rules 

No Compound Name CID* Mass 

(g/mol) 

Log P H 

Bond 

Donor 

H Bond 

Accept

ors 

Molar 

Refractivi

ty 

1  Scholarisine A 101840191 306.35842 1.6963 0 4 94.169 

2  (16R)-E-Isositsnikine 6436828 275.27 2.7527 2 4 105.6635 

3  Nareline 24883687 352.3838 1.0856 1 6 100.8088 

4  5-Methoxystrictamine 102004590 352.42686 2.1998 0 5 106.568 

5  Leuconolam 14442600 326.38958 2.5992 2 5 986.525 

6  19-Epischolaricine 14707744 356.41556 1.6633 3 6 103.5665 

7  Scholaricine 50900051 356.41556 1.6633 3 6 103.5665 

8  Vallesamine 13783712 340.41616 2.2907 2 4 100.7395 

9  Akuammidine 15558574 352.42686 2.5051 2 4 103.2895 

10  Strictosamide 10345799 498.525 0.4104 5 9 130.6519 

11  Methyl 

Demethoxycarbonylch

anofruticosinate 

25104767 352.42686 2.1848 1 5 103.5267 

12  Singaporentine A 25179277 378.42108 1.9066 0 6 109.541 

13  15-Hydroxykopsamine 102314958 428.47822 1.1794 2 8 117.0706 

14  Singaporentinidine 102314960 309.38224 2.9737 2 2 943.175 

15  Kopsininate 102584119 324.41676 2.9174 2 4 990.065 

16  Kopsinilam 21607614 352.42686 2.5324 1 5 103.5267 

17  12-Methoxykopsine 102520721 410.46294 1.7089 1 7 114.6548 

18  19(R)- 

Methoxytubotaiwine 

23627132 354.44274 2.6118 1 5 106.2737 

19  (−)-Eburnamonine 71203 294.39078 3.7125 0 2 922.185 

20  Kopsilongine 44326354 442.5048 2.2172 1 8 122.4008 

21  Kopsamine 11015920 456.48832 1.9373 1 9 121.9718 

22  Arboridinine 122231131 294.39078 2.0466 1 3 955.238 

23  Paucidirisine 132966069 390.47484 3.0886 1 5 115.3597 

24  Paucidactinine 132966070 440.44586 1.5047 1 9 115.0508 

25  Paucidactine B 101699203 454.42938 0.8262 1 10 115.2508 

26  paucidactine A 73345269 470.42878 0.1462 2 11 116.4506 

27  Paucidisine 132966071 378.42108 2.2561 0 6 106.903 

28  (−)-19-

Oxoisoeburnamine 

139051313 310.39018 2.7422 1 3 931.588 

29  (−)-19(R)-

Hydroxyeburnamenine 

127030478 294.39078 3.1237 1 2 932.768 

30  (−)-19(R)-Hydroxy-O-

Ethylisoeburnamine 

127030479 340.45922 3.5782 1 3 103.6578 

31  Paucidactine C 102382648 470.47184 1.1147 1 10 122.1718 

32  Eburnamenine 6857502 278.39138 4.1529 0 1 92.115 

33  (+)-Isoeburnamine 118701077 296.40666 3.5632 1 2 929.588 
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No Compound Name CID* Mass 

(g/mol) 

Log P H 

Bond 

Donor 

H Bond 

Accept

ors 

Molar 

Refractivi

ty 

34  (+)-19-Oxoeburnamine 102445440 310.39018 2.7422 1 3 931.588 

35  Arborisidine 132557639 280.3642 2.0871 0 3 90.489 

36  Arbornamine 132557640 310.39018 2.0956 2 3 937.896 

37  Kopsinidine C 132576284 324.41676 1.5483 3 4 974.823 

38  Kopsinidine D 132576285 354.44274 1.5569 3 5 103.9743 

39  Kopsinidine E 132576286 368.42626 1.277 3 6 103.5453 

40  11,12-

Methylenedioxychanof

ruticosinic Acid 

132576287 440.44586 1.913 1 9 116.6518 

41  12-

Methoxychanofruticosi

nic Acid 

132576288 426.46234 2.1929 1 8 117.0808 

42  Chanofruticosinic Acid 132576289 396.43636 2.1843 1 7 110.5888 

43  Methyl 

11,12-

Methylenedioxychanof

ruticosinate 

44326005 396.43636 2.4582 0 7 110.035 

44  Kopsininic Acid 102597247 324.41676 2.9174 2 4 990.065 

45  (−)-11,12-

Methylenedioxykopsin

aline 

137832348 398.45224 1.8494 2 7 110.5895 

46  Kopsinoline 137832351 354.44274 3.0393 1 3 106.6937 

47  Kopsinine B 102597920 354.44274 2.1207 2 5 104.5265 

48  Rhazinilam 11312435 294.39078 4.467 1 2 930.337 

49  Kopsifoline A 12116551 382.45284 2.1104 2 6 110.2465 

50  20-Oxoeburnamenine 11279548 350.41098 2.8751 0 4 103.214 

51  12-

Methylenedioxychanof

ruticosinate 

44326005 396.43636 2.4582 0 7 110.035 

52  Oxayohimban-16-

Carboxylic Acid 

3055759 338.40028 3.0283 2 4 991.525 

53  Peraksine 78146432 310.39018 2.3766 2 3 920.955 

54  Alstoyunine A 46882285 340.41616 2.3491 2 4 979.875 

55  Lochnerine 6436184 324.41676 2.9705 2 3 991.425 

56  Serpentinic Acid 73073 348.3951 3.4536 0 4 995.91 

57  Ajmalicine 441975 352.42686 3.1167 1 4 103.4727 

58  Sitsirikine 5321352 354.44274 2.6086 2 4 105.6635 

59  Spegatrine 6441055 325.4247 2.833 3 2 100.5375 

60  19(S),20(R)-

Dihydroperaksine 

636655 312.40606 2.0126 3 3 942.863 

61  Coronaridine 

Hydroxyindolenine 

14061706 354.44274 2.0173 1 5 106.8588 

62  10-

Hydroxycoronaridine 

156852 354.44274 2.8987 2 4 104.7677 

63  Voacangine 73255 368.46932 3.2017 1 4 109.2367 

64  19(S)-Heyneanine 44566752 384.46872 2.1725 2 5 110.3985 

65  19(R)-Heyneanine 44566753 384.46872 2.1725 2 5 110.3985 

66  Vobasine 320369 352.42686 2.9004 1 4 104.9232 



Sajida AM Sabbah, Sri Budiarti, Rika Indri Astuti. In Silico Analysis … 

 

80|BIOMA: Jurnal Ilmiah Biologi, 14 (2), April 2025 

No Compound Name CID* Mass 

(g/mol) 

Log P H 

Bond 

Donor 

H Bond 

Accept

ors 

Molar 

Refractivi

ty 

67  Ervahainine A 73213144 379.4522 2.52808 1 6 110.1587 

68  Iboluteine 21589055 326.43264 3.2584 1 4 101.8322 

69  Conopharyngine 453209 398.4953 3.2103 1 5 115.7287 

70  Voacristine 196982 384.46872 2.1725 2 5 110.3985 

71  3-Oxo-7r-Coronaridine 

Hydroxyindolenine 

139201774 409.47818 2.07378 1 7 118.5358 

72  Pseudoindoxyl 

Coronaridine 

102121233 354.44274 2.793 1 5 105.9792 

73  Lirofoline A 46184733 324.41676 3.5754 0 3 989.705 

74  Lirofoline B 46186635 354.44274 2.9379 1 4 104.9393 

75  19-Epi-Voacristine 44566748 400.46812 0.9967 2 7 114.5126 

76  Ervatamine 161765 354.44274 2.9819 1 4 105.1372 

77  20-Epi-Ervatamine 12308875 354.44274 2.9819 1 4 105.1372 

78  Dregamine 99108 354.44274 2.9803 1 4 105.3972 

79  Tabernaemontanine 12309360 354.44274 2.9803 1 4 105.3972 

80  Isovoacangine 44393473 368.46932 3.2017 1 4 109.2367 

81  Conodusine C 132566483 310.39018 3.0784 1 1 955.297 

82  Apocidine A 132566484 368.42626 1.8299 2 6 105.0995 

83  Apocidine B 132566485 368.42626 1.4807 2 6 105.0615 

84  Conoduzidine A 132566486 308.3743 2.7013 0 3 911.895 

85  (+)-Catharanthine 5458190 336.42746 3.1132 1 3 102.2707 

86  Isoakuammiline 132584660 394.46354 2.1606 0 6 116.122 

87  18-

Hydroxypseudovincadi

fformine 

132584661 354.44274 2.3494 2 5 106.3505 

88  Tubotaiwine 13783720 324.41676 2.9869 1 4 100.3817 

89  Voachalotine 11969553 366.45344 2.555 1 4 108.1908 

90  Rhazimal 101967159 350.41098 1.7964 0 5 105.423 

91  Strictamine-N-Oxide 101407506 338.40028 2.2629 0 3 104.002 

92  Akuammicine 10314057 322.40088 2.907 1 4 999.077 

93  16R-E-Isositsirikine 6436828 354.44274 2.7527 2 4 105.6635 

94  Dihydrositsirikine 5316739 356.45862 2.8326 2 4 106.1375 

95  Antirhine 5462421 296.40666 3.2095 2 2 947.645 

96  Eburenine 10945856 280.40726 3.4423 0 2 947.98 

97  Quebrachamine 92990 282.42314 4.0867 1 1 938.167 

98  Strictanol 12314913 298.42254 3.0099 1 3 980.738 

99  Strictamine 21159178 322.40088 2.2273 0 4 100.676 

100  (−)-Minovincinine 138911111 355.45068 2.7061 3 5 107.0532 

101  Echitovenaldine 102090470 426.5054 3.0713 1 7 122.3197 

102  Echitovenidine 23650 436.54328 4.009 1 6 129.7747 

103  Lochnericine 11382599 352.42686 2.5083 1 5 103.8997 

104  Tabersonine 20485 336.42746 3.2971 1 4 104.4547 

105  Perakine 453213 350.41098 1.6255 0 5 104.043 
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No Compound Name CID* Mass 

(g/mol) 

Log P H 

Bond 

Donor 

H Bond 

Accept

ors 

Molar 

Refractivi

ty 

106  Picrinine 46229104 338.40028 2.3217 1 5 99.3907 

107  Picralinal 46229103 366.41038 1.8908 1 6 104.1377 

108  Rhazimol 101986486 338.40028 1.5014 2 5 102.0646 

109  Alsmaphorazine B 102041783 368.3832 0.4276 1 7 101.5588 

110  Oxovincadifformine 101999102 352.42686 3.0477 1 5 105.1287 

111  Vinorine 5281974 334.41158 2.3682 0 4 103.369 

112  Alsmaphorazine C 101571300 384.42566 1.3304 1 7 107.7458 

113  Alsmaphorazine D 101571301 372.41496 0.4454 2 7 103.5116 

114  Alsmaphorazine E 101571302 402.44094 0.454 2 8 110.0036 

115  Scholarisin I 102226202 396.43636 1.8649 1 7 110.0677 

116  Scholarisin II 102226203 398.45224 1.6583 2 7 111.0295 

117  Scholarisin III 102226204 440.48892 2.2291 1 8 120.7667 

118  Scholarisin IV 102226205 386.44154 1.8442 2 7 106.7854 

119  Scholarisin VI 102226207 382.45284 1.4781 1 6 111.2298 

120  Scholarisin VII 102226208 382.45284 1.5623 1 6 112.2768 

121  (3R,5S,7R,15R,16R,19

E)- Scholarisine F 

102226209 368.42626 2.2958 1 6 105.3207 

122  3-Epi-

Dihydrocorymine 

102226210 384.46872 1.2715 2 6 112.1916 

123  Alstolactine A 101894075 370.39908 0.6955 2 7 101.2645 

124  Alstolactine B 101894076 370.39908 0.6955 2 7 101.2645 

125  Alstolactine C 101894077 414.45164 0.6209 1 8 112.0578 

126  Alistonitrine A 102222299 367.4415 1.386 1 6 109.4067 

127  Alstonerinal 71720002 336.42746 3.153 0 3 102.482 

128  Alstonerine 10382386 336.42746 3.153 0 3 102.482 

129  (−)-Eburnamine 101699 296.40666 3.5632 1 2 929.588 

130  Methyl 

Chanofruticosinate 

91895274 410.46294 2.2727 0 7 114.909 

* CID = Chemical Identifier from PubChem 

Docking Validation 

To validate the docking protocol used in this study, a redocking approach was 

employed. This approach is significant as it involves docking the native ligand back into 

the SHV-1 receptor, thereby assessing the accuracy of the docking method. The redocking 

process was performed using the defined binding site coordinates: X = 11.729, Y = 37.5, 

and Z = -1.2519. The results of this validation are depicted in Figure 2.  

One of the key parameters for evaluating the accuracy of docking simulations is the 

Root Mean Square Deviation (RMSD). An RMSD value within 3.0 Å is generally 

considered acceptable, indicating that the docking method can reliably reproduce the 

native ligand binding mode and the accuracy of ligand-protein interactions  (Meng et al., 
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2011; Ramírez & Caballero, 2018). The RMSD value obtained from the redocking of the 

native ligand with the SHV-1 receptor was found to be 3.8 Å. Although slightly above 

the typically acceptable threshold of 3.0 Å, this value suggests that the docking method 

used in this study is nearly acceptable for predicting ligand-protein interactions. This 

RMSD indicates that, although the docking protocol may exhibit minor deviations, it 

remains capable of providing reasonably accurate predictions of the ligand binding poses 

within the active site of SHV-1. The nearly acceptable RMSD value highlights the 

potential of this validation step and underscores the need for further optimization of the 

docking parameters to enhance accuracy. Nonetheless, the docking method employed in 

this study is sufficient to provide insights into the potential interactions between terpene 

compounds and the SHV-1 receptor, supporting the subsequent analysis of docking 

results and interpretation of ligand efficacy. 

 

Figure 2. a) Binding site area of SHV-1 and co-crystal ligand (X: 11.729, Y: 37.5, and 

Z: -1.2519). b) The native ligand of SHV-1 before and after docking (Purple: before 

docking, blue: after docking) and RMSD 3.7oA 

Visualization of the Docking Results 

The docking experiment evaluated the free energy of binding between inhibitors 

and the SHV-1 receptor, both through blind and specific docking approaches. Both 

methods yielded consistent results, identifying the top ten compounds with significant 

binding affinities, as illustrated in Figure 3a. The interactions between these active 

compounds and the receptor, specifically at the binding site, are primarily stabilized by 

hydrogen bonds and hydrophobic interactions, as shown in Figure 3b. The amino acids 

involved in these interactions exhibit significant similarities, as detailed in Tables 2 and 

3. Paucidisine forms five hydrogen bonds with SHV-1 at the amino acid residues Ser-A:  

130, Ser-A: 70, Asn-A: 132, Arg-A: 244, and Asn-A: 170. The (-)-19-Oxoisoeburnamine 
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establishes three hydrogen bonds with SHV-1 at Ser-A: 70, Ala-A: 237, and Asn-A: 132. 

Paucidactine A is hydrogen-bonded with SHV-1 at Ser-A: 130, Ser-A: 70, Ala-A: 237, 

and Asn-A: 132. 

 

Figure 3. (a) The binding energy value (−kcal/mol) for the top ten MIA compound 

candidates resulted from docking analysis. (b) The interaction between 

paucidisine and SHV-1 protein. Hydrogen bonds and hydrophobic interaction 

support the interaction 

Specific Ligand Interactions 

Hydrophobic interactions are instrumental in further stabilizing these complexes by 

clustering the inner globular structures of proteins, thereby avoiding liquid environments 

(Gembloux dan Biophysique, 1995). Three lead compound candidates, as shown in 

Figure 4a-e, exhibited the best poses: Paucidisine, (-)-19-Oxoisoeburnamine, and 

paucidactine A. They yielded the lowest values and were found to be the most effective 

inhibitors of SHV-1.  

The strength of hydrogen bonds formed with amino acid residues is a key factor in 

the formation of strong interactions. The more hydrogen bonds formed, the stronger the 

interactions, leading to lower energy scores and greater stability (Suhartono et al., 2019). 

(Głowacki et al., 2013), Hydrogen bonds involve interactions between hydrogen atoms 

and atoms such as fluorine (F), nitrogen (N), and oxygen (O) to which they are covalently 

bonded. This finding aligns with more recent studies (Głowacki et al., 2013). Three main 

criteria are essential for molecular docking: bond intensity, molecular linkages, and bond 

characterization. Lead compounds typically exhibit low bond energies, strong hydrogen 

bonds, and favorable drug-likeness profiles (Prasanth et al., 2021). In this study, each top 

ligand displayed varying numbers of hydrogen bonds at different amino acid residues 

(Table 2). 

a 
b 
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Figure 4. Docking position on SHV-1 protein. (a) Blind docking, (b) specific docking, 

(c) Paucidisine, (d) (-)-19-Oxoisoeburnamine, (e) paucidactine A on shv-1 protein. 

Table 2.  Hydrogen bond between SHV-1 and native ligand 

Compound name Hydrogen bonds  
Residues  
Lys234 Ser130 Ser70 Ala237 Asn132 Arg244 Thr235 Asn170 Glu166 Lys73 

Native ligand (1OG) O O O O O O O X X X 

Paucidisine X O O X O O X O X X 

(−)-19-

Oxoisoeburnamine 

X X O O O X X X X X 

Paucidactine A X O O O O X X X X X 

Rhazimol X X O O X X X X O O 

12-Methoxychano-

fruticosinic Acid 

X O O O O X X X X X 

Oxayohimban-16-
carboxylic Acid 

X X O X X O X X X X 

Kopsininate X X X X O X X O X X 

Kopsininic Acid X X X X O X X O X X 

Kopsinidine E X O X X X O X X X X 

Alsmaphorazine B X O O O O X X X X X 

*nd: not determined 

O means exists, X means does not exist 
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Table 3 Hydrophobic interaction between SHV-1 and native ligand (continued) 

Compound name Hydrophobic interaction       

Residues       
Met 

69 

Gly 

238 

Tyr 

105 

Val 

216 

Gly 

236 

Ala 

237 

Asn 

170 

Met 

272 

Glu 

240 

Glu 

166 

Ser 

130 

Asn 

132 

Thr 

167 

Asp 

104 

Ser  

70 

Thr 

235 

Native ligand (1OG) O O O O O X X X X X X X X X X X 

Paucidisine X X O O O O X O O O X X X X X X 

(−)-19-Oxoisoeburnamine X O O X O X O O O O X X X X X X 

paucidactine A X X O X O X O X X X O X X X X O 

Rhazimol X X O O X X O X O O O O O O X X 

12-
Methoxychanofruticosinic 

Acid 

X X O O X X O X O X X X X X X X 

Oxayohimban-16-

Carboxylic Acid 

X X O X O X O X X X X O O O X O 

Kopsininate X O O X X O X X X O O X X X O X 

Kopsininic Acid X O O X X O X X X O O X X X O X 

Kopsinidine E X X O O O O O O O X X X X X X O 

Alsmaphorazine B X O O O O X O X O X X X X X X O 

*nd: not determined 

O means exist, X means does not exist 

The identification of lead compounds holds promising implications for combating 

antibiotic resistance associated with SHV-1, offering a ray of hope in the battle against 

superbugs. The molecular docking analysis in this study identified Paucidisine, (-)-19-

Oxoisoeburnamine, and Paucidactine A as the top three ligands against SHV-1 β-

lactamase. This is the first report on the potential of MIA compounds to bind to the SHV-

1 protein through an in silico study. A previous study reported the activity of a synthetic 

compound, avibactam, in inhibiting the SHV-1 protein (Krishnan et al., 2015). Therefore, 

the development of natural compounds such as Paucidisine, (-)-19-Oxoisoeburnamine, 

and Paucidactine, which show high affinity to SHV1, serves as a potential application in 

treating K. pneumoniae, offering a promising future in the fight against antibiotic 

resistance.  

The observed binding energy trends in this study align with the activity of synthetic 

β-lactamase inhibitors such as tazobactam and avibactam. Indeed, these synthetic 

compounds, which also rely on strong hydrogen bonding with Ser70 and Asn132, 

combined with hydrophobic interactions near the Ω-loop region (de Sousa Coelho & 

Mainardi, 2021). The top three ligands identified in this study represent potential 

scaffolds for the development of novel β-lactamase inhibitors, addressing a critical need 

in public health. However, it is essential to acknowledge the limitations of our study, 

including the reliance on computational modelling. The need for experimental validation 

of three potential compounds through in vitro and in vivo studies is crucial to confirm 
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their inhibitory activity, pharmacokinetics, and safety, highlighting the importance of 

future research in this area. 

 

CONCLUSION 

The study underscores the remarkable potential of natural compounds in drug 

discovery. Leveraging advanced Bioinformatics resources and PyRx, we identified 

several potent molecules against the SHV-1 protein. The monoterpene indole alkaloids 

Paucidisine, (-)-19-Oxoisoeburnamine, and paucidactine A exhibited the best binding 

free energies while bonded to β-lactamase, opening the door for further optimization. This 

research not only demonstrates the power of nature in drug discovery but also paves the 

way for innovative product design and production initiatives that have the potential to 

revolutionize healthcare. 
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