The Effects of Extraction Temperature on the Physicochemical Properties of Mangrove-Derived Glucomannan (Bruguiera gymnorhiza)

Authors

  • Jeki Wibawanti Universitas Muhammadiyah Purworejo
  • Zulfanita Universitas Muhamamdiyah Purworejo
  • Norhaslinda Arun University of Technology Mara (UiTM)
  • Anang Mohamad Legowo Universitas Diponegoro
  • Sri Mulyani Universitas Diponegoro
  • Sapto Pamungkas Mangrove Institut Komangjo Foudation

DOI:

https://doi.org/10.26877/asset.v6i4.1026

Keywords:

extraction method, physicochemical analysis, food application, mangrove

Abstract

This study investigates the impact of different extraction temperatures on the physicochemical properties of glucomannan derived from mangrove fruits (Bruguiera gymnorhiza). Various extraction temperatures ranging from 45°C to 85°C were utilized. Significant differences (p < 0.05) were observed in solubility (58.41% ± 2.45), total reducing sugar content (0.39% ± 0.09), yield (35.13 ± 2.95), and L* color value (71.97 ± 1.53), while no significant differences (p > 0.05) were found in a* and b* color values. These findings have implications for expanding the applications of Bruguiera and advancing research on Bruguiera glucomannan. Scanning electron microscopy (SEM) analysis revealed an increase in the cross-linking density of glucomannan molecules.

References

A. Kurt and T. Kahyaoglu, “Purification of glucomannan from salep: Part 1. Detailed rheological characteristics,” Carbohydr. Polym.,2017 vol. 168, pp. 138–146, doi: 10.1016/j.carbpol.2017.03.060.

I. W. Rai Widarta, A. Rukmini, U. Santoso, Supriyadi, and S. Raharjo, “Optimization of oil-in-water emulsion capacity and stability of octenyl succinic anhydride-modified porang glucomannan (Amorphophallus muelleri Blume),” Heliyon, 2022, vol. 8, no. 5, p. e09523, doi: 10.1016/j.heliyon.2022.e09523.

M. Alonso-Sande, D. Teijeiro-Osorio, C. Remuñán-López, and M. J. Alonso, “Glucomannan, a promising polysaccharide for biopharmaceutical purposes,” Eur. J. Pharm. Biopharm., 2009. vol. 72, no. 2, pp. 453–462, doi: 10.1016/j.ejpb.2008.02.005.

N. Nurlela, N. Ariesta, E. Santosa, and T. Muhandri, “Physicochemical properties of glucomannan isolated from fresh tubers of Amorphophallus muelleri Blume by a multilevel extraction method,” Food Res., 2022, vol. 6, no. 4, pp. 345–353, doi: 10.26656/fr.2017.6(4).580.

Y. Ma, K. Ye, P. Liu, A. Yuan, S. Chen, and Y. He, “Effect of a Konjac glucomannan/chitosan antibacterial composite membrane microencapsulated with oregano essential oil on the quality of chilled pork,” Appl. Food Res., vol. 3, no. 1, 2023, doi: 10.1016/j.afres.2022.100249.

S. S. Behera and R. C. Ray, “Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care,” Int. J. Biol. Macromol., 2016, vol. 92, pp. 942–956, 2016, doi: 10.1016/j.ijbiomac.2016.07.098.

M. Saito, M. Nakaya, T. Kondo, M. Nakazawa, M. Ueda, S. Naganawa, Y. Hasegawa, and T. Sakamoto, “Gelation of konjac glucomannan by acetylmannan esterases from Aspergillus oryzae,” Enzyme Microb. Technol., 2022, vol. 160, no. March, p. 110075, doi: 10.1016/j.enzmictec.2022.110075.

K. Zhang, D. Zhang, J. Wang, Y. Wang , J. Hu , Y. Zhou, X. Zhou, S. Nie, and M. Xie, “Aloe gel glucomannan induced colon cancer cell death via mitochondrial damage-driven PINK1/Parkin mitophagy pathway,” Carbohydr. Polym., 2022, vol. 295, no. July, p. 119841, doi: 10.1016/j.carbpol.2022.119841.

Q. Gu, Y. Liua, L. Zhen, T. Zhao, L. Luo, J. Zhang, T. Deng, M. Wub, G. Cheng, and J. Hu, “The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway,” Carbohydr. Polym., 2022, vol. 292, no. May, p. 119694, doi: 10.1016/j.carbpol.2022.119694

J. Zhang, Y. Li, Y. Li, Y. Li, X. Gong, L. Zhou, J. Xu, and Y. Guo, “Structure, selenization modification, and antitumor activity of a glucomannan from Platycodon grandiflorum,” Int. J. Biol. Macromol., 2022, vol. 220, no. September, pp. 1345–1355, doi: 10.1016/j.ijbiomac.2022.09.029.

F. Anindita, S. Bahri, and J. Hardi, “Ekstraksi dan karakterisasi glukomanan dari tepung biji salak (Salacca edulis Reinw.),” Kovalen, 2016, vol. 2, no. 2, doi: 10.22487/j24775398.2016.v2.i2.6720.

Ariestanti, V. Seechamnanturakit, E. Harmayani, and S.Wichienchot, "Optimization on production of konjac oligo‐glucomannan and their effect on the gut microbiota. Food Sci Nutr.”2019, 7, pp.788–796.

R. Amalia, A. Pramono, D. N. Afifah, E. R. Noer, M. Muniroh, and A. C. Kumoro, “Mangrove fruit (Bruguiera gymnorhiza) increases circulating GLP-1 and PYY, modulates lipid profiles, and reduces systemic inflammation by improving SCFA levels in obese wistar rats,” Heliyon, vol. 8, no. 10, pp. 0–9, 2022, doi: 10.1016/j.heliyon.2022.e10887.

J.M.W. Wibawanti, S. Mulyani, R. Hartanto, and A.M Legowo,“The role of inulin extract from mangrove apple ( Sonneratia caseolaris ) and Lactobacillus plantarum combination as a synbiotic,” Food Res., 2024 vol. 8, no. April, pp. 84–91. https://doi.org/10.26656/fr.2017.8(2).485

R. Lai, J. Liu, and Y. Liu, “Effects of pH and incubation temperature on properties of konjac glucomannan and zein composites with or without freeze-thaw treatment,” Food Hydrocoll., vol. 134, no. July 2022, p. 108098, 2023, doi: 10.1016/j.foodhyd.2022.108098.

E. Harmayani, V. Aprilia, and Y. Marsono, “Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo,” Carbohydr. Polym., vol. 112, pp. 475–479, 2014, doi: 10.1016/j.carbpol.2014.06.019.

J.M.W. Wibawanti, S. Mulyani, A. M. Legowo, R. Hartanto, A. N. Al-Baarri, and Y. B. Pramono, “Characteristics of inulin from mangrove apple (Soneratia caseolaris) with different extraction temperatures,” Food Res., 2021, vol. 5, no. 4, pp. 99–10.

B. Yudhistira, A. Fatmawati, and S. Prabawa, “Effect of temperature and foam mat drying method on the physical and chemical properties of white sweet potato (Ipomoea batatas L.) inulin,” Food Research., vol. 7, no. 5, pp. 332–338, 2023, doi: 10.26656/fr.2017.7(5).1010.

U. Buda, M. B. Priyadarshini, R. K. Majumdar, S. S. Mahanand, A. B. Patel, and N. K. Mehta, “Quality characteristics of fortified silver carp surimi with soluble dietary fiber: Effect of apple pectin and konjac glucomannan,” Int. J. Biol. Macromol., vol. 175, pp. 123–130, 2021, doi: 10.1016/j.ijbiomac.2021.01.191.

H. Acar and A. Kurt, “Purified salep glucomannan synergistically interacted with xanthan gum: Rheological and textural studies on a novel pH-/thermo-sensitive hydrogel,” Food Hydrocoll., vol. 101, p. 105463, 2020, doi: 10.1016/j.foodhyd.2019.105463.

D. S. Retnowati and A. C. Kumoro, “Mannan Precipitation From Aloe Vera Leaf Pulp Juice Using Methanol and Isopropyl Alcohol As Anti-Solvent: Experimental and Empirical Modelling Approach,” Reaktor, vol. 14, no. 1, 2012, doi: 10.14710/reaktor.14.1.46-50.

D. H. Wardhani, L. H. Rahayu, H. Cahyono, and H. L. Ulya, “Purification of Glucomannan of Porang (Amorphophallus oncophyllus) Flour using Combination of Isopropyl Alcohol and Ultrasound-Assisted Extraction,” Reaktor, vol. 20, no. 4, pp. 203–209, 2020, doi: 10.14710/reaktor.20.4.203-209.

A. Yanuriati, D. W. Marseno, Rochmadi, and E. Harmayani, “Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume),” Carbohydr. Polym., vol. 156, pp. 56–63, 2017, doi: 10.1016/j.carbpol.2016.08.080.

Y. Zhang et al., “Structural complexity of Konjac glucomannan and its derivatives governs the diversity and outputs of gut microbiota,” Carbohydr. Polym., vol. 292, no. March, p. 119639, 2022, doi: 10.1016/j.carbpol.2022.119639.

Nurlela, N. Ariesta, D. S. Laksono, E. Santosa, and T. Muhandri, “Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade,” Molekul, vol. 16, no. 1, pp. 1–8, 2021, doi: 10.20884/1.jm.2021.16.1.632.

S. Gao and K. Nishinari, “Effect of deacetylation rate on gelation kinetics of konjac glucomannan,” Colloids Surfaces B Biointerfaces, vol. 38, no. 3-4 SPEC. ISS., pp. 241–249, 2004, doi: 10.1016/j.colsurfb.2004.02.026.

Downloads

Published

2024-10-18