Design of Wideband SPDT RF Switch Using Switchable DGS for Sustainable Wireless Systems

Authors

DOI:

https://doi.org/10.26877/asset.v7i4.1957

Keywords:

Bandstop response, isolation, millimeter-wave, SPDT switch, switchable DGS, sustainable RF front-end system, wideband telecommunication

Abstract

This paper presents a single-pole double-throw (SPDT) switch that is integrated with a thin rectangular patch switchable defected ground structure (DGS). It is a novel technology for obtaining wideband and high isolation for the SPDT switch in millimeter-wave (mm-wave) telecommunications due to the usage of switchable DGS with bandstop and bandwidth enhancement capabilities. A wideband and high isolation are required for the switchable DGS SPDT switch to operate optimally in mm-wave frequency ranges, as well as to reduce the effect of leakage signal on both the transmitter and receiver connected to the SPDT switch and hence improve system efficiency and signal integrity. The SPDT switch design was combined with two small rectangular patches switchable DGSs that could switch between bandstop and allpass responses using biasing diodes on the DGS. As a result, the suggested SPDT switch with the switchable DGS had 6 dB of insertion loss and high isolation of more than 25 dB with wideband isolation of 25.24% fractional bandwidth, which was consistent with the simulation results. Furthermore, the isolation magnitude is doubled compared to the conventional SPDT switch. This work demonstrates that integrating switchable DGS into discrete SPDT switches provides a practical solution for realizing wideband, high-isolation performance suitable for 5G mm-wave where compactness and bidirectional reconfigurability is increasingly essential for sustainable RF front-end systems.

Author Biographies

  • Adib Othman, Universiti Teknikal Malaysia Melaka

    Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer & Centre for Telecomunication Research & Innovation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, 76100, Malaysia

  • Noor Azwan Shairi, Universiti Teknikal Malaysia Melaka

    Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer & Centre for Telecomunication Research & Innovation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, 76100, Malaysia

  • Huda A Majid, Universiti Tun Hussein Onn Malaysia

    Fakulti Teknologi Kejuruteraan, Universiti Tun Hussein Onn Malaysia, Hub Pendidikan Tinggi Pagoh, Muar, Johor, 84600, Malaysia

  • Faiz Asraf Saparudin, Universiti Tun Hussein Onn Malaysia

    Fakulti Teknologi Kejuruteraan, Universiti Tun Hussein Onn Malaysia, Hub Pendidikan Tinggi Pagoh, Muar, Johor, 84600, Malaysia

  • Zahriladha Zakaria, Universiti Teknikal Malaysia Melaka

    Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer & Centre for Telecomunication Research & Innovation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, 76100, Malaysia

  • Najib Al-Fadhali, Alfred State College of Technology, State University of New York

    Electrical Engineering Technology Alfred State College of Technology, State University of New York, 10 Upper College Drive Alfred, New York, 14802, USA

References

[1] N. A. Shairi, A. M. Zobilah, Z. Zakaria, A. Othman, and S. Y. Weng, “Design and analysis of a dual function of switchable resonator for RF switch,” in Journal of Physics: Conference Series, 2020, pp. 1–8. doi: 10.1088/1742-6596/1502/1/012026

[2] International Telecommunication Union, “Setting the scene for 5G: Opportunities & Challenges,” 2018.

[3] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, “Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications,” IEEE Trans Microw Theory Tech, vol. 66, no. 7, pp. 3403–3418, 2018, doi: 10.1109/TMTT.2018.2829702.

[4] A. Semnani, S. O. Macheret, and D. Peroulis, “A quasi-absorptive microwave resonant plasma switch for high-power applications,” IEEE Trans Microw Theory Tech, vol. 66, no. 8, pp. 3798–3806, 2018, doi: 10.1109/TMTT.2018.2834925.

[5] N. A. Tarek, R. Hokayem, S. R. Govindarajulu, M. H. Novak, and E. A. Alwan, “A Two-Stage Wideband RF Cancellation of Coupled Transmit Signal for Bi-Static,” IEEE Journal of Microwaves, vol. 2, no. 3, pp. 429–441, 2022, doi: 10.1109/JMW.2022.3177578.

[6] A. Kumar and A. P. Singh, “Enhancement of the Performance Parameters of Microstrip Slotted Patch Antenna using Defected Ground Structure,” International Journal of Engineering Trends and Technology, vol. 60, no. 2, pp. 122–127, 2019, doi: 10.14445/22315381/IJETT-V60P217.

[7] R. Kumar Nirala, “An overview on defected ground structure in aspect of microstrip patch antenna,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 6, no. 1, pp. 31–34, 2018, [Online]. Available: http://www.ijritcc.org

[8] E. G. Ouf, E. A. F. Abdallah, A. S. Mohra, and H. M. S. Elhennawy, “Electronically switchable ultra-wide band/dual-band bandpass filter using defected ground structures,” Progress In Electromagnetics Research C, vol. 91, pp. 83–96, 2019, doi: 10.2528/pierc19010702.

[9] A. H. Jabire, A. Abdu, S. Saminu, A. M. Sadiq, and M. J. Adamu, “Isolation Frequency Switchable MIMO Antenna for PCS, WIMAX and WLAN Application,” ELEKTRIKA- Journal of Electrical Engineering, vol. 18, no. 3, pp. 27–33, 2019, doi: 10.11113/elektrika.v18n3.178.

[10] S. Riaz, X. Zhao, and S. Geng, “A frequency reconfigurable MIMO antenna with agile feedline for cognitive radio applications,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 3, pp. 1–9, 2020, doi: 10.1002/mmce.22100.

[11] K. Han, Y. Liu, X. Guo, Z. Jiang, N. Ye, and P. Wang, “Design, analysis and fabrication of the CPW resonator loaded by DGS and MEMS capacitors,” Journal of Micromechanics and Microengineering, vol. 31, no. 6, 2021, doi: 10.1088/1361-6439/abf844.

[12] A. A. Ibrahim, H. A. Mohamed, A. R. D. Rizo, R. Parra-Michel, and H. Aboushady, “Tunable Filtenna With DGS Loaded Resonators for a Cognitive Radio System Based on an SDR Transceiver,” IEEE Access, vol. 10, pp. 32123–32131, 2022, doi: 10.1109/ACCESS.2022.3160467.

[13] A. M. Zobilah, Z. Zakaria, and N. A. Shairi, “Selectable multiband isolation of single pole double throw switch using transmission line stub resonator for WiMAX and LTE applications,” IET Microwaves, Antennas and Propagation, vol. 11, no. 6, pp. 844–851, 2017, doi: 10.1049/iet-map.2016.0868.

[14] N. A. Shairi, A. M. Zobilah, B. H. Ahmad, and Z. Zakaria, “Design comparison of RF SPDT switch with switchable resonators for wiMAX and LTE in 3.5 GHz band,” International Journal of Applied Engineering Research, vol. 12, no. 20, pp. 9614–9618, 2017.

[15] L. Zhang, X. Cheng, X. Deng, and X. Li, “Design of K/KA-band Passive HEMT SPDT Switches with High Isolation,” in 2017 China Semiconductor Technology Internation Conference (CSTIC), 2017, pp. 3–6.

[16] Y. Gong, J. W. Teng, and J. D. Cressler, “A Compact, High-Power, 60 GHz SPDT Switch Using Shunt-Series SiGe PIN Diodes,” in Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium, 2019, pp. 15–18. doi: 10.1109/RFIC.2019.8701812.

[17] S. Jang, S. Kong, H. D. Lee, J. Park, K. S. Kim, and K. C. Lee, “28 GHz 1.8 dB Insertion Loss SPDT Switch with 24 dB Isolation in 65 nm CMOS,” in 2018 48th European Microwave Conference, EuMC 2018, 2018, pp. 835–838. doi: 10.23919/EuMC.2018.8541696.

[18] N. A. Shairi, Y. A. G. Mohammed, Z. Zakaria, M. A. M. Said, M. H. Misran, and Z. Z. A. Mohammed, “Performance Comparison of UWB Single Balanced Schottky Diode Mixers for RF Front-End Applications in 3-10 GHz Band,” Advance Sustainable Science, Engineering and Technology, vol. 7, no. 2, Feb. 2025, doi: 10.26877/asset.v7i2.1579.

[19] J. Zhang et al., “An Ultra-Compact Bidirectional Ka-Band Front-End Module With 3.8-dB NF and 13.5-dBm OP1 dB,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 1, pp. 70–73, Jan. 2023, doi: 10.1109/LMWC.2022.3202899.

[20] S. Kim, J. Jeong, B.-W. Min, and J. Han, “28-GHz Bidirectional RF CMOS Amplifier Employing Body-Effect Control,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 6, pp. 695–698, Feb. 2023, doi: 10.1109/lmwt.2023.3241603.

[21] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, “Defected ground structure: fundamentals, analysis, and applications in modern wireless trends,” Int J Antennas Propag, vol. 2017, 2017, doi: 10.1155/2017/2018527.

[22] B. H. Ahmad, N. A. Shairi, and J. Saveridass, “Low Cost Tunable Bandstop Filter Design of Defected Ground Structure using FR4 Substrate,” International Journal of Electronics and Computer Science Engineering, vol. 2, no. 2, pp. 595–601, 2013.

[23] H. B. El-Shaarawy, F. Coccetti, R. Plana, M. El-Said, and E. A. Hashish, “Novel reconfigurable defected ground structure resonator on coplanar waveguide,” IEEE Trans Antennas Propag, vol. 58, no. 11, pp. 3622–3628, 2010, doi: 10.1109/TAP.2010.2071336.

[24] T. Kim, H. D. Lee, B. Park, S. Jang, S. Kong, and C. Park, “Design of a K-Band High-Linearity Asymmetric SPDT CMOS Switch Using a Stacked Transistor,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 12, pp. 1443–1446, Dec. 2022, doi: 10.1109/LMWC.2022.3192440.

[25] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, “A high-power, low-loss W-band SPDT switch using SiGe PIN diodes,” in Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium, 2014, pp. 195–198. doi: 10.1109/RFIC.2014.6851695.

[26] K. Lam et al., “Wideband millimeter wave PIN diode SPDT switch using IBM 0.13μm SiGe technology,” in Proceedings 2nd European Microwave Integrated Circuits Conference, EuMIC 2007, 2007, pp. 108–111. doi: 10.1109/EMICC.2007.4412659.

[27] J. Coonrod, “Insertion loss comparisons of common high frequency PCB constructions,” in IPC APEX EXPO Conference and Exhibition 2013, APEX EXPO 2013, 2013, pp. 870–884.

[28] J. Coonrod, “The effect of radiation losses on high frequency PCB performance,” in IPC APEX EXPO Conference and Exhibition 2014, APEX EXPO 2014, 2014, pp. 1–9.

[29] R. P. Astutik, J. Lesmana Putra, and R. Maulana, “Design of IIOT Device Based on LoRa for Parsing Data Directly to SCADA System,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 3, May 2024, doi: 10.26877/asset.v6i3.813.

[30] Abdillah, Syaharuddin, V. Mandailina, and S. Mehmood, “The Role of Mathematics in Machine Learning for Disease Prediction: An In-Depth Review in the Healthcare Domain,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 4, Aug. 2024, doi: 10.26877/asset.v6i4.845.

[31] A. N. A. Yusuf, P. D. Purnamasari, and F. Y. Zulkifli, “Optimization of Defected Ground Structure (DGS) Using Genetic Algorithm for Gain Enhancement of Microstrip Antenna,” in 2021 IEEE Asia-Pacific Conference on Applied Electromagnetics, 2021, pp. 2021–2024.

Downloads

Published

2025-10-30