Comparative Performance Evaluation of Electric Powertrains in ICE Motorcycle Conversion
DOI:
https://doi.org/10.26877/asset.v8i1.2163Keywords:
ICE motorcycle conversion, electric powertrain, BLDC motor, dynamometer testing, experimental performance analysisAbstract
Electrifying Indonesia’s motorcycle fleet is critical for reducing urban emissions and fossil fuel dependence. This study experimentally evaluates three powertrain configurations—hub motor, continuously variable transmission (CVT), and single-gear ratio—for converting internal combustion engine (ICE) motorcycles to electric two-wheelers (E2W). Using a Honda Vario 125 platform with a 72 V, 3 kW Brushless DC motor and 1.44 kWh lithium-ion battery, performance was assessed via chassis dynamometer and real-world urban road tests. The single-gear ratio configuration demonstrated superior overall performance, achieving 5.15 kW peak wheel power, 188.7 N·m torque, fastest acceleration (0–128 km/h in 22 s), and highest energy efficiency (37.0 km/kWh), enabling a 51.8 km range per charge. The hub motor excelled in top speed, while the CVT consistently underperformed. Benchmarking shows up to 104 % efficiency improvement over prior designs. These results provide quantitative guidance for converters, manufacturers, and policymakers, establishing the single-gear ratio as the optimal solution for urban and commercial E2W applications and supporting sustainable mobility initiatives.
References
[1] Kene R, Olwal T, van Wyk BJ. Sustainable electric vehicle transportation. Sustainability (Switzerland) 2021;13:1–16. https://doi.org/10.3390/su132212379.
[2] Choi S, Kwak K, Yang S, Lim S, Woo JR. Effects of policy instruments on electric scooter adoption in Jakarta, Indonesia: A discrete choice experiment approach. Economic Analysis and Policy 2022;76:373–84. https://doi.org/10.1016/j.eap.2022.08.015.
[3] Martias, Purwanto W, Handanu OJ, Baharudin A, Andrizal. Analysis of Modified Exhaust Tip Geometry on Flow Behavior and Backpressure in Car Exhaust Systems for Electricity Harvesting. Advance Sustainable Science, Engineering and Technology 2025;7:1–15. https://doi.org/10.26877/2dw2wx35.
[4] Hidayat HR, Irawan MZ, Rizki M, Aurarisa I. Exploring the determinants of electric motorcycle adoption and changes in travel behavior: Insights from Indonesia. Travel Behaviour and Society 2026;42. https://doi.org/10.1016/j.tbs.2025.101121.
[5] Guerra E. Electric vehicles, air pollution, and the motorcycle city: A stated preference survey of consumers’ willingness to adopt electric motorcycles in Solo, Indonesia. Transportation Research Part D: Transport and Environment 2019;68:52–64. https://doi.org/10.1016/j.trd.2017.07.027.
[6] Schneider F, Castillo Castro DS, Weng KC, Shei CH, Lin HT. Comparative Life Cycle Assessment (LCA) on battery electric and combustion engine motorcycles in Taiwan. Journal of Cleaner Production 2023;406:1–9. https://doi.org/10.1016/j.jclepro.2023.137060.
[7] al Irsyad MI, Firmansyah AI, Harisetyawan VTF, Supriatna NK, Gunawan Y, Jupesta J, et al. Comparative total cost assessments of electric and conventional vehicles in ASEAN: Commercial vehicles and motorcycle conversion. Energy for Sustainable Development 2025;85:101599. https://doi.org/10.1016/j.esd.2024.101599.
[8] Presiden Republik Indonesia. Peraturan Presiden Republik Indonesia Nomor 79 Tahun 2023 tentang Perubahan atas Peraturan Presiden Nomor 55 Tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Listrik. 2023.
[9] Kementerian ESDM. Peraturan Menteri ESDM Nomor 1 Tahun 2023 Tentang Penyediaan Infrastruktur Pengisian Listrik untuk Kendaraan Bermotor Listrik Berbasis Baterai. 2023.
[10] Kementerian Perindustrian. Peraturan Menteri Perindustrian Nomor 21 Tahun 2023 tentang Perubahan atas Peraturan Menteri Perindustrian Nomor 6 Tahun 2023 tentang Pedoman Pemberian Bantuan Pemerintah Untuk Pembelian Kendaraan Bermotor Listrik Berbasis Baterai Roda Dua. 2023.
[11] UN. SDGs Report 2023. The Sustainable Development Goals Report 2023: Special Edition 2023:80.
[12] Tripathi SK, Kant R, Shankar R. Investigating the electric vehicle adoption initiatives for achieving sustainable development goals. Sustainable Futures 2025;9:100469. https://doi.org/10.1016/j.sftr.2025.100469.
[13] Rafiq F, Parthiban ES, Rajkumari Y, Adil M, Nasir M, Dogra N. From Thinking Green to Riding Green: A Study on Influencing Factors in Electric Vehicle Adoption. Sustainability (Switzerland) 2024;16:1–16. https://doi.org/10.3390/su16010194.
[14] Yuniarto MN, Wiratno SE, Nugraha YU, Sidharta I, Nasruddin A. Modeling, Simulation, and Validation of An Electric Scooter Energy Consumption Model: A Case Study of Indonesian Electric Scooter. IEEE Access 2022;10:48510–22. https://doi.org/10.1109/ACCESS.2022.3171860.
[15] Eccarius T, Lu CC. Powered two-wheelers for sustainable mobility: A review of consumer adoption of electric motorcycles. International Journal of Sustainable Transportation 2020;14:215–31. https://doi.org/10.1080/15568318.2018.1540735.
[16] Badan Pusat Statistik (BPS). Jumlah Kendaraan Bermotor Menurut Provinsi dan Jenis Kendaraan (unit), 2023 2024. https://www.bps.go.id/id/statistics-table/3/VjJ3NGRGa3dkRk5MTlU1bVNFOTVVbmQyVURSTVFUMDkjMw==/jumlah-kendaraan-bermotormenurut-provinsi-dan-jenis-kendaraan--unit---2023.html (accessed May 26, 2025).
[17] Charoen-amornkitt P, Nantasaksiri K, Ruangjirakit K, Laoonual Y. Energy consumption and carbon emission assessment of battery swapping systems for electric motorcycle. Heliyon 2023;9:e22887. https://doi.org/10.1016/j.heliyon.2023.e22887.
[18] Asosiasi Industri Sepeda Motor Indonesia. Statistics Distribution of Motorcycle Selling in Indonesia 2022. https://www.aisi.or.id/statistic/ (accessed December 30, 2024).
[19] Ardiansyah K, Suwahyo. Pengaruh Lebar V-Belt pada Sistem CVT Terhadap Performa Mesin. Automotive Science and Education Journal 2020;9:25–30.
[20] Tavares AA, Fornasa I, Cutipa-Luque JC, Ernesto Ponce Saldias C, Bianchi Carbonera LF, Elias Bretas De Carvalho B. Power Losses Analysis and Efficiency Evaluation of an Electric Vehicle Conversion. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2018 2018:1–6. https://doi.org/10.1109/ESARS-ITEC.2018.8607322.
[21] Manica L, Croitorescu V. Smart ForTwo electric conversion. Joint International Conference - ACEMP 2015: Aegean Conference on Electrical Machines and Power Electronics, OPTIM 2015: Optimization of Electrical and Electronic Equipment and ELECTROMOTION 2015: International Symposium on Advanced Electromechanical Moti 2016:731–6. https://doi.org/10.1109/OPTIM.2015.7426996.
[22] Aggarwal A, Chawla VK. A sustainable process for conversion of petrol engine vehicle to battery electric vehicle: A case study. Materials Today: Proceedings 2020;38:432–7. https://doi.org/10.1016/j.matpr.2020.07.617.
[23] Mohammed AS, Olalekan Salau A, Sigweni B, Zungeru AM. Conversion and performance evaluation of petrol engine to electric powered three-wheeler vehicle with an onboard solar charging system. Energy Conversion and Management: X 2023;20. https://doi.org/10.1016/j.ecmx.2023.100427.
[24] Rusli MR, Nugroho MAB, Jati MP, Toar H, Jaya A. Design and simulation of BLDCM drives using resolver. AIP Conference Proceedings 2023;2654:1–9. https://doi.org/10.1063/5.0114238.
[25] López I, Ibarra E, Matallana A, Andreu J, Kortabarria I. Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges. Renewable and Sustainable Energy Reviews 2019;114:109336. https://doi.org/10.1016/j.rser.2019.109336.
[26] Chau KT, Chan CC, Liu C. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Transactions on Industrial Electronics 2008;55:2246–57. https://doi.org/10.1109/TIE.2008.918403.
[27] Chawrasia SK, Das A, Chanda CK, Banerjee S. Design, analysis and comparative study of Hub motor for an electric bike. IET Conference Proceedings 2020;2020:242–7. https://doi.org/10.1049/icp.2021.1179.
[28] Baskar S, Ruban M, Nethaji G. Impact of C 45 material manual gear transmissions in two wheeler. Materials Today: Proceedings 2022;69:665–7. https://doi.org/10.1016/j.matpr.2022.06.549.
[29] Yan H Sen, Wu YC. A novel design of a brushless DC motor integrated with an embedded planetary gear train. IEEE/ASME Transactions on Mechatronics 2006;11:551–7. https://doi.org/10.1109/TMECH.2006.882985.
[30] Shah NP, Hirzel AD, Cho B. Transmissionless selectively aligned surface-permanent-magnet BLDC motor in hybrid electric vehicles. IEEE Transactions on Industrial Electronics 2010;57:669–77. https://doi.org/10.1109/TIE.2009.2036022.
[31] Yang K, Damerla R, Awtar S. Design of a Novel Linkage-Based Active Continuously Variable Transmission for Anthropomorphic Prosthetic and Robotic Hands. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2022;2022-July:76–82. https://doi.org/10.1109/AIM52237.2022.9863415.
[32] Firmansyah AI, Supriatna NK, Gunawan Y, Setiadanu GT, Slamet. Performance Testing of Electric Motorcycle Conversion. 7th International Conference on Electric Vehicular Technology, ICEVT 2022 - Proceeding 2022:165–8. https://doi.org/10.1109/ICEVT55516.2022.9924921.
[33] Plus M. Vario Series Paling Laris, Lebih dari 5.000 Unit Motor Honda Terjual di JFK 2025 2025. https://www.motorplus-online.com/read/254273817/vario-series-paling-laris-lebih-dari-5000-unit-motor-honda-terjual-di-jfk-2025 (accessed July 1, 2025).
[34] ANTARA. 10 sepeda motor terlaris 2017 2018. https://otomotif.antaranews.com/berita/677177/10-sepeda-motor-terlaris-2017 (accessed May 3, 2025).
[35] Asosiasi Industri Sepeda Motor Indonesia. Penjualan Unit Motor Berkapasitas 125cc Pada Tahun 2017. 2017.
[36] Hibatullah NA, Setiawan R, Bandung T. Drive system selection and the development of chassis structure basic design for medium-sized urban electric bus. Jurnal Polimesin 2024;22:361–70.
[37] M. S. H. Lipu et al. Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward Achieving Sustainable Development Goals. Batteries 2022;8:119. https://doi.org/https://doi.org/10.3390/batteries8090119.
[38] Pistoia G. Chapter 5 - Vehicle Applications: Traction and Control Systems. Battery Operated Devices and Systems, Elsevier; 2009, p. 321–78. https://doi.org/10.1016/b978-0-444-53214-5.00005-4.
[39] Taizhou Quanshun Motor Co Ltd. SiAECOSYS/VOTOL Programmable EM150sp 72V 150A 100KPH Controller for 1-5kW Electric Scooter Bike 2022. http://www.cnqsmotor.com/en/article_read_1228.html (accessed January 3, 2025).
[40] Kukovinets O V., Sidorov KM, Yutt VE. Isolated step-down DC -DC converter for electric vehicles. IOP Conference Series: Materials Science and Engineering 2018;315:1–7. https://doi.org/10.1088/1757-899X/315/1/012015.
[41] Pang Z, Ren X, Xiang J, Chen Q, Ruan X, Chen W. High-frequency DC-DC converter in electric vehicle based on GaN transistors. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings, 2016, p. 1–7. https://doi.org/10.1109/ECCE.2016.7855159.
[42] Ranjith S, Vidya V, Kaarthik RS. An Integrated EV Battery Charger with Retrofit Capability. IEEE Transactions on Transportation Electrification 2020;6:985–94. https://doi.org/10.1109/TTE.2020.2980147.
[43] Mohanraj D, Aruldavid R, Verma R, Sathiyasekar K, Barnawi AB, Chokkalingam B, et al. A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. IEEE Access 2022;10:54833–69. https://doi.org/10.1109/ACCESS.2022.3175011.
[44] Behera RK, Kumar R, Bellala SM, Raviteja P. Analysis of electric vehicle stability effectiveness on wheel force with BLDC motor drive. Proceedings - 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, IESES 2018 2018;2018-Janua:195–200. https://doi.org/10.1109/IESES.2018.8349873.
[45] Lee TY, Seo MK, Kim YJ, Jung SY. Motor Design and Characteristics Comparison of Outer-Rotor-Type BLDC Motor and BLAC Motor Based on Numerical Analysis. IEEE Transactions on Applied Superconductivity 2016;26:1–6. https://doi.org/10.1109/TASC.2016.2548079.
[46] Ammari O, Majdoub K El, Giri F. Modeling and control of a half electric vehicle including an inverter, an in-wheel BLDC motor and Pacejka’s tire model. IFAC-PapersOnLine 2022;55:604–9. https://doi.org/10.1016/j.ifacol.2022.07.378.
[47] Rinderknecht S, Meier T. Electric power train configurations and their transmission systems. SPEEDAM 2010, 2010, p. 1564–8. https://doi.org/10.1109/SPEEDAM.2010.5542276.
[48] Spanoudakis P, Tsourveloudis NC. On the efficiency of a prototype continuous variable transmission system. 2013 21st Mediterranean Conference on Control and Automation, MED 2013 - Conference Proceedings, 2013, p. 290–5. https://doi.org/10.1109/MED.2013.6608736.
[49] Plaza B. SUPER DYNO 50 LA 2022. https://brtplaza.com/c51ce410c124a10e0db5e4b97fc2af39-super-dyno-50-la-gudang-brt.html (accessed January 3, 2025).
[50] Yuniarto, M N, Sidharta I, Wiratno SE, Nugraha YU, Asfani DA. Indonesian Electric Motorcycle Development: Lessons from innovation-based concept implementation on the design and production of the first Indonesian electric motorcycle. IEEE Electrification Magazine 2022;22:2325–5897. https://www.doi.org/10.1109/MELE.2021.3139247.
[51] Rechkemmer SK, Zang X, Boronka A, Zhang W, Sawodny O. Utilization of Smartphone Data for Driving Cycle Synthesis Based on Electric Two-Wheelers in Shanghai. IEEE Transactions on Intelligent Transportation Systems 2021;22:876–86. https://doi.org/10.1109/TITS.2019.2961179.



