Uncertainty-Quantified Grid-Convergence Analysis of RANS Turbulence Models for 2-D Incompressible Backward-Facing Step Flow in OpenFOAM
DOI:
https://doi.org/10.26877/asset.v8i1.2390Keywords:
Backward‑Facing Step, RANS Turbulence Models, Grid Convergence Index (GCI), Uncertainty Quantification, OpenFOAM SimulationAbstract
A concise evaluation of Reynolds-Averaged Navier–Stokes (RANS) turbulence modeling for two-dimensional, incompressible, steady backward-facing step (BFS) flow at Re = 1000–3000 was conducted using OpenFOAM’s SimpleFoam solver with the standard k–ε model. A tri-level mesh enhancement (coarse, medium and fine) was implemented, and ambiguity was measured utilizing the Convergence Ratio (CR) and Grid Convergence Index (GCI). The fine grid (CR = 0.54; GCI = 0.0059%) was the only configuration exhibiting monotonic convergence, ensuring valid GCI estimation. Results showed reattachment length increasing from 0.11 m to 0.12 m, with stronger vortical structures and steeper shear gradients at higher Re. This study uniquely integrates RANS model validation with grid-uncertainty quantification, providing guidance for mesh optimization and reliable turbulence modeling in BFS simulations.
References
[1] İ. Göktepeli̇ and U. Atmaca, “Numerical Modelling of Backward-Facing Step Flow Via Computational Fluid Dynamics,” Journal of Scientific Reports-A, no. 054, pp. 176–193, Sep. 2023, doi: 10.59313/jsr-a.1300047.
[2] M. Zhang and X. Song, “Research on the Effects of Nonsmooth Surfaces on Backward-facing Step Flow,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 631, no. 2, p. 022019, Oct. 2019, doi: 10.1088/1757-899X/631/2/022019.
[3] S. Mozaffari, M. Visonneau, and J. Wackers, “Average-Based Adaptive Grid Refinement in Hybrid LES,” in Direct and Large Eddy Simulation XII, vol. 27, M. García-Villalba, H. Kuerten, and M. V. Salvetti, Eds., in ERCOFTAC Series, vol. 27. , Cham: Springer International Publishing, 2020, pp. 449–455. doi: 10.1007/978-3-030-42822-8_59.
[4] A.-K. Ekat, A. Weissenbrunner, M. Straka, T. Eichler, and K. Oberleithner, “Hybrid LES/RANS simulations of a 90° pipe bend using different CFD solvers,” OpenFOAM J, vol. 3, pp. 49–65, May 2023, doi: 10.51560/ofj.v3.36.
[5] M. K. Domfeh, S. Gyamfi, M. Amo-Boateng, R. Andoh, E. A. Ofosu, and G. Tabor, “Numerical Simulation of an Air-Core Vortex and Its Suppression at an Intake Using OpenFOAM,” Fluids, vol. 5, no. 4, p. 221, Nov. 2020, doi: 10.3390/fluids5040221.
[6] W. Li, L. Ji, R. Agarwal, W. Shi, and L. Zhou, “Brief Review of Computational Fluid Dynamics,” in Mixed-flow Pumps: Modeling, Simulation, and Measurements, ASME-Wiley, 2024, pp. 21–46. doi: 10.1115/1.862MFP_ch3.
[7] A. Satheesh Kumar, A. Singh, and K. B. Thiagarajan, “Simulation of backward facing step flow using OpenFOAM®,” presented at the Proceedings of the 35th International Conference of the Polymer Processing Society (PPS-35), Cesme-Izmir, Turkey, 2020, p. 030002. doi: 10.1063/1.5141565.
[8] S. Salehi and H. Nilsson, “OpenFOAM for Francis Turbine Transients,” OpenFOAM J, vol. 1, pp. 47–61, Nov. 2021, doi: 10.51560/ofj.v1.26.
[9] A. Singh, S. Aravind, K. Srinadhi, and B. T. Kannan, “Assessment of Turbulence Models on a Backward Facing Step Flow Using OpenFOAM®,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 912, no. 4, p. 042060, Aug. 2020, doi: 10.1088/1757-899X/912/4/042060.
[10] D. Nabapure and R. C. M. K, “DSMC simulation of rarefied gas flow over a 2D backward-facing step in the transitional flow regime: Effect of Mach number and wall temperature,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 235, no. 7, pp. 825–856, Jun. 2021, doi: 10.1177/0954410020959872.
[11] W.-C. Wu and A. Kumar, “Numerical Investigation of Nanofluid Flow over a Backward Facing Step,” Aerospace, vol. 9, no. 9, p. 499, Sep. 2022, doi: 10.3390/aerospace9090499.
[12] A. Pont-Vílchez, F. X. Trias, A. Gorobets, and A. Oliva, “Direct numerical simulation of backward-facing step flow at and expansion ratio 2,” J. Fluid Mech., vol. 863, pp. 341–363, Mar. 2019, doi: 10.1017/jfm.2018.1000.
[13] A. Bhagat, H. Gijare, and N. Dongari, “Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime,” Micromachines, vol. 10, no. 2, p. 118, Feb. 2019, doi: 10.3390/mi10020118.
[14] A.-P. Zahiri and E. Roohi, “Assessment of anisotropic minimum-dissipation (AMD) subgrid-scale model: Gently-curved backward-facing step flow,” Int. J. Mod. Phys. C, vol. 32, no. 05, p. 2150068, May 2021, doi: 10.1142/S0129183121500686.
[15] Y. Sun, H. Qi, G. Zhang, and Y. Wu, “Development and validation of a turbulence model based on drift velocity,” Physics of Fluids, vol. 36, no. 12, p. 125166, Dec. 2024, doi: 10.1063/5.0245727.
[16] M. Abdollahpour, P. Gualtieri, D. F. Vetsch, and C. Gualtieri, “Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations,” Fluids, vol. 8, no. 2, p. 55, Feb. 2023, doi: 10.3390/fluids8020055.
[17] T. Mukha, S. Rezaeiravesh, and M. Liefvendahl, “A library for wall-modelled large-eddy simulation based on OpenFOAM technology,” Computer Physics Communications, vol. 239, pp. 204–224, Jun. 2019, doi: 10.1016/j.cpc.2019.01.016.
[18] A. F. Giyats, M. Yamin, and C. P. Mahandari, “Applied Machine Learning to Estimate Length of Separation and Reattachment Flows as Parameter Active Flow Control in Backward Facing Step,” JMechE, vol. 20, no. 3, pp. 131–154, Sep. 2023, doi: 10.24191/jmeche.v20i3.23904.
[19] S.-J. Kim et al., “Analysis of the Numerical Grids of a Francis Turbine Model through Grid Convergence Index Method,” kfma, vol. 23, no. 2, pp. 16–22, Apr. 2020, doi: 10.5293/kfma.2020.23.2.016.
[20] S. Huang, Y. Wei, C. Guo, and W. Kang, “Numerical Simulation and Performance Prediction of Centrifugal Pump’s Full Flow Field Based on OpenFOAM,” Processes, vol. 7, no. 9, p. 605, Sep. 2019, doi: 10.3390/pr7090605.
[21] J. W. Gärtner et al., “Testing Strategies for OpenFOAM Projects,” OpenFOAM J, vol. 5, pp. 115–130, Apr. 2025, doi: 10.51560/ofj.v5.134.
[22] F. Jerai, “Accuracy of CFD Simulations on Indoor Air Ventilation: Application of Grid Convergence Index on Underfloor Air Distribution (UFAD) System Design,” JMechE, vol. 20, no. 3, pp. 199–222, Sep. 2023, doi: 10.24191/jmeche.v20i3.23908.
[23] T. Bellosta, L. Abergo, and H. Nishikawa, “Enhancing Accuracy in Mixed-Element Grids and Convergence on Skewed Grids for the Two-Dimensional Edge-Based Compressible Navier-Stokes Solver,” in AIAA SCITECH 2025 Forum, Orlando, FL: American Institute of Aeronautics and Astronautics, Jan. 2025. doi: 10.2514/6.2025-0072.
[24] S. A. Fallahshams and A. Razani, “Positive solutions to a coupled singular anisotropic system with nonstandard growth and singular nonlinearities,” Bound Value Probl, vol. 2025, no. 1, p. 81, Jun. 2025, doi: 10.1186/s13661-025-02072-0.
[25] L. Eça et al., “Assessment of Discretization Uncertainty Estimators Based on Grid Refinement Studies,” Journal of Verification, Validation and Uncertainty Quantification, vol. 6, no. 4, p. 041006, Dec. 2021, doi: 10.1115/1.4051477.
[26] F. Zeng, W. Zhang, J. Li, T. Zhang, and C. Yan, “Adaptive Model Refinement Approach for Bayesian Uncertainty Quantification in Turbulence Model,” AIAA Journal, vol. 60, no. 6, pp. 3502–3516, Jun. 2022, doi: 10.2514/1.J060889.
[27] H. Xiao and P. Cinnella, “Quantification of model uncertainty in RANS simulations: A review,” Progress in Aerospace Sciences, vol. 108, pp. 1–31, Jul. 2019, doi: 10.1016/j.paerosci.2018.10.001.
[28] Y. Ben-Haim and F. Hemez, “Richardson Extrapolation: An Info-Gap Analysis of Numerical Uncertainty,” Journal of Verification, Validation and Uncertainty Quantification, vol. 5, no. 2, p. 021004, Jun. 2020, doi: 10.1115/1.4048004.
[29] D. Duong and S. Tavoularis, “Grid-generated velocity fields at very small Reynolds numbers,” Phys. Rev. Fluids, vol. 9, no. 2, p. 024607, Feb. 2024, doi: 10.1103/PhysRevFluids.9.024607.
[30] N. Beisiegel, C. E. Castro, and J. Behrens, “Metrics for Performance Quantification of Adaptive Mesh Refinement,” J Sci Comput, vol. 87, no. 1, p. 36, Apr. 2021, doi: 10.1007/s10915-021-01423-0.
[31] Z. Liu, F.-B. Tian, and X. Feng, “An efficient geometry-adaptive mesh refinement framework and its application in the immersed boundary lattice Boltzmann method,” Computer Methods in Applied Mechanics and Engineering, vol. 392, p. 114662, Mar. 2022, doi: 10.1016/j.cma.2022.114662.
[32] W. L. Oberkampf and C. J. Roy, Verification, Validation, and Uncertainty Quantification in Scientific Computing, 2nd ed. Cambridge University Press, 2025. doi: 10.1017/9781009031004.
[33] O. Aycan, A. Topuz, and L. Kadem, “Evaluating uncertainties in CFD simulations of patient-specific aorta models using Grid Convergence Index method,” Mechanics Research Communications, vol. 133, p. 104188, Nov. 2023, doi: 10.1016/j.mechrescom.2023.104188.
[34] I. A. Fetuga, O. T. Olakoyejo, D. R. E. Ewim, O. Oluwatusin, A. O. Adelaja, and K. S. Aderemi, “Numerical prediction of flow recirculation length zone in an artery with multiple stenoses at low and high Reynolds number,” SB, vol. 36, no. 4, Nov. 2022, doi: 10.7546/SB.03.04.2022.
[35] G. Cui and I. Jacobi, “Prediction of the phase difference between large-scale velocity and Reynolds stress fluctuations in wall turbulence,” J. Fluid Mech., vol. 969, p. A13, Aug. 2023, doi: 10.1017/jfm.2023.565.
[36] H. Abe, Y. Mizobuchi, Y. Matsuo, and P. R. Spalart, “Direct numerical simulation and modeling of a turbulent boundary layer with separation and reattachment,” in Proceeding of Eighth International Symposium on Turbulence and Shear Flow Phenomena, Poitiers, Futuroscope, France: Begellhouse, 2013, pp. 1–6. doi: 10.1615/TSFP8.600.
[37] K. Yamamoto, M. Murayama, K. Isotani, Y. Ueno, K. Hayashi, and T. Hirai, “Slat Noise Reduction Based on Turbulence Attenuation Downstream of Shear-layer Reattachment,” in 28th AIAA/CEAS Aeroacoustics 2022 Conference, Southampton, UK: American Institute of Aeronautics and Astronautics, Jun. 2022. doi: 10.2514/6.2022-2954.
[38] W. D. Smyth, S. D. Mayor, and Q. Lian, “The Role of Ambient Turbulence in Canopy Wave Generation by Kelvin–Helmholtz Instability,” Boundary-Layer Meteorol, vol. 187, no. 3, pp. 501–526, Jun. 2023, doi: 10.1007/s10546-022-00765-y.
[39] B. J. Smith, Z. Hussain, S. A. W. Calabretto, and S. J. Garrett, “Laminar boundary layer separation and reattachment on a rotating sphere,” J. Fluid Mech., vol. 984, p. A15, Apr. 2024, doi: 10.1017/jfm.2024.173.
[40] Q. Wang et al., “Influence of inner shear layer on the emergence of central recirculation zone in a V-shaped premixed swirling flame,” Physics of Fluids, vol. 35, no. 10, p. 107129, Oct. 2023, doi: 10.1063/5.0168980.
[41] C. E. Toppings and S. Yarusevych, “Transient dynamics of stall and reattachment at low Reynolds number,” J. Fluid Mech., vol. 1011, p. A38, May 2025, doi: 10.1017/jfm.2025.348.
[42] T. Masuda and T. Tagawa, “Effect of Asymmetry of Channels on Flows in Parallel Plates with a Sudden Expansion,” Symmetry, vol. 13, no. 10, p. 1857, Oct. 2021, doi: 10.3390/sym13101857.
[43] S. W. Choi and H. S. Kim, “Predicting turbulent flows in butterfly valves with the nonlinear eddy viscosity and explicit algebraic Reynolds stress models,” Physics of Fluids, vol. 32, no. 8, p. 085105, Aug. 2020, doi: 10.1063/5.0006896.
[44] P. Matharu and B. Protas, “Optimal eddy viscosity in closure models for two-dimensional turbulent flows,” Phys. Rev. Fluids, vol. 7, no. 4, p. 044605, Apr. 2022, doi: 10.1103/PhysRevFluids.7.044605.
[45] Y. Zhang, M. M. Rahman, and G. Chen, “Development of k-R turbulence model for wall-bounded flows,” Aerospace Science and Technology, vol. 98, p. 105681, Mar. 2020, doi: 10.1016/j.ast.2020.105681.
[46] S. V. Kartashov and Y. V. Kozhukhov, “Substantiation of the various turbulence models use and of the need to account for roughness when calculating the viscous flow in low-flow centrifugal compressor stages using the computational gas dynamics,” presented at the International Conference on Science and Applied Science (ICSAS2020), Surakarta, Indonesia, 2020, p. 030054. doi: 10.1063/5.0028248.
[47] Y. Wang, G. Cao, and L. Pan, “Multiple-GPU accelerated high-order gas-kinetic scheme for direct numerical simulation of compressible turbulence,” Journal of Computational Physics, vol. 476, p. 111899, Mar. 2023, doi: 10.1016/j.jcp.2022.111899.
[48] N. Rohilla, S. Arya, and P. S. Goswami, “Effect of channel dimensions and Reynolds numbers on the turbulence modulation for particle-laden turbulent channel flows,” Physics of Fluids, vol. 35, no. 5, p. 053323, May 2023, doi: 10.1063/5.0147638.



