Harnessing Quantum SVR on Quantum Turing Machine for Drug Compounds Corrosion Inhibitors Analysis
DOI:
https://doi.org/10.26877/asset.v6i3.601Keywords:
Corrosion, machine learning, quantum support vector regressionAbstract
Corrosion is an issue that has a significant impact on the oil and gas industry, resulting in significant losses. This is worth investigating because corrosion contributes to a large part of the total annual costs of oil and gas production companies worldwide, and can cause serious problems for the environment that will impact society. The use of inhibitors is one way to prevent corrosion that is quite effective. This study is an experimental study that aims to implement machine learning (ML) on the efficiency of corrosion inhibitors. In this study, the use of the Quantum Support Vector Regression (QSVR) algorithm in the ML approach is used considering the increasingly developing quantum computing technology with the aim of producing better evaluation matrix values than the classical ML algorithm. From the experiments carried out, it was found that the QSVR algorithm with a combination of (TrainableFidelityQuantumKernel, ZZFeatureMap/ PauliFeatureMap, and linear entanglement) obtained better Root Mean Square Error (RMSE) and model training time with a value of 6,19 and 92 compared to other models in this experiment which can be considered in predicting the efficiency of corrosion inhibitors. The success of the research model can provide a new insights of the ability of quantum computer algorithms to increase the evaluation value of the matrix and the ability of ML to predict the efficiency of corrosion inhibitors, especially on a large industrial scale.
References
T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater Degrad, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41529-023-00336-7.
M. Akrom, A.G. Saputro, A.L. Maulana, A. Ramelan, A. Nuruddin, S. Rustad, and H.K. Dipojono, DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract, Appl Surf Sci, 615, 156319 (2023), https://doi.org/10.1016/j.apsusc.2022.156319.
M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), https://doi.org/10.23960%2Fjtaf.v10i1.2927.
M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review,” Corrosion Science, vol. 86. Elsevier Ltd, pp. 17–41, 2014. doi: 10.1016/j.corsci.2014.04.044.
M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, H.K. Dipojono, A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), https://doi.org/10.1016/J.MTCOMM.2023.106402.
M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), https://doi.org/10.30738/st.vol8.no1.a11775.
P. C. Okafor, E. E. Ebenso, A. Y. El-Etre, and M. A. Quraishi, “Green Approaches to Corrosion Mitigation International Journal of Corrosion.”
M. Akrom, U. Sudibyo, A.W. Kurniawan, N.A. Setiyanto, A. Pertiwi, A.N. Safitri, N. Hidayat, H. Al Azies, W. Herowati, Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi, JoMMiT: Jurnal Multi Media dan IT, 7(1), 15-20 (2023), https://doi.org/10. 46961/jommit.v7i1.
M. Akrom, S. Rustad, H.K. Dipojono, A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99(3), 036006 (2024), https://doi.org/10.1088/1402-4896/ad28a9.
N. Vaszilcsin, A. Kellenberger, M. L. Dan, D. A. Duca, and V. L. Ordodi, “Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review,” Materials, vol. 16, no. 16. Multidisciplinary Digital Publishing Institute (MDPI), Aug. 01, 2023. doi: 10.3390/ma16165555.
M. Akrom, S. Rustad, H.K. Dipojono, SMILES-based machine learning enables the prediction of corrosion inhibition capacity, MRS Commun, 1-9 (2024), https://doi.org/10.1557/s43579-024-00551-6.
M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), https://doi.org/10.30738/st.vol8.no1.a11775.
F. Orazi, S. Gasperini, S. Lodi, and C. Sartori, “Hybrid Quantum Technologies for Quantum Support Vector Machines,” Information (Switzerland), vol. 15, no. 2, Feb. 2024, doi: 10.3390/info15020072.
M. Akrom, S. Rustad, H.K. Dipojono, Development of Quantum Machine Learning to Evaluate the Corrosion Inhibition Capability of Pyrimidine Compounds, Mater Today Commun, 39, 108758 (2024), https://doi.org/10.1016/J.MTCOMM.2024.108758.
W. Yu et al., “Hybrid Quantum Technologies for Quantum Support Vector Machines,” 2024, doi: 10.3390/info15020072.
M. Akrom, S. Rustad, and H.K. Dipojono, Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, Mater Today Quantum, (2024), https://doi.org/10.1016/j.mtquan.2024.100007.
F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, doi: 10.1038/s41586-019-1666-5.
M. Akrom and T. Sutojo, Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin, Eksergi, 20(2), 107-111 (2023), https://doi.org/10.31315/e.v20i2.9864.
S. Budi, M. Akrom, H. Al Azies, U. Sudibyo, T. Sutojo, G.A. Trisnapradika, A.N. Safitri, A. Pertiwi, and S. Rustad, Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors, KnE Engineering, 78-87 (2024), https://doi.org/10.18502/keg.v6i1.15351.
D. Deutsch, “Quantum theory, the Church–Turing principle and the universal quantum computer,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400, no. 1818, pp. 97–117, Jul. 1985, doi: 10.1098/rspa.1985.0070.
T. Dash and T. Nayak, “COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE,” 2012. [Online]. Available: www.jgrcs.info
C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int J Mol Sci, vol. 23, no. 9, May 2022, doi: 10.3390/ijms23095086.
I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065. Royal Society of London, Apr. 13, 2016. doi: 10.1098/rsta.2015.0202.
A. E. Paine, V. E. Elfving, and O. Kyriienko, “Quantum kernel methods for solving regression problems and differential equations,” Phys Rev A (Coll Park), vol. 107, no. 3, Mar. 2023, doi: 10.1103/PhysRevA.107.032428.
H. Kwon, H. Lee, and J. Bae, “Feature Map for Quantum Data: Probabilistic Manipulation,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.15665
N. Zou, “Quantum Entanglement and Its Application in Quantum Communication,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1827/1/012120.
M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H. Kresno Dipojono, “Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds,” J Phys Conf Ser, vol. 2673, no. 1, p. 012014, Dec. 2023, doi: 10.1088/1742-6596/2673/1/012014.