Synthesis and Characterization Materials Modern (CMC-Fe3O4-Chitosan-TiO2) As Portable Adsorbent Toxic Metal (Hg) and Dye Substance (Rh B)
DOI:
https://doi.org/10.26877/asset.v6i3.709Keywords:
Adsorbent, CMC, Fe3O4, Chitosan, TiO2Abstract
The synthesis of the portable adsorbent material CMC-Fe3O4-Chitosan-TiO2 begins by inserting the CMC-Chitosan mixture into the leaching solution. Next, concentrated NaOH and 3% CaCl2 were added, then decanted and dried at room temperature. After that, the composite was coated with TiO2 and then dried in an oven at a temperature below 100 oC. The success of the synthesis was indicated by the presence of specific absorption in FT-IR. 3429 cm-1 hydroxyl group, 2926 cm-1 for the CH/CH3 group, 1631 cm-1 for the carbonyl group (C=O), 1642 cm-1 which is the CH/CH3 group, as well as ) and ( at 400-600 cm-1. In addition, the different surface morphology of the material formed from its basic components is based on SEM characterization sails. Adsorption test results for Hg (II) metal ions were 53% while dyes were 38% with a time of 40 minutes. This research is good for handling watermaster
References
Appu, M., Lian, Z., Zhao, D., & Huang, J. (2021). Biosynthesis of chitosan-coated iron oxide (Fe3O4) hybrid nanocomposites from leaf extracts of Brassica oleracea L. and study on their antibacterial potentials. 3 Biotech, 11(6), 271. doi:10.1007/s13205-021-02820-w.
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1), 36. doi:10.1038/s41545-021-00127-0.
Bindo (2023) Supporting Environmental Sustainability, SPSL Invites the Community to Cultivate Rare Natural Dye Plants (Batik). Regional Info. https://www.bindo.id/news/info-regional/2023/09/dukung-kelestarian-lingkungan-spsl-ajak-masyarakat-budidaya-tanaman-pewarna-alam-batik-langka/
Li, Y., Ni, M., He, Q., Li, X., Zhang, W., & Wang, H. (2021). Adsorption of rhodamine B and Cr3+ ion onto graphene/chitosan composite. Journal of Computational Methods in Sciences and Engineering, 21(4), 927–938. doi.10.3233/JCM-204556.
Kaur H, Kainth G. Mutagenicity Assessment of Textile Dyes Using AMES Test. Advance Study and Research Work. 2020 Jan 1;3(1):81-97. doi.10.5281/zenodo.3614878.
Hashish I, Youssef N, Mazhar A. Effect of different concentration of cobalt on growth and chemical constituents of paulownia seedlings. Current Science International. 2019 juli 20;8(3):518-522. doi.10.1002/9781119691419.ch4.
Rinawati D, Koestoer H, Khayan K. Distribution Of Heavy Metals In Soil In Industrial Estates: A Comparative Review Of South China And Sidoarjo, East Java, Indonesia. Journal OF Community Health And Preventive Medicine. 2023 Feb 15;3(1)1-1-9. doi.10.21776/ub.jochapm.2023.003.01.5
Oktavian, P., Anas, M., Kasman, Sudiana, I. N., Safaani, J., & Agusu, L. (2024). Literature Review Study: The Effect of the Presence of Heavy Metals on Soil Fertility Levels in Indonesia. Einstein’s: Research Journal of Applied Physics, 2(1), 20–23. https://doi.org/10.33772/einsteins.v2i1.645
Duval B, Gredilla A, Vallejuelo S, Tessier E, Amouroux D, Diego A. A simple determination of trace mercury concentrations in natural waters using dispersive Micro-Solid phase extraction preconcentration based on functionalized graphene nanosheets. Microchemical Journal. 2020 Nov 04;154(10)1-36. doi. 10.1016/j.microc.2019.104549
Sridevi S, Sutha S, Kavitha L, Gopi D. Physicochemical and biological behaviour of biogenic derived hydroxyapatite and carboxymethyl cellulose/sodium alginate biocomposite coating on Ti6Al4V alloy for biomedical applications. Materials Chemistry and Physics. 2020 Nov 01;1(2)34-55. doi. 10.1016/j.matchemphys.2020.123455
Abdullah A, Shameli K, Abdullah E, Abdullah L. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites Part B: Engineering. 2019 Apr 01:162(1):538-568. doi.10.1016/j.compositesb.2018.12.075
Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., Humaidi, S., Ridwanto, R., Fudholi, A., & Marwoto, P. (2023). Carboxymethyl Cellulose Nanoadsorbent for Remediation of Polluted Water. Journal of Ecological Engineering, 24(1), 336–348. https://doi.org/10.12911/22998993/156150
Sun, Z., Yin, Y., An, Y., Deng, C., Wei, Z., Jiang, Z., Duan, X., Xu, X., & Chen, J. (2022). A novel modified carboxymethyl cellulose hydrogel adsorbent for efficient removal of poisonous metals from wastewater: Performance and mechanism. Journal of Environmental Chemical Engineering, 10(4), 108179. https://doi.org/10.1016/j.jece.2022.108179
Khajavian, M., Kaviani, S., Piyanzina, I., Tayurskii, D. A., & Nedopekin, O. v. (2024). Chitosan-based adsorptive membrane modified by carboxymethyl cellulose for heavy metal ion adsorption: Experimental and density functional theory investigations. International Journal of Biological Macromolecules, 257, 128706. https://doi.org/10.1016/j.ijbiomac.2023.128706
Zhao, J., Xing, T., Li, Q., Chen, Y., Yao, W., Jin, S., & Chen, S. (2020). Preparation of chitosan and carboxymethylcellulose‐based polyelectrolyte complex hydrogel via SD‐A‐SGT method and its adsorption of anionic and cationic dye. Journal of Applied Polymer Science, 137(34). https://doi.org/10.1002/app.48980
Altam, A. A., Zhu, L., Babiker, D., Yagoub, H., & Yang, S. (2022). Loading and releasing behavior of carboxymethyl cellulose and chitosan complex beads. Progress in Natural Science: Materials International, 32(6), 715–723. https://doi.org/10.1016/j.pnsc.2022.10.003
Baron R, Biliuta Garam, Socoliuc V, Coseri S. Affordable Magnetic Hydrogels Prepared from Biocompatible and Biodegradable Sources. Polimers. 2021 Mei 13;13(11):1-15.doi. 10.3390/polym13111693
Liu L, Liu J, Zhao L, Yang Z, Lv C, Xue J, Tang A. Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions. Environmental Science and Pollution Research. 2019 Mar 01;26(9):1-16. doi. 10.1007/s11356-019-04352-6
Maslamani, N., Bakhsh, E. M., Khan, S. B., Danish, E. Y., Akhtar, K., Fagieh, T. M., Su, X., & Asiri, A. M. (2022). Chitosan@Carboxymethylcellulose/CuO-Co2O3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels, 8(2), 91. doi.10.3390/gels8020091.
Uyanga, K. A., & Daoud, W. A. (2021). Carboxymethyl cellulose-chitosan composite hydrogel: Modelling and experimental study of the effect of composition on microstructure and swelling response. International Journal of Biological Macromolecules, 181, 1010–1022. doi.10.1016/j.ijbiomac.2021.04.117.
Ardiyanti, H., Puspitarum, D., Maryana, O. F., & Pujakesuma, W. A. (2019). Synthesis And Bonding Analysis Of Magnetite (Fe3o4)/silica (Sio2) Composite Based On Sugarcane Bagasse. Journal of Science and Application Technology, 2(1). doi.10.35472/281425.
Julianti, E., Fabiani, V. A., & Asriza, R. O. (2020). The Sintesis dan Karakterisasi Komposit Fe3O4/Kitosan/Kaolin Bangka. Stannum : Jurnal Sains Dan Terapan Kimia, 2(2), 10–15. https://doi.org/10.33019/jstk.v2i2.1897. doi. 10.33019/jstk.v2i2.1897.
Baretta, R., Davidson-Rozenfeld, G., Gutkin, V., Frasconi, M., & Willner, I. (2024). Chemical and Photochemical-Driven Dissipative Fe 3+ /Fe 2+ -Ion Cross-Linked Carboxymethyl Cellulose Gels Operating Under Aerobic Conditions: Applications for Transient Controlled Release and Mechanical Actuation. Journal of the American Chemical Society, 146(14), 9957–9966. doi.10.1021/jacs.4c00625
Mansur, A. A. P., Carvalho, S. M., Oliveira, L. C. A., Souza-Fagundes, E. M., Lobato, Z. I. P., Leite, M. F., & Mansur, H. S. (2022). Bioengineered Carboxymethylcellulose–Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic–Magnetothermal Therapy of Brain Cancer Cells. Pharmaceutics, 14(10), 2223. doi.0.3390/pharmaceutics14102223.
Pazouki, N., Irani, S., Olov, N., Atyabi, S. M., & Bagheri-Khoulenjani, S. (2022). Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Progress in Biomaterials, 11(1), 43–54. doi.10.1007/s40204-021-00178-z
Shee N, Kim H. Self-Assembled Nanomaterials Based on Complementary Sn(IV) and Zn(II)-Porphyrins, and Their Photocatalytic Degradation for Rhodamine B Dye. Molecules. 2021 Jun 11;26(12)1-16. doi. 10.3390/molecules26123598.
Rezgui, S., Díez, A. M., Monser, L., Adhoum, N., Pazos, M., & Sanromán, M. Á. (2022). Magnetic TiO2/Fe3O4-Chitosan Beads: A Highly Efficient and Reusable Catalyst for Photo-Electro-Fenton Process. Catalysts, 12(11), 1425. doi.10.3390/catal12111425
Alenazi, M. M., El-Ebidy, A. M., El-shehaby, O. A., Seleiman, M. F., Aldhuwaib, K. J., & Abdel-Aziz, H. M. M. (2024). Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. Plants, 13(3), 398. doi.10.3390/plants13030398.
Tan, L. S., Tan, H. L., Deekonda, K., Wong, Y. Y., Muniyandy, S., Hashim, K., & Pushpamalar, J. (2021). Fabrication of radiation cross-linked diclofenac sodium loaded carboxymethyl sago pulp/chitosan hydrogel for enteric and sustained drug delivery. Carbohydrate Polymer Technologies and Applications, 2, 100084. doi.10.1016/j.carpta.2021.100084.
Yang, Y., Huang, M., Qian, J., Gao, D., & Liang, X. (2020). Tunable Fe3O4 Nanorods for Enhanced Magnetic Hyperthermia Performance. Scientific Reports, 10(1), 8331. doi. 10.1038/s41598-020-65095-w.
Su, C., Berekute, A. K., & Yu, K.-P. (2022). Chitosan@TiO2 composites for the adsorption of copper(II) and antibacterial applications. Sustainable Environment Research, 32(1), 27. https://doi.org/10.1186/s42834-022-00138-7
Shehzad, H., Ahmed, E., Sharif, A., Farooqi, Z. H., Din, M. I., Begum, R., Liu, Z., Zhou, L., Ouyang, J., Irfan, A., & Nawaz, I. (2022). Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni(II) ions from aqueous medium. International Journal of Biological Macromolecules, 194, 117–127. https://doi.org/10.1016/j.ijbiomac.2021.11.140
Kaharuddin, Sri Yunita, K., & Edihar, M. (2024). Performance Test Of Residu Powder Distillation From Fermentation Result Cocoa Fruits (Theobroma cacao L.) As Adsorbent For Metal Ions (Cr3+, Fe3+, Pb2+ ) (Vol. 2, Issue 1).