Comparing Conventional and Modern Methods for The Phycocyanin Extraction from Spirullina sp

Authors

  • Dian Marlina Universitas Setia Budi
  • Desi Purwaningsih Universitas Pembangunan Nasional
  • Reny Pratiwi Universitas Setia Budi
  • Ryan Werytama Saputra Universitas Setia Budi
  • Widiastuti Setyaningsih Universitas Gajah Mada
  • Supriyono Supriyono Universitas Setia Budi

DOI:

https://doi.org/10.26877/asset.v6i3.907

Keywords:

Phycoyanin, Spirulina platensis, sonication, freeze-thawed, sodium phosphate buffer

Abstract

Spirulina platensis, a blue-green algae abundant in tropical regions, is rich in minerals, vitamins, fibers, and pigments, with low nucleic acid content. It has unique chromoproteins called phycobiliproteins, notably phycocyanin, used in various applications. This study aims to optimize phycocyanin extraction using different solvents (distilled water and sodium phosphate buffer pH 6.7) and methods (freeze-thaw and sonication). Spirulina platensis biomass was extracted in both solvents, then some of them was freeze for 24 and 48 hours followed by thawing overnight. The other was sonicated for 2.5 minutes, 50 Hz then soaked for 1, 2, and 3 hours. All of the samples were centrifuged at 6000 rpm for 10 minutes and the absorbance was measured using a UV-Vis spectrophotometer at wavelengths of 280, 620, and 650 nm. with freeze-thawing for 48 hours yielded the highest phycocyanin concentration (0.55%), with a yield of 11.07 and purity of 0.21. Sonication improved phycocyanin concentration, yield, and purity significantly, yielding 1.108, 25.85, and 0.26, respectively.

References

P. Saranraj and S. Sivasakthi, “Spirulina platensis - FOOD FOR FUTURE: A REVIEW,” Asian J. Pharm. Sci. Technol. www.ajpst.com, vol. 4, no. 1, pp. 26–33, 2014, [Online]. Available: www.ajpst.com

Y. C. Seo, W. S. Choi, J. H. Park, J. O. Park, K. H. Jung, and H. Y. Lee, “Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process,” Int. J. Mol. Sci., vol. 14, no. 1, pp. 1778–1787, 2013, doi: 10.3390/ijms14011778.

G. Patil, S. Chethana, M. C. Madhusudhan, and K. S. M. S. Raghavarao, “Fractionation and purification of the phycobiliproteins from Spirulina platensis,” Bioresour. Technol., vol. 99, no. 15, pp. 7393–7396, 2008, doi: 10.1016/j.biortech.2008.01.028.

N. E. A. El-Naggar, M. H. Hussein, and A. A. El-Sawah, “Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity,” Sci. Rep., vol. 7, no. 1, pp. 1–20, 2017, doi: 10.1038/s41598-017-11121-3.

D. Kumar, D. W. Dhar, S. Pabbi, N. Kumar, and S. Walia, “Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540),” Indian J. Plant Physiol., vol. 19, no. 2, pp. 184–188, 2014, doi: 10.1007/s40502-014-0094-7.

L. N. Liu, “Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes,” Biochim. Biophys. Acta - Bioenerg., vol. 1857, no. 3, pp. 256–265, 2016, doi: 10.1016/j.bbabio.2015.11.010.

S. Sedjati, A. Ridlo, and E. Supriyantini, “Efek Penambahan Gula Terhadap Kestabilan Warna Ekstrak Fikosianin Spirulina sp.,” J. Kelaut. Trop., vol. 18, no. 1, pp. 1–6, 2016, doi: 10.14710/jkt.v18i1.505.

J. M. Doke, “An Improved and Efficient Method for the Extraction of Phycocyanin from Spirulina sp,” Int. J. Food Eng., vol. 1, no. 5, 2005, doi: 10.2202/1556-3758.1037.

A. Ridlo, S. Sedjati, and E. Supriyantini, “Aktivitas Anti Oksidan Fikosianin Dari Spirulina Sp. Menggunakan Metode Transfer Elektron Dengan DPPH (1,1-difenil-2-pikrilhidrazil),” J. Kelaut. Trop., vol. 18, no. 2, pp. 58–63, 2016, doi: 10.14710/jkt.v18i2.515.

E. Manirafasha, T. Ndikubwimana, X. Zeng, Y. Lu, and K. Jing, “Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent,” Biochem. Eng. J., vol. 109, pp. 282–296, 2016, doi: 10.1016/j.bej.2016.01.025.

L. Jespersen, L. D. Strømdahl, K. Olsen, and L. H. Skibsted, “Heat and light stability of three natural blue colorants for use in confectionery and beverages,” Eur. Food Res. Technol., vol. 220, no. 3–4, pp. 261–266, 2005, doi: 10.1007/s00217-004-1062-7.

R. Chaiklahan, N. Chirasuwan, and B. Bunnag, “Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives,” Process Biochem., vol. 47, no. 4, pp. 659–664, 2012, doi: 10.1016/j.procbio.2012.01.010.

R. A. Schmidt, M. G. Wiebe, and N. T. Eriksen, “Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria,” Biotechnol. Bioeng., vol. 90, no. 1, pp. 77–84, 2005, doi: 10.1002/bit.20417.

N. T. Eriksen, “Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and medicine,” Appl. Microbiol. Biotechnol., vol. 80, no. 1, pp. 1–14, 2008, doi: 10.1007/s00253-008-1542-y.

S. T. Silveira, J. F. M. Burkert, J. A. V. Costa, C. A. V. Burkert, and S. J. Kalil, “Optimization of phycocyanin extraction from Spirulina platensis using factorial design,” Bioresour. Technol., vol. 98, no. 8, pp. 1629–1634, 2007, doi: 10.1016/j.biortech.2006.05.050.

M. Kuddus, P. Singh, G. Thomas, and A. Al-Hazimi, “Recent developments in production and biotechnological applications of c-phycocyanin,” Biomed Res. Int., vol. 2013, 2013, doi: 10.1155/2013/742859.

W. Pan-utai and S. Iamtham, “Physical extraction and extrusion entrapment of C-phycocyanin from Arthrospira platensis,” J. King Saud Univ. - Sci., vol. 31, no. 4, pp. 1535–1542, 2019, doi: 10.1016/j.jksus.2018.05.026.

T. Furuki et al., “Rapid and selective extraction of phycocyanin from,” J. Appl. Phycol., vol. 15, no. 1979, pp. 319–324, 2003.

J. da C. Ores, M. C. A. de Amarante, and S. J. Kalil, “Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans,” Bioresour. Technol., vol. 219, pp. 219–227, 2016, doi: 10.1016/j.biortech.2016.07.133.

Downloads

Published

2024-07-31

Issue

Section

Articles