INDUCTION ENDOSPORE FORMATION OF Bacillus subtilis KM16 AS A PROBIOTIC CANDIDATE BY OPTIMIZATION OF THE GROWTH CONDITIONS
DOI:
https://doi.org/10.26877/bioma.v13i1.418Keywords:
Bacillus, Endospore, Growth, ProbioticAbstract
Probiotics are living microorganisms which have beneficial effects. One of the benefits is enhancing immunity. Therefore, probiotics are often supplemented into food, medical, and aquaculture products. B. subtilis KM16 as endospore-producing bacteria have been known to increase probiotic resistance to confront the unstable conditions of the digestive tract. Spore formation of Bacillus is supported by the optimal condition of growth medium and incubation periods. The sufficient availability of carbon, nitrogen, and mineral source in the growth medium, and environmental conditions can support the formation of optimal endospores. This research aimed to determine the suitable sugar composition of a medium and optimum incubation time suitable for endospores formation of B. subtilis KM16. Glucose and maltose were utilized as a carbon source in several concentration as a growth medium for B. subtilis KM 16. The incubation time was 48 and 72 hours. The viable number of vegetative cells was not significantly different for the type of sugar and incubation periods. Based on the glucose concentration, 0.2% glucose exhibited the uppermost number of cells, while 1% glucose concentration caused the decrease of vegetative cells. In this study, 0.2% glucose with 48 hours incubation period showed the highest percentage of sporulation frequencies, up to 48%, but it was not significantly different from the other glucose concentration. The medium that contains 0.2% glucose with 48 hours incubation period is the best medium for the utilization of B. subtilis KM16 cells and spores as probiotic candidates.
References
Abhyankar, W.R., Kamphorst, K., Swarge, B.N., van Veen, H., van der Wel, N.N., Brul,S., de Koster, C.G., & de Koning, L.J. (2016). The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores. Frontiers in Microbiology, 7, 1636. https://doi.org/10.3389/fmicb.2016.01636.
Baril E., Coroller, L., Postollec, F., Leguerinel, I., Boulais, C., Carlin, F., & Mafart, P. (2011). The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history. International Journal of Food Microbiology, 146(1), 57-62. https://doi.org/10.1016/j.ijfoodmicro.2011.01.042.
Bernardeau, M., Lehtinen, M.J., Forssten, S.D., & Nurminen, P. (2017). Importance of the gastrointesteinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570-2584. https://doi.org/10/1007/s13197-017-2688-3.
Bozic, N., Ruiz, J., Santin, J.L., & Vujcic, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 53(2), 203-209. https://doi.org/10.1016/j.bej.2010.10.014.
Buescher, J.M., Liebermeister, W., Jules, M., Uhr, M., Muntel, J., Botella, E., & Lecointe, F. (2012). Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science, 335(6072), 1099-1103. https://doi.org/10.1126/science.1206871.
Buffing, M.F., Link, H., Christodoulou, D., & Sauer, U. (2018). Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Scientific Reports, 8(1), 11760. https://doi.org/ 10.1038/s41598-018-30266-3.
Cabrera-Valladares N., Martinez, L.M., Flores, N., Hernandez-Chavez, G., Martinez, A., Bolivar, F., & Gosset, G. (2012). Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168. Journal of Molecular Microbiology and Biotechnology, 22(3), 177-197. https://doi.org/ 10.1159/000339973.
Carlin, F., Albagnac, C., Rida, A., Guinebretiere, M.H., Couvert, O., & Nguyen, C. (2013). Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus group: consequences for risk assessment. Food Microbiology, 33(1), 69-76. https://doi.org/ 10.1016/j.fm.2012.08.014.
Checinska, A., Paszczynski, A., & Burbank, M. (2015). Bacillus and other spore-forming genera: variations in responses and mechanisms for survival. Annual Review of Food Science and Technology, 6, 351-369. https://doi.org/ 10.1146/annurev-food-030713-092332.
Chen, Z.M., Li, Q., Liu, H.M., Yu, N., Xie, T.J., Yang, M.Y., Shen, P., and Chen, X.D. (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology, 85(5), 1353-1360. https://doi.org/ 10.1007/s00253-009-2162-x.
Cheng, V.C.C., Yam, W.C., Lam, O.T.C., Tsang, J.L.Y., ¬¬¬¬Tse, E.Y.F., Siu, G.K.H., Chan, J.F.W., Tse, H., To, K.K.W., Tai, J.W.M., Ho, P.L., & Yuen, K.Y. (2011). Clostridium difficile isolates with increased sporulation: emergence of PCR ribotype 002 in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 30(11), 1371-1381. https://doi.org/ 10.1007/s10096-011-1231-0.
Chung, S.T., Chacko, S.K., Sunehag, A.L., & Haymond, M.W. (2015). Measurements of gluconeogenesis and glycogenolysis: a methodological review. Diabetes, 64(12), 3996-4010. https://doi.org/ 10.2337/db15-0640.
Driks, A. 1999. Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews, 63(1), 1-20. https://doi.org/ 10.1128/mmbr.63.1.1-20.1999.
Elisashvili, V., Kachlishvili, E., & Chikindas, M.L. (2019). Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics and Antimicrobial Proteins, 11(3), 731-747. https://doi.org/ 10.1007/s12602-018-9492-x.
[FAO/WHO] Food and Agriculture Organization of United Nations, World Health Organization. (2002). Guidelines for evaluation of probiotics in food. London (GB): FAO/WHO. hlm 1-12.
Henshaw, E., & Wakil, S.M. (2019). Effect of agitation speed and incubation time on amylase production by Bacillus species isolated from malted and fermented maize (Zea mays). Microbiology Research Journal International, 27(3), 1-7. https://doi.org/ 10.9734/mrji/2019/v27i330097.
Khardziani, T., Kachlishvili, E., Sokhadze, K., Elisashvili, V., Weeks, R., Chikindas, M.L., & Chistyakov, V. (2017). Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw material. Probiotics and Antimicrobial Protein, 9(4), 435-443. https://doi.org/ 10.1007/s12602-017-9303-9.
Liaqat, I., Ahmed, S.I., & Jahan, N. (2013). Biofilm formation and sporulation in Bacillus subtilis. International Journal of Microbiology Research and Reviews, 1(4), 61-67. www.researchgate.net/publication/309629991_Biofilm_formation_and_sporulation_in_Bacillus_subtilis
Magdalena, S., Giovani, F., & Yogiara. (2021). Evaluation of the potentials of Bacillus subtilis KM16 and Pseudomonas sp. PAP 26 isolated from the hot spring and crater lakes as antibiofilm agents. International Journal of Applied Biology, 5(1), 83-94. https://doi.org/ 10.20956/ijab.v5i(1).13429.
Mazmira, M.M., Ramlah, S.A.A., Rosfarizan, M., Ling, T.C., & Ariff, A.B. (2012). Effect of saccharides on growth, sporulation rate, and -endotoxin synthesis of Bacillus thuringiensis. African Journal of Biotechnology, 11(40), 9654-9663. https://doi.org/ 10.5897/AJB11.1391.
Moeller, R., Raguse, M., Reitz, G., Okayasu, R., Li, Z., Klein, S., Setlow, P., & Nicholson, W.L. (2014). Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Applied and Environmental Microbiology, 80(1), 104-109. https://doi.org/ 10.1128/AEM.03136-13.
Monteiro, S.M., Clemente, J.J., Henriques, A., Gomes, R.J., Carrondo, M.J., & Cunha, A.E. (2005). A procedure for high-yield spore production by Bacillus subtilis. Biotechnology Progress, 21(4), 1026-1031. https://doi.org/ 10.1021/bp050062z.
Nakano, M.M., & Zuber, P. (1998). Anaerobic growth of a strict aerobe (Bacillus subtilis). Annual Review of Microbiology, 52(1), 165-190. https://doi.org/ 10.1146/annurev.micro.52.1.165.
Nguyen, H.T., Truong, D.H., Kouhounde, S., Ly, S., Razafindralambo, H., and Delvigne, F. (2016). Biochemical engineering approaches for increasing viability and functionality of probiotic bacteria. International Journal of Molecular Sciences, 17(6), 867. https://doi.org/ 10.3390/ijms17060867.
Patel, C., Patel, P., & Acharya, S. (2019). Therapeutic prospective of a spore-forming probiotic-Bacillus clausii UBBC07 against acetaminophen-induced uremia in rats. Probiotics and Antimicrobial Proteins, 12, 253-258. https://doi.org/ 10.1007/s12602-019-09540-x.
Riaz, N., & Qadeer, M.A. (2003). Characterization of α-amylase by Bacillus subtilis. International Journal of Agriculture and Biology, 5(3), 249-252. https://www.fspublishers.org/published_papers/55017_..pdf.
Saburi, W., Okuyama, M., Kumagai, Y., Kimura, A., & Mori, H. (2015). Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie, 108,140-148. 10.1016/j.biochi.2014.11.010.
Sanjaya, T.M. (2020). Characterization of Bacillus from honey and aquaculture as potential probiotics (thesis, Atma Jaya Catholic University of Indonesia).
Schonert, S., Seitz, S., Krafft, H., Feuerbaum, E.A., Andernach, I., Witz, G., & Dahl, M.K. (2006). Maltose and maltodextrin utilization by Bacillus subtilis. Journal of Bacteriology,188(11), 3911-3922. https://doi.org/10.1128/jb.00213-06.
Setlow, B., Atluri, S., Kitchel, R., Koziol-Dube, K., & Setlow, P. (2006). Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha /beta-type small acid-soluble proteins. Journal of Bacteriology, 188(11), 3740-3747. https://doi.org/ 10.1128/JB.00212-06.
Setlow, P. (2014). Spore resistance properties. Microbiology Spectrum, 2(5), 1-14. https://doi.org/ 10.1128/microbiolspec.TBS-0003-2012.
Shi, F., & Zhu, Y. (2007). Application of statistically-based experimental designs in medium optimization for spore production of Bacillus subtilis from distillery effluent. Biocontrol, 52(6), 845-852. https://doi.org/ 10.1007/s10526-0069055-z.
Sousa, J., Westhoff, P., Methling, K., and Lalk, M. (2019). The absence of pyruvate kinase affects glucose-dependent carbon catabolite repression in Bacillus subtilis. Metabolites, 9(10), 1-15. https://doi.org/ 10.3390/metabo9100216.
Sukumaran, S., Dailin, D.J., Malek, R.A., Peng, T., Hanapi, S.Z., & Enshasy, H.E.L. (2019). Production of high cell mass of Bacillus firmus using statistical medium optimization. Journal of Scientific & Industrial Research, 78(6), 358-363. https://nopr.niscpr.res.in/bitstream/123456789/47559/1/JSIR%2078%286%29%20358-363.pdf.
Tam, N.K.M., Uyen, N.Q., Hong, H.A., Duc, L.H., Hoa, T.T., Serra, C.R., Henrique, A.O., & Cutting, S.M. (2006). The intestinal life cycle of Bacillus subtilis and close relatives. Journal of Bacteriology, 188(7), 2692-2700. https://doi.org/ 10.1128/JB.188.7.26922700.2006.
Wells-Bennik, M.H., Eijlander, R.T., Den Besten, H.M., Berendsen, E.M., Warda, A.K., Krawcyzk, A.O., Groot, M.N.N., Xiao, Y., Zwietering, M.H., Kuipers, O.P., & Abee, T. (2016). Bacterial spores in food: survival, emergence, and outgrowth. Annual Review of Food Science and Technology, 7(1), 457-482. https://doi.org/ 10.1146/annurevfood-041715-033144.