Stratification and Charging Efficiency in Compact Thermal Storage Under Variable Flow Conditions: An AI-Assisted Simulation Study

Authors

  • Janter P. Simanjuntak Universitas Negeri Medan Indonesia
  • Eka Daryanto Universitas Negeri Medan Indonesia
  • Bisrul Hapis Tambunan Universitas Negeri Medan Indonesia
  • Robert Silaban Universitas Negeri Medan Indonesia
  • Denny Haryanto Sinaga Universitas Negeri Medan Indonesia
  • Mohd Zamri Zainon Universiti of Malaya Malaysia
  • Muhammad Ibrahim Federal Polytechnic Bida Niger

DOI:

https://doi.org/10.26877/asset.v8i1.2031

Keywords:

Thermal Efficiency, compact TES, low-grade heat recovery, AI-based simulation

Abstract

Thermal Energy Storage (TES) systems are essential for managing low-grade heat in renewable energy applications. This study evaluates the impact of flow rate and heating power on thermal stratification and efficiency within a 30-liter TES unit. Using an AI-assisted simulation framework, the system's performance was analyzed across varying flow rates (0.3–0.9 LPM) and heater capacities (1.5–2.0 kW). Results indicate that lower flow rates (0.3–1.2 LPM) effectively preserve stratification, whereas higher rates induce thermal mixing. While charging efficiency generally decreases as target temperatures rise, it improves significantly with higher heater power. Notably, the configuration using a 0.7 LPM flow rate and 2.0 kW heater achieved a peak efficiency of 78% while maintaining stable thermal layering. This research demonstrates how AI-driven modeling can optimize charging behavior, providing critical insights for the design and thermal management of compact TES systems in low-grade heat applications.

Author Biographies

  • Janter P. Simanjuntak, Universitas Negeri Medan

    Mechanical Engineering Department, Universitas Negeri Medan, Jl. Willem Iskandar, Pasar V Medan Estate 20221, North Sumatra, Indonesia

    PUI-PT Innerwise, Universitas Negeri Medan, North Sumatra, Indonesia

  • Eka Daryanto, Universitas Negeri Medan

    Mechanical Engineering Department, Universitas Negeri Medan, Jl. Willem Iskandar, Pasar V Medan Estate 20221, North Sumatra, Indonesia

  • Bisrul Hapis Tambunan, Universitas Negeri Medan

    Mechanical Engineering Department, Universitas Negeri Medan, Jl. Willem Iskandar, Pasar V Medan Estate 20221, North Sumatra, Indonesia

  • Robert Silaban, Universitas Negeri Medan

    Mechanical Engineering Department, Universitas Negeri Medan, Jl. Willem Iskandar, Pasar V Medan Estate 20221, North Sumatra, Indonesia

  • Denny Haryanto Sinaga, Universitas Negeri Medan

    Electrical Engineering Department, Universitas Negeri Medan, Jl. Willem Iskandar, Pasar V Medan Estate 20221, North Sumatra, Indonesia

    PUI-PT Innerwise, Universitas Negeri Medan, North Sumatra, Indonesia

  • Mohd Zamri Zainon, Universiti of Malaya

    Department of Mechanical Engineering, Faculty of Engineering, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia

  • Muhammad Ibrahim, Federal Polytechnic Bida

    Department of Mechanical Engineering, Federal Polytechnic Bida, Niger State, Nigeria

References

[1] A. P. Heriyanti et al., “Exploring Biochar Briquettes from Biomass Waste for Sustainable Energy,” Advance Sustainable Science Engineering and Technology, vol. 7, no. 3, p. 0250303, May 2025, doi: 10.26877/7mhm6t05.

[2] A. Alwahab, P. T. Maharani, W. O. M. Nur K., L. O. Ahmad, A. Alimin, and A. Zaeni, “Optimization of Biogas Liquid Waste from Livestock Manure as a Source of Renewable Energy through Microbial Fuel Cell (MFC) Technology,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 2, p. 0240202, Mar. 2024, doi: 10.26877/asset.v6i2.17931.

[3] A. Hasibuan et al., “Rainy and dry seasons impact on electricity demand in Indonesia,” SINERGI, vol. 28, no. 3, p. 545, Jul. 2024, doi: 10.22441/sinergi.2024.3.011.

[4] A. Elkhatat and S. A. Al-Muhtaseb, “Combined ‘Renewable Energy–Thermal Energy Storage (RE–TES)’ Systems: A Review,” Energies (Basel), vol. 16, no. 11, p. 4471, Jun. 2023, doi: 10.3390/en16114471.

[5] D. S. Codd, A. Gil, M. T. Manzoor, and M. Tetreault-Friend, “Concentrating Solar Power (CSP)—Thermal Energy Storage (TES) Advanced Concept Development and Demonstrations,” Current Sustainable/Renewable Energy Reports, vol. 7, no. 2, pp. 17–27, Jun. 2020, doi: 10.1007/s40518-020-00146-4.

[6] B. Stutz et al., “Storage of thermal solar energy,” C R Phys, vol. 18, no. 7–8, pp. 401–414, Sep. 2017, doi: 10.1016/j.crhy.2017.09.008.

[7] R. Sioshansi and P. Denholm, “The Value of Concentrating Solar Power and Thermal Energy Storage,” IEEE Trans Sustain Energy, vol. 1, no. 3, pp. 173–183, Oct. 2010, doi: 10.1109/TSTE.2010.2052078.

[8] Baharuddin et al., “Development of a Small-Scale Electricity Generation Plant Integrated on Biomass Carbonization: Thermodynamic and Thermal Operating Parameters Study,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 94, no. 1, pp. 79–95, Apr. 2022, doi: 10.37934/arfmts.94.1.7995.

[9] P. Pan, M. Zhang, G. Xu, H. Chen, X. Song, and T. Liu, “Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant,” Energies (Basel), vol. 13, no. 17, p. 4345, Aug. 2020, doi: 10.3390/en13174345.

[10] B. H. Tambunan, J. P. Simanjuntak, and I. Koto, “The use of thermo electric generator to utilize the waste heat from the biomass stove into electricity,” J Phys Conf Ser, vol. 2193, no. 1, p. 012045, Feb. 2022, doi: 10.1088/1742-6596/2193/1/012045.

[11] D. Xiao et al., “Thermoelectric Generator Design and Characterization for Industrial Pipe Waste Heat Recovery,” Processes, vol. 11, no. 6, p. 1714, Jun. 2023, doi: 10.3390/pr11061714.

[12] J. P. Simanjuntak, B. M. T. Pakpahan, P. Purwantono, and K. A. Al-attab, “Process design and simulation study of an electricity generation plant utilizing low-grade wasted thermal energy using aspen Hysys software,” Teknomekanik, vol. 6, no. 1, pp. 29–36, Jun. 2023, doi: 10.24036/teknomekanik.v6i1.23872.

[13] K. S. Kim, S. K. Bang, I. H. Seo, S. Y. Lee, E. I. Jeong, and C. S. Yi, “A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery,” Journal of the Korean Society of Manufacturing Process Engineers, vol. 18, no. 5, pp. 90–95, May 2019, doi: 10.14775/ksmpe.2019.18.5.090.

[14] B. K. Saha, B. Chakraborty, J. Mondal, A. Pesyridis, E. M. B. Messini, and P. Kumar, “Design and Implementation of a Control Strategy for a Dynamic Organic Rankine Cycle‐Based Power System in the Context of Industrial Waste Heat Recovery,” Energy Technology, vol. 11, no. 11, Nov. 2023, doi: 10.1002/ente.202300425.

[15] J. P. Simanjuntak and W. Prayogo, “Low Emission Power Plant Design Using R134a as Working Fluid Instead of Fossil Fuel to Mitigate Greenhouse Gas Effect,” Ecological Engineering & Environmental Technology, vol. 24, no. 5, pp. 231–237, Jul. 2023, doi: 10.12912/27197050/166015.

[16] Janter Pangaduan Simanjuntak, Bisrul Hapis Tambunan, and Junifa Layla Sihombing, “Potential of Pyrolytic Oil from Plastic Waste as an Alternative Fuel Through Thermal Cracking in Indonesia: A Mini Review to Fill the Gap of the Future Research,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 102, no. 2, pp. 196–207, Feb. 2023, doi: 10.37934/arfmts.102.2.196207.

[17] Y. M. Han, R. Z. Wang, and Y. J. Dai, “Thermal stratification within the water tank,” Renewable and Sustainable Energy Reviews, vol. 13, no. 5, pp. 1014–1026, Jun. 2009, doi: 10.1016/j.rser.2008.03.001.

[18] H. Huang et al., “An experimental investigation on thermal stratification characteristics with PCMs in solar water tank,” Solar Energy, vol. 177, pp. 8–21, Jan. 2019, doi: 10.1016/j.solener.2018.11.004.

[19] E. Andersen, S. Furbo, and J. Fan, “Multilayer fabric stratification pipes for solar tanks,” Solar Energy, vol. 81, no. 10, pp. 1219–1226, Oct. 2007, doi: 10.1016/j.solener.2007.01.008.

[20] M. Y. Haller, C. A. Cruickshank, W. Streicher, S. J. Harrison, E. Andersen, and S. Furbo, “Methods to determine stratification efficiency of thermal energy storage processes – Review and theoretical comparison,” Solar Energy, vol. 83, no. 10, pp. 1847–1860, Oct. 2009, doi: 10.1016/j.solener.2009.06.019.

[21] C. Cristofari, G. Notton, P. Poggi, and A. Louche, “Influence of the flow rate and the tank stratification degree on the performances of a solar flat-plate collector,” International Journal of Thermal Sciences, vol. 42, no. 5, pp. 455–469, May 2003, doi: 10.1016/S1290-0729(02)00046-7.

[22] L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1675–1695, Apr. 2011, doi: 10.1016/j.rser.2010.11.018.

[23] J. Kensby, A. Trüschel, and J.-O. Dalenbäck, “Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test,” Appl Energy, vol. 137, pp. 773–781, Jan. 2015, doi: 10.1016/j.apenergy.2014.07.026.

[24] B. Liu, W. Gao, Q. Li, H. Chen, Y. Zhang, and X. Ding, “Quantification of thermal stratification and its impact on energy efficiency in solar hot water storage tanks,” Energy, vol. 326, p. 136243, Jul. 2025, doi: 10.1016/j.energy.2025.136243.

[25] C. Suárez, F. J. Pino, F. Rosa, and J. Guerra, “Heat loss from thermal energy storage ventilated tank foundations,” Solar Energy, vol. 122, pp. 783–794, Dec. 2015, doi: 10.1016/j.solener.2015.09.045.

[26] A. Palacios, C. Barreneche, M. E. Navarro, and Y. Ding, “Thermal energy storage technologies for concentrated solar power – A review from a materials perspective,” Renew Energy, vol. 156, pp. 1244–1265, Aug. 2020, doi: 10.1016/j.renene.2019.10.127.

[27] G. Alva, L. Liu, X. Huang, and G. Fang, “Thermal energy storage materials and systems for solar energy applications,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 693–706, Feb. 2017, doi: 10.1016/j.rser.2016.10.021.

Downloads

Published

2026-01-30