Integrated 1D-2D Resistivity Inversion for Mapping Seawater Intrusion in a Coastal Aquifer: Kenjeran-Surabaya, Indonesia Case Study
DOI:
https://doi.org/10.26877/asset.v8i1.3002Keywords:
Coastal aquifer, Electrical Resistivity Tomography, Saline groundwater, Seawater intrusion, Vertical Electrical SoundingAbstract
This study investigates the extent of intrusion in the Kenjeran coastal aquifer, Surabaya, Indonesia, through an integrated geophysical approach. Four one-dimensional Vertical Electrical Sounding (VES) surveys and two two-dimensional Electrical Resistivity Tomography (ERT) transects were conducted using Schlumberger and Wenner–Schlumberger configurations to obtain both depth-specific and laterally continuous resistivity data. The 1D VES results detected low-resistivity layers (<1.0 Ω·m) at depths exceeding 58–66 m, indicating deep saline groundwater. The 2D ERT sections identified wedge-shaped low-resistivity anomalies (0.1–0.8 Ω·m) at depths of 7.5 m to 48 m, indicating active intrusion progressing inland. Intrusion is more severe in the northern sector, with vertical penetration up to 48 m and horizontal encroachment beyond 200 m from the shoreline. The integration of 1D and 2D resistivity imaging proved effective in delineating saline–freshwater interfaces, enabling targeted mitigation measures and informed groundwater management to safeguard Kenjeran’s aquifer from further degradation.
References
[1] P. M. Barlow and E. G. Reichard, “Saltwater intrusion in coastal regions of North America,” Hydrogeol J, vol. 18, no. 1, pp. 247–260, Feb. 2010, doi: 10.1007/s10040-009-0514-3.
[2] B. Winid and M. Maruta, “Assessment of Groundwater (Main Usable Aquifer) Vulnerability to Seawater Intrusion in the Polish Baltic Coastal Region,” Water (Basel), vol. 17, no. 3, p. 336, Jan. 2025, doi: 10.3390/w17030336.
[3] S. Kalu, M. C. Ricker, J. Janson, D. Nordlund, and H. Li, “Destabilization of Soil Carbon After Saltwater Intrusion in Coastal Agricultural Soils,” Environ Sci Technol, vol. 59, no. 4, pp. 2107–2118, Feb. 2025, doi: 10.1021/acs.est.4c12966.
[4] A. D. Werner et al., “Seawater intrusion processes, investigation and management: Recent advances and future challenges,” Adv Water Resour, vol. 51, pp. 3–26, Jan. 2013, doi: 10.1016/j.advwatres.2012.03.004.
[5] X. Cao, Q. Guo, and W. Liu, “Research on the Patterns of Seawater Intrusion in Coastal Aquifers Induced by Sea Level Rise Under the Influence of Multiple Factors,” Water (Basel), vol. 16, no. 23, p. 3457, Dec. 2024, doi: 10.3390/w16233457.
[6] M. Debnath and N. Alamdari, “Impacts of Climate Change and Sea-Level Rise on Groundwater Levels and Saltwater Intrusion in Coastal Aquifers,” 2025. doi: 10.2139/ssrn.5085447.
[7] C. Dodd and G. M. Rishworth, “Coastal urban reliance on groundwater during drought cycles: Opportunities, threats and state of knowledge,” Cambridge Prisms: Coastal Futures, vol. 1, p. e11, Jan. 2023, doi: 10.1017/cft.2022.11.
[8] S. Purnama, “Groundwater Vulnerability from Sea Water Intrusion in Coastal Area Cilacap, Indonesia,” Indonesian Journal of Geography, vol. 51, no. 2, p. 206, Aug. 2019, doi: 10.22146/ijg.18229.
[9] A. Abdillah, I. Widianingsih, R. A. Buchari, and H. Nurasa, “Adapting to climate change and multi-risk governance: toward sustainable adaptation and enhancing urban resilience—Indonesia,” Discover Applied Sciences, vol. 7, no. 1, p. 81, Jan. 2025, doi: 10.1007/s42452-025-06491-7.
[10] R. N. Indriastoni and I. Kustini, “INTRUSI AIR LAUT TERHADAP KUALITAS AIR TANAH DANGKAL DI KOTA SURABAYA,” Rekayasa Teknik Sipil, vol. 3, no. 4, pp. 228–232, 2014, Accessed: Jul. 31, 2025. [Online]. Available: https://ejournal.unesa.ac.id/index.php/rekayasa-teknik-sipil/article/view/9519/9409
[11] F. Masitoh and B. A. Saifanto, “Pendugaan Kerentanan Airtanah Dangkal Terhadap Intrusi Airlaut Menggunakan Metode GALDIT di Kecamatan Sukolilo Kota Surabaya,” Buletin Oseanografi Marina, vol. 13, no. 2, pp. 153–165, Jun. 2024, doi: 10.14710/buloma.v13i2.53625.
[12] A. Herdyansah and D. Rahmawati, “Dampak Intrusi Air Laut pada Kawasan Pesisir Surabaya Timur,” Jurnal Teknik ITS, vol. 6, no. 2, pp. 599–603, 2017.
[13] R. R. Wardhana, D. D. Warnana, and A. Widodo, “Identifikasi Intrusi Air Laut Pada Air Tanah Menggunakan Metode Resistivitas 2D Studi Kasus Surabaya Timur,” Jurnal Geosaintek, vol. 3, no. 1, p. 17, Jan. 2017, doi: 10.12962/j25023659.v3i1.2946.
[14] D. A. Perdana, “Studi Intrusi Air Laut di Akuifer Dalam Menggunakan Perunut Hidroisotop dan Analisis Hidrokimia. Studi Kasus: Kota Surabaya,” UNIVERSITAS GADJAH MADA, Yogyakarta, 2021. Accessed: Jul. 31, 2025. [Online]. Available: https://etd.repository.ugm.ac.id/penelitian/detail/195862
[15] M. M. Ramadhan and B. Hariyanto, “KAJIAN TENTANG AIR ASIN PADA AIRTANAH DANGKAL DI KECAMATAN KENJERAN KOTA SURABAYA,” Swara Bhumi, vol. 4, no. 3, pp. 24–33, 2017.
[16] W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied Geophysics. University of Cambridge, 1990. [Online]. Available: https://books.google.co.id/books?id=oRP5fZYjhXMC&printsec=frontcover#v=onepage&q&f=false
[17] A. Palacios et al., “Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer,” Hydrol Earth Syst Sci, vol. 24, no. 4, pp. 2121–2139, Apr. 2020, doi: 10.5194/hess-24-2121-2020.
[18] A. Pidlisecky, T. Moran, B. Hansen, and R. Knight, “Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System,” Groundwater, vol. 54, no. 2, pp. 255–261, Mar. 2016, doi: 10.1111/gwat.12351.
[19] A. Costall, B. Harris, and J. P. Pigois, “Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers,” Surv Geophys, vol. 39, no. 4, pp. 753–816, Jul. 2018, doi: 10.1007/s10712-018-9468-0.
[20] H. M. El-Sayed, M. I. A. Ibrahim, A.-S. Abou Shagar, and A. R. Elgendy, “Geophysical and hydrochemical analysis of saltwater intrusion in El-Omayed, Egypt: Implications for sustainable groundwater management,” Egypt J Aquat Res, vol. 49, no. 4, pp. 478–489, Dec. 2023, doi: 10.1016/j.ejar.2023.11.005.
[21] B. M. Niculescu and G. Andrei, “Application of electrical resistivity tomography for imaging seawater intrusion in a coastal aquifer,” Acta Geophysica, vol. 69, no. 2, pp. 613–630, Apr. 2021, doi: 10.1007/s11600-020-00529-7.
[22] M. Hasan, Y. Shang, G. Akhter, and W. Jin, “Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan,” J Appl Geophy, vol. 164, pp. 200–213, May 2019, doi: 10.1016/j.jappgeo.2019.03.013.
[23] B. Aryaseta, D. D. Warnana, and A. Widodo, “Identifikais Intrusi Air Laut pada Air Tanah Menggunakan Induced Polarization Studi Kasus Daerah Surabaya Timur,” Jurnal Geosaintek, vol. 2, no. 3, 2016.
[24] B. M. Niculescu and G. Andrei, “Using Vertical Electrical Soundings to characterize seawater intrusions in the southern area of Romanian Black Sea coastline,” Acta Geophysica, vol. 67, no. 6, pp. 1845–1863, Dec. 2019, doi: 10.1007/s11600-019-00341-y.
[25] D. Tarallo, I. Alberico, G. Cavuoto, N. Pelosi, M. Punzo, and V. Di Fiore, “Geophysical assessment of seawater intrusion: the Volturno Coastal Plain case study,” Appl Water Sci, vol. 13, no. 12, p. 234, Dec. 2023, doi: 10.1007/s13201-023-02033-x.
[26] R. Martorana, P. Capizzi, A. D’Alessandro, and D. Luzio, “Comparison of different sets of array configurations for multichannel 2D ERT acquisition,” J Appl Geophy, vol. 137, pp. 34–48, Feb. 2017, doi: 10.1016/j.jappgeo.2016.12.012.
[27] M. H. Loke, J. E. Chambers, D. F. Rucker, O. Kuras, and P. B. Wilkinson, “Recent developments in the direct-current geoelectrical imaging method,” J Appl Geophy, vol. 95, pp. 135–156, Aug. 2013, doi: 10.1016/j.jappgeo.2013.02.017.
[28] L. M. Mas’ud, A. Azikin, H. Umar, and H. Zubair, “Delineation of Seawater Intrusion, Using Geo-Electric Resistivity Method, in Shallow Aquifer in Western Part of Makassar, South Sulawesi, Indonesia,” The Iraqi Geological Journal, pp. 109–123, Oct. 2024, doi: 10.46717/igj.57.2D.9ms-2024-10-19.
[29] S. Widada, B. Rochaddi, C. A. Suryono, and I. Irwani, “Intrusi Air Laut di Pesisir Tugu Kota Semarang Berdasarkan Resistiviti dan Hidrokimia,” Jurnal Kelautan Tropis, vol. 21, no. 2, p. 75, Dec. 2018, doi: 10.14710/jkt.v21i2.3610.
[30] Muhardi, Faurizal, and Widodo, “Analisis Pengaruh Intrusi Air Laut terhadapKeberadaan Air Tanah di Desa Nusapati,Kabupaten Mempawah Menggunakan Metode Geolistrik Resistivitas,” Indonesian Journal of Applied Physics, vol. 10, no. 2, p. 89, Oct. 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Advance Sustainable Science Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



